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Joint Temporal-Spatial Bit Allocation for Video
Coding With Dependency

Shan Liu and C.-C. Jay Kuo, Fellow, IEEE

Abstract—The joint temporal-spatial bit allocation problem
with consideration of dependency arising from motion compen-
sated prediction as well as frame interpolation is investigated in
this research. After the problem formulation, several heuristic
methods are proposed to provide near-optimal and suboptimal
solutions to this problem. First, the selective iteration algorithm
(SIA) based on the monotonic property of the rate-distortion (R-D)
curve is proposed to achieve the near-optimal solution. Then, the
greedy iteration algorithm (GIA) is presented as a suboptimal
heuristic to reach an R-D performance close to that obtained
using SIA, while at a much lower complexity. Furthermore, by
adaptively grouping frames based on the mean of the absolute
difference differentials and applying greedy pruning to groups of
frames, the suboptimal solution is significantly expedited so that it
can be applied in real-time applications. Frames to be skipped in
the coding process and quantization parameters (QPs) exploited
in coded frames are adaptively and jointly determined to reach
a proper tradeoff between temporal and spatial qualities. Ex-
perimental results show that the proposed methods can enhance
the overall quality of compressed video at various bit rates in
comparison with H.263+4-/TMNS8 [1] using fixed frame rates and
QPs, as well as the adaptive quantization solution proposed in [2].

Index Terms—Bit-rate budget, frame skipping (FS), quantiza-
tion parameters (QPs), temporal-spatial bit allocation, rate-distor-
tion (R-D).

I. INTRODUCTION

IDEO compression is generally processed in both
Vtemporal and spatial domains. Temporal compression
techniques such as motion compensated prediction (MCP) and
frame skipping (FS) (temporal subsampling) are widely used
in state-of-the-art video coding standards, e.g., MPEG-1/2/4
[3]1-[5] and H.261/3/L [6]-[8], to reduce temporal redundancy
among successive frames. Traditional still image compres-
sion methods based on DCT and quantization are adopted to
reduce spatial redundancy within each frame. Both temporal
and spatial compression methods seek a tradeoff between
quality and bit rates. In video compression standards, spatial
quality is mainly affected by the quantization parameter (QP),
where a bigger QP results in a coarser picture with lower bit
rates and a smaller QP results in a finer picture with higher
bit rates. Sometimes, even with very blurred images, the bit
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rate is still over the budget if every frame is encoded. In this
case, temporal subsampling is needed, where some frames are
dropped without being encoded and transmitted. Under a fixed
bit rate budget, more skipped frames result in worse temporal
quality while each coded frame can have higher spatial quality.
Consequently, temporal and spatial resolutions have to be
adaptively adjusted according to video characteristics to reach
the optimal joint quality. Moreover, temporal quality can be
enhanced by using MCI to reconstruct skipped frames [9]. Due
to the complicated prediction and interpolation dependency
relationship, temporal—spatial quality tradeoff with adaptive FS
has to be studied carefully in order to achieve the best overall
visual quality for the entire sequence.

There has been previous work on temporal and spatial bit
allocation. First, given a frame type structure and a frame rate,
Ortega and Ramchandran [2], [10] investigated the optimal
bit allocation problem with dependent quantization. In their
work, QPs were adaptively selected under the bit rate budget at
a constant frame rate, resulting in spatial-quality-oriented bit
allocation. Video temporal activity and FS were not considered
in [2], [10]. In contrast, Song et al. [11] proposed a frame rate
control scheme that adjusts the encoding frame rate based on
inherent motion activities. Then, the MB-layer rate-distortion
(R-D) model such as that adopted in ITU-T H.263+/TMN8 can
be used for bit allocation (i.e., QP adjustment) within a frame.
Although both the frame rate and QPs were adaptively selected
in [11], they were adjusted respectively rather than jointly. In
order to jointly optimize the temporal and spatial quality, a
more computationally intensive temporal—spatial bit allocation
approach was recently proposed by Reed and Lim [12] under
the assumption that all frames were intracoded. In this work, FS
and QP were simultaneously adjusted for the best overall video
quality. However, the I-frame restriction, which was adopted
to avoid the computational difficulty in dealing with prediction
dependency, imposes a severe constraint on its applicability to
motion-compensated video coding schemes such as ISO/IEC
MPEG and ITU-T H.26x codec families. Also, FR was used in
[12] to reconstruct skipped frames. As a result, interpolation
dependency could be greatly simplified while the quality of
interpolated frames was sacrificed.

In this work, the dependent temporal—spatial bit allocation
problem is investigated for video consisting of both intra- and
intercoded frame types. Besides, MCI is exploited for skipped
frame reconstruction. The problem is formulated in Section II.
Then, the solution to this problem is studied through various
approaches. On one hand, although dynamic programming has
been widely used to solve the independent R-D optimization
problem, it does not provide the optimal solution to dependent
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optimization problems due to its solution nature [10], [13]. On
the other hand, exhaustive search, which can guarantee the op-
timality of the solution, is of little practical value due to the ex-
tremely high computational complexity.

Therefore, several near-optimal and suboptimal heuristics
with reasonable computational costs are proposed in this paper.
They are briefly summarized below. First, the selective iteration
algorithm (SIA) is presented by extending the monotonic prop-
erty, which was observed and exploited in the one-dimensional
(1-D) R-D optimization method [2], [10], i.e., adaptive quanti-
zation in the spatial domain, to the two-dimensional (2-D) case
and then applying it to the 2-D R-D optimization problem in the
joint temporal—spatial domain. Using this monotonic property
to prune out unqualified parameter (QP/FS) combinations, the
complexity of exhaustive search is significantly reduced and
a near-optimal solution can be reached. Second, the greedy
iteration algorithm (GIA) is developed to further reduce the
complexity of STA with more aggressive pruning so that subop-
timal results can be achieved in practice. These two algorithms
and the 2-D monotonic property are detailed in Section III.

In Section IV, an adaptive frame grouping (AFG) scheme
is introduced as a preprocessing tool, where successive frames
with constant motion velocity and similar texture complexity
are grouped and assigned with the same temporal (FS) and spa-
tial (QP) resolutions. By applying the GIA to a group of frames
(GOFs), the frame interpolation dependency can be greatly re-
duced, and thus the overall complexity. It is worthwhile to em-
phasize that both skipped and coded frames contribute to the
operational R-D function in our framework. The MCI scheme
based on the triangular-patch affine warping method [14], [15]
is adopted to reconstruct skipped frames.

Experimental results are given in Section V to demonstrate
the performance of proposed bit allocation algorithms. It is
observed that the proposed algorithms can outperform the
H.263+/TMNS8 standard codec [1] with fixed FS/QP from
0.3 to 1 dB in average PSNR for different test sequences
under various bit rate budgets. Moreover, the PSNR variance
is smaller, which implies that the output visual quality is more
consistent from frame to frame. This is usually preferred by
the human visual system. The performance improvement of
the 2-D R-D optimization over the 1-D R-D optimization as
proposed in [2] is also reported. Finally, concluding remarks
are given in Section VI.

II. PROBLEM FORMULATION
A. Preliminaries

1) Spatial QP Adaptation: The classical bit allocation
problem was examined with or without temporal depen-
dency [2], [10]. Given N dependent coded frames with a
fixed frame rate, the problem is to select QPs for all frames,
{Qi,i =1,..., N}, to achieve the best overall spatial quality.
Mathematically, the problem is to determine

ln_l__lnNZDi(Qh Q)
N =1
subjectto > Ri(Q1,...,Q:) < B 1)

i=1

where D;( - ) and R;( - ) are the distortion and the rate of the ith
frame under a given QP selection, respectively. Also, B stands
for the total bit budget. Note that the frame rate is predetermined
in (1) so that FS is fixed for the entire sequence. Only the spatial
quality of coded frames is optimized while skipped frames are
not considered if there are any.

In contrast, conventional frame-rate control algorithms per-
form dynamic FS according to the motion activity of underlying
video while determining the QP of each frame independently. It
is natural that the bit rate can be more efficiently allocated if the
temporal—spatial tradeoff is properly exploited.

2) Affine MCI: No matter how a sequence is compressed and
transmitted, the final received video quality can be best evalu-
ated at the full frame rate. Thus, frame-rate up-conversion tech-
niques are used to reconstruct skipped frames from neighboring
coded frames when FS is adopted. Commonly used methods in-
clude FR, frame averaging (FA), and MCI [9]. Better frame in-
terpolation results in improved temporal quality, and thus the
overall visual quality. The six-parameter affine warping model
[14], [15] is adopted in our proposed system. It is defined as

$;=ao+a1><$i+a2><y1:
yi =bo+ b1 x x; + by Xy ()

where (z},y;) is the 2-D coordinates of the interpolated pixel
in the skipped frame while (z;, y;) is that of the corresponding
pixel in the reference frame (e.g., the previous or the next coded
frame). Once a skipped frame is reconstructed, its distortion (D)
can be measured by calculating the PSNR value of the recon-
structed picture with respect to the original one. Obviously, the
rate (R) of a skipped frame is zero. Hence, the R-D performance
of a skipped frame can be applied to the proposed 2-D R-D op-
timization problem formulated in the next subsection.

B. Dependent Temporal-Spatial Bit Allocation

The overall quality of the full frame-rate video playback is de-
pendent on coded frames as well as skipped frames. The frame
set S is used here to indicate coded/skipped frames

i=1,...,N. A3)

In above, S; takes a binary value (1/0) to denote a coded or a
skipped frame among a total of [NV frames in the input sequence.
Similar to that in (1), Q denotes the set of QP, i.e.,

Q: [Ql?QZ?"'?QN]?
Qi € [Qmin, Qumax);, t=1,...,N. 4)

Most video coding standards rely on motion-compensated
prediction to reduce the temporal redundancy among successive
frames, which results in prediction dependency among coded
frames. For example, the P-frame is predicted from the previous
reference (I or P) frame while the B-frame is predicted from
both the previous and the next reference frames. These INTER
(P and B) frames contribute to higher compression efficiency.
On the other hand, since the skipped frame is interpolated from
adjacent coded frames, its quality is dependent upon that of coded
frames. Thus, interpolation dependency is also introduced. We
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call both prediction and interpolation dependency the temporal
dependency, which is generally unavoidable in MCP-based
video coders, especially for low bit rate applications.

Based on the above discussion, the total distortion is con-
tributed by both coded and skipped frames and can be expressed
by

N

ZDi(Qas)

=1 N
= {Di(Q,8)[(Si =1)+Di(Q,S)[(S: =0)}. (5)
=1

Since skipped frames do not cost any bit, the total rate is con-
tributed by coded frames only. That is

> (Q.8) =) Ri(Q.9)|(S:=1). (6)

Consequently, the 2-D bit allocation problem is to find Q* and
S* such that

N
Q*,8"] = argg}g;Di(Qﬁ)

N
subject to ZRi(Q7 S)<B )
i=1
where D;(Q,S) and R;(Q,S) are the distortion and the rate
of the sth frame under the given FS and QP sets, respectively.
Usually, R is measured in bits and D in the mean square error
(MSE).

This problem can be simplified by forcing all coded frames to
be intraframes to avoid prediction dependency and using FR in-
stead of bidirectional interpolation methods (e.g., FA and MCI)
to eliminate interpolation dependency. As a result, the temporal
dependency can be totally ignored as done in [12]. Following
this line of thought, we can rewrite (5) and (6) as

N
> Di(Q.8)
=1

= Z {Di(Qi)[(Si = 1)+ Di (Qi,) |(Si =0)}
(8)

and
N N
D Ri(Q,8) =) Ri(Qi)[(Si=1) ©)
=1 =1

where (; is the QP of the jth intracoded frame and @; , is the QP
of the immediate previous intraframe of the ¢th skipped frame.

Under such simplifying conditions, both the prediction and
the interpolation dependency relations are removed, and dy-
namic programing can be directly applied for the optimal so-
lution. However, these simplifying conditions do not apply to
MCP-based video coders that are widely in use today. Hence,
we do not simplify the problem formulation, but propose some
suboptimal heuristics to the original problem given by (5), (6),
and (7) in this work.

A

QP y
BRSNS
Skip Nodes \v//\\'

Fig. 1. Trellis for the temporal—spatial bit allocation problem.

C. Complexity

The basic difference between the 1-D (spatial only) and the
2-D (joint temporal—spatial) bit allocation problems is that the
frame rate (or FS) is predetermined in the 1-D case, while adap-
tive in the 2-D case. Therefore, for the 1-D problem, only QP is
adaptive and only coded frames are of concern when evaluating
the R-D performance. In contrast, FS and QP are both varying
in the 2-D case, and the R-D performance evaluation should in-
volve both coded and skipped frames.

The traditional 1-D bit allocation problem can be presented
by a “trellis”, where each stage of the trellis indicates a coded
frame and each node of that stage corresponds to the R-D per-
formance of the frame coded at a certain QP [2], [10]. When
the trellis is applied to the 2-D bit allocation problem, an extra
node is introduced at each stage to indicate the skipped frame,
which is called the “skip node” as shown in Fig. 1. Unlike the
coded frame (node), whose rate and distortion values are calcu-
lated at the current stage, a skipped frame will be reconstructed
by affine MCI [see (2)] after the next coded frame is available in
our scheme. Therefore, the R-D performance of a skipped frame
cannot be computed at the current stage but at later stages. It
is thus clear that skip nodes have to be examined and pruned
in later stages, while coded nodes can be pruned in the current
stage. Hence, the complexity of the 2-D bit allocation problem
is much higher than that of the 1-D problem.

As shown in Fig. 1, we assume that there are total N frames
in the sequence and the total number of possible QP levels is
M. Given that any frame except the first and the last can be
skipped, there are totally 31" 0> MN=¢C% , possible paths,
from which the best one should be selected. Hence, the com-
plexity of exhaustive search is O(MY Zf\;}z C4_o/M?). In
contrast, the complexity of the 1-D exhaustive search method,
i.e., without considering FS, is O(M™) [2].

III. SOLUTIONS TO THE PROBLEM

Dynamic programming was proposed to solve the inde-
pendent 2-D R-D optimization problem [12]. However, this
technique is not applicable to the dependent case. Generally
speaking, exhaustive search is required to guarantee the optimal
solution by examining all possible paths. However, the com-
plexity of exhaustive search is too high to be practical. Some
suboptimal heuristics are proposed in this section to reduce the
complexity. Our goal is to obtain near-optimal or suboptimal
solutions at reasonable computational costs. In this paper, we
focus our discussions on the IPP. .. structure. That is, the first
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Find the path with |
minimum cost J=D+AR ;

Fig. 2. R-D optimization procedure via iterations on A.

frame is coded as an intraframe while all following frames are
P-frames. However, the solution methodology given below can
be easily extended to other video coding structures that may
involve multiple I-frames and/or additional B-frames.

A. SIA

The high complexity of exhaustive search is due to the expo-
nentially increasing number of paths from one stage to another.
Thus, the key issue here is to develop a pruning mechanism to
eliminate unlikely paths from the “trellis” at each stage so that
the number of candidate paths can be reduced. Based on this
idea, the SIA is proposed.

1) Cost Function: First, a cost function .J is defined to mea-
sure the R-D performance of a selected path with the Lagrangian
parameter A

k
= ZD(M),
"
= ZR(z‘,j).,

J(i,k) = D(i, k) + AR(i, k) (10)
where D(i, k) and R(7, k) are the total distortion and the cor-
responding rate for the ith path up to the kth frame (or the kth
stage), respectively.

Any video encoder, especially MCP-based, can be adopted
in the proposed optimization mechanism to provide R(%, j) and
D(i, j) for coded frames. The baseline H.263+/TMN8 [1] is
used as an example in this work. As stated in Section II-A2, the
affine MCI scheme is adopted to calculate the distortion D(3, j)
for skipped frames while the rates of skipped frames are equal
to zero. The optimization procedure is conducted through itera-
tions. During the iteration, the cost parameter A starts from the
high and the low boundary values and converges gradually to a
proper value in the middle so that the total bit rate converges to
the budget. It is briefly shown in Fig. 2. The trellis based pruning
methods, i.e., selective pruning and greedy pruning, are applied
to find out the path with minimum total cost, which will be dis-
cussed later in this section and Section III-B, respectively.

2) FSand QP Constraint: Skip nodes are introduced to rep-
resent skipped frames as shown in Fig. 1. Theoretically, the
maximum FS can be N — 2 in a sequence with N total frames,
i.e., any frame except the first and the last frame can be skipped.

However, in general, temporal quality would become unaccept-
able when FS exceeds a certain threshold. Hence, a maximum
value of FS, Shax is set to ensure proper temporal quality. FS
is checked at every stage. That is, any path that has more than
Smax successive skipped frames is pruned out.

Furthermore, the flickering effect is an annoying visual ar-
tifact that occurs when the spatial quality of adjacent frames
varies significantly. Although most video coding standards such
as MPEG-4 and H.263 support a wide QP range, (e.g., from 2
to 31 in a total of 30 levels for H.263) it is observed that, when
the QP difference between adjacent frames is above a certain
value AQ, the flickering effect becomes visible and annoying
to human beings. Therefore, by limiting the selective QP range,
the flickering effect can be alleviated while the complexity can
be reduced at the same time. In terms of mathematics, let the
QP of the kth coded frame be Q(k), then the QP range for the
coded frame at the (k + 1)th stage can be limited as

Q(k+1) € [Q(k) — AQ, Q(E) + AQ] ([ Quin: Qumax] (11)
where A(Q is the maximum of QP difference between adjacent
coded frames, while Q i, and Qp,ax are the minimum and the
maximum QP supported by video coding methods, respectively.
3) Monotonic Property: Ramchandran et al. [2] pointed out
an interesting observation on the R-D curve of the 1-D depen-
dent bit allocation problem, which is called the monotonic prop-
erty. This property can be stated mathematically as follows. For
any A > 0, it is observed that
J(i,4) < J(@,j), ifi <d’ (12)
where ¢ and j represent the QP of the :th and the jth coded
frames from the lowest (finest) to the highest (coarsest) level,
respectively. In words, the 1-D monotonic property means that
a “better” (finer quantized) predictor leads to more efficient
coding. This property appears to be valid for the 2-D case
with FS as well. That is, we observed that a better reference
frame results in not only better predicted frames but also more
accurate reconstruction of skipped frames. Thus, for any A > 0,
we have

J(i,8i5,7) < I, sir5,7), ifi <4
I(iysij,5) < J(iysi0,5), 5 <5
J(i,8i5,7) < J(@ sy, 5'), i< j<y0 (13)

where 2 and j stand, respectively, for the QP of the 7th and
the jth coded frame from the lowest (finest) to the highest
(coarsest) level and s;; denotes the skipped frame reconstructed
from frames ¢ and j. Since this property is not proved but
observed from numerous experiments, the solution achieved
by exploiting (12), (13) for pruning should not be claimed as
strictly optimal. Instead, we say that it is near-optimal at a
substantially lower computational complexity compared with
exhaustive search.

Pruning conditions for both coded and skipped frames can be
derived based on the monotonic property. The pruning rules for
coded frames given in [2] are stated as follows.
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Rule 1:If

J() + J(i,5) < J@E) + J(@@',5) foranyi <4 (14)
then branch (¢’, j) cannot be a part of the optimal
path and should be pruned.

Rule 2: If

J(i,j) < J(i,j") forany j < j’ (15)
then branch (4, j') cannot be a part of the optimal
path and should be pruned.

Furthermore, we develop additional pruning rules for the 2-D
dependent bit allocation problem by considering skipped frames
as follows.

Rule 3: If

J(@) + J(iy 845, 5) + T (i, 5) < J(@) + T, 8115, )
+J(i',5) foranyi <i', (16)
then branch (¢, s;;, j) cannot be a part of the op-
timal path and should be pruned.
Rule 4: If

J(i,si5,7) + J(i,5) < J(i,si50,5") + J(i,5") forany j < j'

7)

then branch (¢, s;;/, j') cannot be a part of the op-
timal path and should be pruned.

The property stated in Rule 3 can be proved using contradic-
tion. That is, let us assume branch (7', s; 5, j) be a part of the
optimal path and (7', $;/;, J, Si/jk, k, - - ., ) be the optimal path.
Based on the monotonic property (12), we have

J(i,5) < I, 4), ifi<i (18)
J(, 5. k) < J(i, 5. k) (19)
J(i7j7k7"'7n)SJ(il7j7k7"'7n) (20)

where k is the QP level of the coded frame following the jth
frame and 7 is the QP level of the last coded frame.
Based on the monotonic property (13), we have

J(ivjvsijkvk) S J(ilvjvsi’jhk) (21)

J(ZJ, k, ceey qujk___n,n) S J(Z/J, k, ey sq;/]-k___n,n) (22)

Summing up (18)—(22), we conclude that the total cost >J of
path (4,7, k,...,n) is less than that of path (¢',j,k,...,n),
which contradicts to the assumption that (¢, j, k, ..., n) is the
optimal path. Therefore, branch (¢’, s;7;, j) cannot be a part of
the optimal path, and should be pruned. Rule 4 can be proved
using similar arguments. The above four pruning rules are used

together to eliminate unlikely branches so that the complexity
is reduced.

(® () @

Tllustrative example of the SIA.

Fig. 3.

4) Description of SIA: The SIA is described below with an
illustrative example given in Fig. 3.

Step 1)

Step 2)

Initialize the value of A.

Calculate J(7,1) for the first frame, which is an

I-frame, for every QP value within the range i €

[@min, @max], as shown in Fig. 3(a).

Prune unqualified I-nodes according to the mono-

tonic property as shown in Fig. 3(b).

Grow the trellis to Stage 2 by coding the first

P-frame with all QP values. The skip node is re-

served as shown in Fig. 3(c).

Prune at Stage 2 with Rules 1 and 2. Note that the

skip node should be kept as shown in Fig. 3(d).

Grow the trellis to one more stage. The skipped

frame in the previous stage is reconstructed by the

neighboring reference frames coded with selected

QPs as shown in Fig. 3(e).

Prune at Stage 3 based on the monotonic prop-

erty, i.e., Rules 1 and 2 for pruning the third coded

frames, Rules 3 and 4 for pruning previous skipped

frames. The skip node at Stage 3 is reserved as

shown in Fig. 3(f).

Similar to Step 4, grow trellis to Stage 4 as shown

in Fig. 3(g).

Prune paths that have more successive skipped

frames than Sy,ax as shown in Fig. 3(h). We set

Smax = 2 in this example.

Step 10) Similarly to Step 7, pruning is performed based on
the monotonic property as shown in Fig. 3(i).

Step 11) Repeat Step 8—10 until the last frame. Update A and
return to Step 2.

Step 12) Stop when A converges.

Step 3)

Step 4)

Step 5)

Step 6)

Step 7)

Step 8)

Step 9)

The complexity of selective iteration is much lower than that
of exhaustive search. Thus, it is a feasible solution and can be



20 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 15, NO. 1, JANUARY 2005

® () @
Fig. 4. Illustrative example of the GIA.
used to provide a near-optimal benchmark. However, due to the
fact that many skip nodes within the range of Sy,,x need to be
reserved, the complexity of the 2-D dependent problem is still
significantly higher than that of the 1-D counterpart. Hence, we
propose a GIA in the following section to further reduce the
complexity by more aggressive pruning

B. GIA

In this approach, instead of pruning out nodes that violate the
monotonic property, only nodes that give the best R-D perfor-
mance and pending nodes are kept while all others are pruned
out. The best nodes correspond to those frames coded with cer-
tain QP values, through which the path with the minimum cost .J
passes. The pending nodes are skip nodes through which more
than one path may be reserved. The GIA shares the same cost
function and FS/QP constraints with SIA, and the number of
successively skipped frames has to be less than S, as well.
The operation procedure is similar to SIA but with more ag-
gressive pruning. An example is shown in Fig. 4.

Description of GIA
Step 1)
Step 2)

Initialize .

Calculate J(7,1) for the first frame, which is an
I-frame, with each QP within ¢ € [Qmin, @max] as
shown in Fig. 4(a).

Select the I-frame with the lowest cost J as shown
in Fig. 4(b).

Grow the trellis to Stage 2 by coding the first
P-frame with all QP values. The skip node is re-
served as shown in Fig. 4(c).

Keep the node with the lowest cost .J, and prune out
all others except the skip node as shown in Fig. 4(d).
Grow the trellis to one more stage. The skipped
frame in the previous stage is reconstructed by the
neighboring reference frames coded with selected
QPs as shown in Fig. 4(e).

Prune out all nodes except the best node and the skip
node as shown in Fig. 4(f).

Grow trellis to Stage 4 as shown in Fig. 4(g).

Step 3)

Step 4)

Step 5)

Step 6)

Step 7)

Step 8)

Step 9) Prune out paths that have more successively skipped
frames than Sp.x (Smax = 2 in this example) as
shown in Fig. 4(h).

Step 10) Prune nodes in the same way as described in Step 7
as shown in Fig. 4(i).

Step 11) Repeat Step 8—10 until the last frame. Update A and
return to Step 2.

Step 12) Stop when A converges.

Since the quality of an I-frame will normally affect the quality
of the following P-frames and thus the overall quality of the
whole sequence, we slightly modify the above algorithm to keep
all possible QPs of the first I-frame, and apply the monotonic
pruning rule to the first I-P group only. Experiments show that
this modification may slightly enhance the optimization speed
by facilitating the convergence of A. The complexity of GIA is
tremendously reduced compared with either exhaustive search
or SIA, while the solution is still close to the optimal. Thus,
it is a more practical approach. Let the total number of frames
be N, the total number of candidate QP levels be M and the
maximum FS be S, the number of reserved paths at each stage
is fixed (S + 1). Then, the complexity in one iteration of GIA
is O(SMN).

It will be shown in Section V that, compared with
H.263+/TMNS8 codec with fixed QP and FS, around 0.3-1.0 dB
improvement in PSNR is achieved by applying GIA for joint
temporal—spatial bit allocation, with affine MCI for skipped
frame reconstruction. In fact, any frame interpolation method
can be adopted in association with the proposed method to
result in selected QP/FS combinations and various degrees of
quality enhancement. It is observed that bidirectional frame
interpolation methods (such as MCI and FA) generally provides
better reconstructed frames than unidirectional methods (such
as FR). Thus, more frames can be skipped when MClI is adopted
in comparison with FR.

IV. FAST APPROACH WITH ADAPTIVE FRAME GROUPING

FSsignificantly affects the complexity of the 2-D dependent bit
allocation problem. As discussed before, the complexity of 2-D
dependent GIA is O(SM N) while that of 1-D dependent GIA
(withfixedFS)is O(M N), where N isthe total number of frames,
M is the total QP levels and S is the maximum FS. To reduce
the complexity caused by FS while keeping a certain degree of
temporal flexibility, the concept of GOF is introduced below.

A. Adaptive Frame Grouping

Definition: A GOF is a group of frames, including both
coded and skipped frames, which have similar temporal—spatial
characteristics so that a uniform FS/QP can be applied to them
without sacrificing much optimality.

Based on the above definition, we can calculate the cost func-
tion at the GOF level via

]\T
D(i,j) =Y D(i,n)

]\T
R(i,j) =Y _ R(i,n) (23)
n=1
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Fig. 5. Trellis for fast temporal-spatial bit allocation with a certain FS.

where D(i,j) and R(%, j) are the distortion and the rate of the
jth GOF along the :th path, respectively, and N is the total
number of frames in that GOF. The sums of rates and distortion
measures from all frames in one GOF are taken as the group rate
and the distortion measure, respectively. Note that each GOF
does not contribute to the cost equally. Instead, a GOF with more
frames weighs more (reflected by larger R and D values resulted
from the summation) based on the fact that each single frame is
equally weighted in the overall visual quality. By applying (23)
to (10), the cost function J (3, k) for the kth stage (GOF) can be
calculated in a similar way.

With the GOF concept, skip nodes in Figs. 1, 3, and 4 do not
exist in the modified trellis. Each node in Fig. 5 represents a
GOF. The temporal—spatial flexibility in this scenario is not at
the frame level but at the GOF level.

Let the total number of GOF be N’, the number of QP level
be M and the maximum FS be S, then the complexity of one
iteration is O(SM N’). Compared to the single frame greedy it-
eration, the complexity is reduced by a factor N/N’. Obviously,
a constant motion velocity results in a larger number of frames
in one GOF and thus less complexity.

One main issue here is how to group frames for efficient bit al-
location. A frame-level rate control scheme with frame grouping
was proposed by Song et al. [11]. In their work, a GOP is defined
as a group of pictures starting with an I-frame followed by a long
sequence of predicted frames until the next I frame. One GOP
is split into sub-GOPs of equal length, where the length is de-
termined a priori. FS and QP can be adjusted among sub-GOPs,
while kept fixed within each sub-GOP. This implies that the mo-
tion velocity among frames in each sub-GOP should be nearly
constant, which might not always be true. In contrast, GOFs de-
fined in this paper are not equally long. Instead, their lengths are
adaptively determined to ensure that the same FS and QP can be
applied to frames with similar temporal—spatial characteristics.

One widely accepted criterion to measure distinct motion and
texture characteristics is the mean of the absolute difference
(MAD), which is defined as

S IpGi,§) = pli = 1,5)]
N

MAD(i) = 24)
where p(i, 7) indicates the jth pixel value in the ith frame with a
total number of N pixels in one frame. MAD gives the average
pixel by pixel difference between two adjacent frames and re-

QP,/FS,

QP,/FS,
Fig. 6. Simplified trellis for fast temporal—spatial bit allocation.

flects the motion and residue activities. A larger MAD value im-
plies faster motion and more residues from the previous frame
to the current frame so that less FS and QP should be assigned,
and vice versa. Frames with similar MAD can be grouped into
one GOF. The differential of MAD is used here to detect the
MAD value change, i.e.,

vAD/(j = AP

When MAD'(7) exceeds a predetermined threshold, we start a
new GOF from the sth frame. Since a skipped frame in one GOF
can only be reconstructed after the next coded frame is available
(by assuming a general frame interpolation method is used, e.g.,
bidirectional MCI or FA), the last frame in a GOF must be a
coded frame. A GOF can start with a skipped frame except for
the first GOF that contains only one I frame. For example, if
we detect MAD' > threshold at 1,2,5,14, ..., then the first
GOF includes Frame 1, the second GOF contains Frames 24,
the third contains 5-13, and so on.

~ MAD(i) — MAD(i — 1). (25)

B. GIA Applied to GOF

We explain how GIA is applied to GOFs with an example as
shown in Fig. 6, where the 2-D trellis given in Fig. 5 is redrawn
in 1-D for simplification. Let the maximum FS be S and the
number of QP levels be M.

Step 1) Initialize the value of .

Step 2) Encode the first GOF (i.e., the I-frame) with all pos-
sible QPs.

The second GOF is coded with all QP/FS combi-
nations from all nodes generated in Step 2, where
skipped frames are reconstructed by their previous
and next coded frames. Because all nodes (M)
of the first GOF (I-frame) are reserved, the total
number of possible paths at this stage is SM?2.
The R-D cost is calculated for every path up to the
current stage, which is contributed by both coded
and skipped frames in each GOF, and the path with
the lowest cost is selected.

The next (i.e., the third) GOF is generated from
the selected current (i.e., the second) GOF, with all
QP/FS combinations. The total number of candidate
paths in this stage is SM.

Greedy pruning is performed in a way similar to that
in Step 4, and only the path with the lowest cost is
kept.

Step 3)

Step 4)

Step 5)

Step 6)
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Step 7) Repeat Steps 5 and 6 until the whole sequence is
finished. Update A according to the rate and the
budget.

Step 8) Repeat Steps 2—7 until A converges.

Some approximations can be used to further reduce the com-
plexity and make the approach faster. In the standard codec with
fixed FS and QP, QP can be determined by FS and the budget.
Based on this fact, a specific empirical QP can be associated
with a certain FS under the bit rate budget. Therefore, in the
above procedure, for each FS value, encoding can be done only
once with the empirical QP value so that the complexity of each
iteration can be reduced to SN'. It is also observed that A con-

verges faster with empirical QP and FS pairs.

V. EXPERIMENTAL RESULTS

Experiments were conducted to compare the performance
of the proposed heuristic methods (i.e., SIA, GIA applied to
single frames and GOFs), the spatial domain adaptive quanti-
zation method [2] and the standard H.263+/TMNS8 codec [1]
with various FS and QP combinations. In our simulations, the
average PSNR was calculated based on both coded and skipped
frames, i.e., the comparison was conducted at the full frame
rate. Skipped frames in both proposed and reference approaches
were reconstructed by affine MCI (2), and the distortion of a
skipped frame was measured by the PSNR of the reconstructed
image with respect to the original. The initial lower and upper
boundary values of A were set to 0.0 and 99.0, respectively,
and the threshold to determine the convergence of A was set to
0.0001. A was updated using the slope of the R-D curve during
iterations until it converged or the maximum number of iterations
was met. The IPP. .. structure was adopted for simplicity. All
test sequences were of the QCIF format, if not specified.

A. Frame-Based SIA versus GIA

Since exhaustive search is practically infeasible, we use the
result obtained by SIA as the performance benchmark. Because
the high complexity of SIA, only a short sequence was sim-
ulated. The first five frames (IPPPP) of the “Suzie” sequence
were simulated using STA and GIA for the purpose of compar-
ison. We see from Fig. 7 that GIA (--) can achieve an average
PSNR close to that of SIA (-o-) under the same rate while the
computational complexity is significantly reduced. Therefore,
we can conclude that GIA provides a good heuristic solution to
the temporal—spatial dependent bit allocation problem.

B. Frame-Based GIA versus Adaptive Quantization [2]

With fixed FS, the temporal adaptivity of the proposed GIA
is eliminated while only QPs of coded frames can be adjusted,
which is the same as the method given in [2]. Thus, we set the
maximum FS to zero (i.e., Smax = 0) in the proposed GIA to
simulate the adaptive quantization (greedy) approach in [2] at
the full frame rate.

In Fig. 8, we compare the overall R-D performance of the
proposed 2-D GIA (frame based, -o-) with that of the spatial
domain adaptive quantization [2] (->-) applied to Frames 1-120
of the “Suzie” sequence. It can be seen that the proposed GIA
achieves a higher average PSNR (luminance) value than its 1-D
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Fig. 7. R-D performance comparison of SIA (-o-) and GIA (-x-) applied to
Frames 1-5 of the “Suzie” sequence.
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Fig. 8. R-D performance comparison of proposed GIA (-0-) and spatial

domain adaptive quantization (->-) applied to Frames 1-120 of the “Suzie”
sequence.

counterpart [2] since GIA takes advantage of adaptive FS as well
as MCI for skipped frame reconstruction when motion activities
are low. Thus, more bits can be saved to enhance the picture
quality of coded frames, which benefits the reconstruction of
skipped frames in return.

Fig. 9 illustrates the frame to frame quality (PSNR of
luminance) comparison of the proposed GIA (frame based,
solid) with the spatial domain adaptive quantization method [2]
(dashed) under a bit budget of 60 kb/s. We see that, for most
frames, the picture quality using the proposed GIA is better
than that obtained by [2], especially when motion activities are
low, e.g., before the 40th frame and after the 80th frame. The
reason is the same as that stated earlier. When motion activities
are high, e.g., from the 40th to the 80th frame, the picture
quality obtained by both methods is similar since the full frame
rate is preferred by the proposed method so that it is reduced
to the 1-D adaptive quantization. The consumed bit rates by
the proposed and the 1-D reference methods were 60.66 and
59.58 kb/s, and the corresponding average PSNR values were
35.05 and 34.25, respectively.
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Fig. 9. Frame-to-frame quality comparison of the proposed GIA (solid) and
spatial adaptive quantization (dashed) under the bit budget of 60 kb/s applied to
Frames 1-120 of the “Suzie”’sequence.

C. Frame-Based GIA versus H.263+/TMN8 With Fixed FS/QP

Fig. 10 provides the R-D performance comparison of the
proposed GIA (-o-) and TMNS8 with fixed FS and QP for
the “Suzie” sequence (which is a talking head sequence with
low temporal and spatial complexities) and the “Coastguard”
sequence (with higher complexity). Affine MCI was used to
reconstruct skipped frames in both cases. It can be seen that
GIA achieves the higher average PSNR value than TMNS8 with
any fixed FS/QP combination. For the TMNS8 coder with fixed
FS/QP, reasonable FS results in better overall quality than the
full frame rate encoded at low bit rates due to the contribution
from affine MCI.

The frame to frame quality comparison between GIA and
TMNS8 with various fixed FS/QP combinations is given in
Fig. 11. Frames 1-120 of the “Suzie” sequence were tested
under the bit rate budget of 60 kb/s and affine MCI was used
to reconstruct skipped frames in both cases. It can be seen that
GIA adaptively selected FS/QP among frames with various
temporal and spatial complexities so that better bit allocation
was achieved. Besides significantly improving the average
PSNR, the proposed method can also maintain constant overall
quality as evidenced by a low PSNR variance value, which is
preferred by the human visual system. More PSNR variance
comparisons are shown in Table I.

Adaptive FS/QP selection by the proposed GIA applied to
Frames 1-120 of the “Suzie” sequence under the bit budget of
60 kb/s is given in Fig. 12. Note that QP = 0 in the figure
simply means that the frame is skipped (instead of actually set-
ting QP = 0). It shows that the full frame rate (F'S = 0) is pre-
ferred when motion activities are high (around Frames 40-80)
while finer QP with more FS is preferred when motion activi-
ties are low, e.g., in the beginning and the ending parts of this
sequence.

Tables I and II present the performance in terms of the average
PSNR and the PSNR variance for GIA and TMNS with fixed
FS/QP combinations under various budgets on test sequences
“Suzie” and “Coastguard”, respectively. From these results, we
conclude that GIA always achieves higher overall quality (i.e.,
higher average PSNR) while maintaining constancy (i.e., lower
PSNR variance).
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Fig. 10. R-D performance comparison of proposed GIA (-0-) and standard
H.263+/TMNS [1] with fixed FS/QP combinations (FS = 0 : -x-,FS = 1:
-+-,FS =2 : -«-,and FS = 3 : -00-) applied to (a) Frames 1-120 of the
“Suzie” sequence and (b) Frames 51-150 of the “Coastguard” sequence.

D. GOF-Based GIA, Frame-Based GIA, and TMNS With
Fixed FS/QP

Fig. 13 presents the MAD curve of the “Suzie” sequence
from the 1st to the 120th frame, where MAD is calculated via
(24). The motion velocity is constant among frames with similar
MAD, where the same FS/QP can be applied. The MAD differ-
ential (25) is calculated and shown in Fig. 14 to determine the
variation of the motion velocity as well as spatial complexities.
If the absolute value of MAD differential exceeds a predeter-
mined threshold at a certain frame, a new GOF has to start from
there. Figs. 15 and 16 present results of adaptive frame grouping
on “Suzie” with threshold equal to 0.45 and 0.48. It shows that
the smaller the threshold, the finer the grouping is. Comparing
the adaptive frame grouping results with adaptive FS/QP se-
lection achieved by frame-based GIA as given in Fig. 12, we
see that adaptive frame grouping and adaptive FS/QP selection
match each other well.
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Fig. 12. Adaptive FS/QP allocation by GIA applied to Frames 1-120 of the
“Suzie” sequence.
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TABLE 11
TARGET AND ACTUAL BIT RATES, AVERAGE PSNR VALUES, AND PSNR
VARIANCES OF THE PROPOSED GIA AND TMN8 WITH FIXED FS/QP
COMBINATIONS FOR THE “COASTGUARD” SEQUENCE

PSNR Variance

Budget = 40kbits/s

Rate (kbits/s)

Average PSNR (dB)

TARGET AND ACTUAL BIT RATE?, ]BAI;/]?ERIIAGE PSNR VALUES, AND PSNR 2-D GIA (frame) 40.80 26.78 0.42
VARIANCES OF THE PROPOSED GIA AND Tl\f{NS WitH FIXED FS/QP FS=0, QP=29 40.80 25.60 0.28
COMBINATIONS FOR THE “SUZIE” SEQUENCE
FS=1, QP=22 40.10 26.41 0.62
Budget = 40kbits/s | Rate (kbits/s) | Average PSNR (dB) | PSNR Variance FS=2, QP=19 40.01 26.61 1.90
2-D GIA (frame) 39.27 33.68 0.38 FS=3, QP=17 39.92 26.48 3.85
FS=0, QP=15 38.39 32.61 0.22 Budget = 61kbits/s | Rate (kbits/s) | Average PSNR (dB) | PSNR Variance
FS=1, QP=11 38.69 33.41 0.85 2-D GIA (frame) 61.40 27.90 0.45
FS=2, QP=9 40.10 33.18 3.72 FS=0, QP=21 62.50 26.94 0.25
FS=3, QP=8 39.37 32.80 7.90 FS=1, QP=17 58.84 27.53 0.94
Budget = 60kbits/s | Rate (kbits/s) | Average PSNR (dB) | PSNR Variance FS=2, QP=14 60.60 27.72 2.92
2-D GIA (frame) 60.66 35.05 0.38 FS=3, QP=12 63.70 27.56 5.82
FS=0, QP=10 61.01 34.23 0.25 Budget = 84kbits/s | Rate (kbits/s) | Average PSNR (dB) | PSNR Variance
FS=1, QP=8 57.07 34.57 1.39 2-D GIA (frame) 84.20 28.85 0.39
F58=2, QP=6 66.34 34.39 6.14 FS=0, QP=17 85.30 27.90 0.22
FS=3, QP=6 56.37 33.58 10.78 FS=1, QP=13 86.84 28.75 1.50
Budget = 113kbits/s | Rate (kbits/s) | Average PSNR (dB) | PSNR Variance FS=2, QP=11 87.62 28.66 4.12
2-D GIA (frame) 113.04 36.95 0.48 FS=3, QP=10 81.80 28.13 7.14
FS=0, QP=7 103.34 36.08 0.27
FS=1, QP=5 111.00 36.61 3.43
FS=2, QP=4 112.12 35.60 10.39
FS=3, QP=3 140.42 35.52 22.74

According to Fig. 16, the initial frame segmentation set was
chosen to be {1, 2,3, 5,46, 47,49, 54, 55,56, 57, 75}. By elim-
inating frames whose locations are close to each other, the final
frame segmentation set became {1,2,5,46,54, 75}. Thus, the
six GOFs were:

e GOF 1: 1;

e GOF 2: 2,3, 4,

* GOF 3: 5,6,...,45;

e GOF 4: 46,47, ...,53;
* GOF 5: 54,55, ...,74;
e GOF 6: 75,76, ...,120.

o L L L L
o 20 40 60 80

Frame No.

L
100

Fig. 13.  MAD analysis of the “Suzie” sequence from Frames 1 to 120.

The GOF-based GIA is applied to the above six GOFs and
MCI is used to reconstruct skipped frames. It is shown in
Fig. 17 that the R-D performance of GOF-based GIA (-o-)is
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Fig. 15. Adaptive frame grouping result for the “Suzie” sequence based on
MAD differential with threshold equal to 0.45.
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Fig. 16. Adaptive frame grouping result for the “Suzie” sequence based on
MAD differential with threshold equal to 0.48.

slightly worse than that of frame-based GIA (-¢-), while much
better than that of TMNS8 without FS/QP adaptation (-*-). Its
complexity is significantly reduced compared with frame-based
GIA, and at the mean time, visual quality remains constant as
evidenced by the low PSNR variance. An example is given in
Table IV. The adaptively selected FS/QP for the six GOFs are
given in Table IV.

The complexities of our proposed methods, including SIA,
frame-based GIA and GOF-based GIA, are compared in Table V
with the adaptive quantization method in [2] as the reference.
Here, S, M, N, and NéOF stand for the maximum FS, the total
number of candidate QP levels, the total number of frames
and the total number of GOFs in the test sequence, respectively.
Clearly, the complexity of SIA is very high. The complexity of the
suboptimal heuristic, frame-based GIA, is significantly reduced.
The complexity of our proposed fast approach, GOF-based GIA,
can be lower than that of the reference, if frames with constant
temporal and spatial characteristics are grouped efficiently so
that SN/, op < N (e.g., the “Suzie” sequence illustrated earlier).
The overall R-D performance of GOF-based GIA is typically
enhanced in comparison with that of the reference.
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Fig. 17. R-D performance comparison between GOF-based GIA, frame-based
GIA and TMNS with fixed FS/QP for frames 1-120 of the “Suzie” sequence.

TABLE IV
TARGET AND ACTUAL BIT RATES, AVERAGE PSNR VALUES, AND PSNR
VARIANCES OF GOF-BASED GIA, FRAME-BASED GIA AND TMN WITH FIXED
FS/QP COMBINATIONS FOR THE “SUZIE” SEQUENCE

Budget = 40kbits/s | Rate (kbits/s) | Average PSNR (dB) | PSNR Variance
GIA (GOF) 40.66 33.66 0.43
GIA (frame) 39.27 33.68 0.38
FS=0, QP=15 38.39 32.61 0.22
FS=1, QP=11 38.69 33.41 0.85
FS=2, QP=9 40.10 33.18 3.72
FS=3, QP=8 39.37 32.80 7.90

TABLE V
COMPLEXITY COMPARISON OF PROPOSED METHODS
SIA GIA (frame) | GIA (GOF) | Reference
(OWMN TX? Ch_/MY),0(SMN)) | O(SMN) | O(SMNjop) | O(MN)

The actual executable time depends on the hardware environ-
ment. When implemented in Pentium-II 600 MHz PC without
code/assembly optimization, it demands more than 12 hours for
bit allocation for ten frames of the “Suzie” QCIF with SIA, a
couple of hours for 100 frames with frame-based GIA, and less
than 20 min for 100 frames with GOF-based GIA. The above
numbers however only provide a rough idea of relative execu-
tion speeds. The actual coding speed will be greatly enhanced
with code/assembly optimization.

VI. CONCLUSION

Joint temporal—spatial bit allocation problem was addressed
in this work and several heuristic solutions were proposed to
solve the proposed problem with consideration of both frame
prediction and frame interpolation dependency. Since classic
optimization methods such as dynamic programming can only
solve independent R-D optimization problems, exhaustive
search is generally required to provide the optimal solution
when the dependency among frames can not be ignored.
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However, exhaustive search is infeasible due to its extremely
high complexity. Thus, the SIA was proposed first to give
the near-optimal R-D performance benchmark. To further
reduce the complexity, the GIA was proposed as a suboptimal
heuristic, which can achieve an R-D performance very close
to that of SIA with a significantly reduced complexity. By
adaptively grouping frames according to MAD differential and
applying greedy iteration to GOF, the bit allocation process
can be further greatly expedited with little sacrifice of quality.
In all proposed techniques, both FS and QPs are adaptively
and jointly determined so that the tradeoff between temporal
and spatial qualities can be properly achieved. It was shown
by experimental results that the proposed methods outperform
the spatial adaptive quantization approach in [2] by taking ad-
vantage of adaptive FS. When compared with H.263+/TMN8
with fixed FS/QP, our proposed methods enhance the overall
video quality at the full frame rate with higher average PSNR
and lower PSNR variance values.

REFERENCES

[1] M. Gallant, G. Cote, B. Erol, and F. Kossentini, UBCs H.263+ public
domain software, version 3.2.0, in Official ITU-T Study Group 16 Video
Experts Group Reference Codec, 1998.

[2] K. Ramcharidran, A. Ortega, and M. Vetterli, “Bit allocation for depen-
dent quantization with application to multiresolution and MPEG video
coders,” IEEE Trans. Image Process., vol. 3, no. 9, pp. 533-545, Sep.
1994.

[3] Coding of Moving Pictures and Associated Audio for Digital
Storage Media at up to About 1.5 mbit/s, June 1996. ISO/IEC
JTC1/SC29/WGl1.

[4] Generic Coding of Moving Pictures and Associated Audio Information,
Oct. 2000. ISO/IEC JTC1/SC29/WG11.

[5] Overview of the MPEG-4 Standard, Mar.
JTC1/SC29/WGl1.

[6] Video Codec for Audiovisual Services at p X 64 kbits, Mar. 1993. ITU-T
Recommendation H.261.

[7]1 Video Codec for Low Bitrate Communication, May 1996. ITU-T Rec-
ommendation H.263.

[8] The Emerging JVI/H.26L Video Coding Standard, Sep. 2002. ICIP Tu-
torial.

[9]1 A. M. Tekalp, Digital Video Processing. Englewood Cliffs, NJ: Pren-

tice-Hall, 1995.

A. Ortega, “Optimization techniques for adaptive quantization of image

and video under delay constraints,” Ph.D. dissertation, Dept. Elect. Eng.,

Columbia Univ., New York, Jun. 1994.

H. Song, J. Kim, and J. Kuo, “Real-time H.263+ frame rate control for

low bit rate VBR video,” in Proc. IEEE Int. Symp. Circuits Syst., vol. 4,

1999, pp. 307-310.

E. C. Reed and J. S. Lim, “Multidimensional bit rate control for video

communication,” in Proc. SPIE, vol. XXIII, San Diego, CA, Jul. 2000,

pp. 277-288.

D. P. Bertsekas, Dynamic Programming: Deterministic and Stochastic

Models. Englewood Cliffs, NJ: Prentice-Hall, 1987.

T. Kuo and C.-C. J. Kuo, “Motion-compensated interpolation for low-

bit-rate video quality enhancement,” in Proc. SPIE Applicat. Digital

Image Process., vol. 3460, 1998, pp. 277-288.

2002. ISO/IEC

[10]

[11]

[12]

[13]

[14]

[15] K. Zhang, M. Sober, and J. Kittler, “Video coding using affine motion
compensated prediction,” in Proc. IEEE Int. Conf. Acoustics, Speech,
and Signal Process., vol. 4, 1996, pp. 1978-1981.

Shan Liu received the B.E. degree in electronic en-
gineering from Tsinghua University, Beijing, China
and the M.S. and Ph.D. degrees from the University
of Southern California, Los Angeles, both in elec-
trical engineering.

She is currently with Sony R&D Laboratory, San
Jose, CA. Before joining Sony, she had worked
and interned with several Research labs including
Samsung Information Systems America, IBM T. J.
Watson Research Center, Rockwell Science Center,
AT&T Labs. Research, as well as industrial compa-
nies such as InterVideo Inc. She has broad interests in the field of multimedia
technologies, with emphasis on video compression, transmission and analysis.

C.-C. Jay Kuo (S’86-M’87-SM’92-F’99) received
the B.S. degree from the National Taiwan Univer-
sity, Taipei, Taiwan, R.O.C., in 1980 and the M.S.
and Ph.D. degrees from the Massachusetts Institute
of Technology, Cambridge, in 1985 and 1987, respec-
tively, all in electrical engineering.

He is with the Department of Electrical Engi-
neering, the Signal and Image Processing Institute
(SIPI), and the Integrated Media Systems Center
(IMSC) at the University of Southern California
(USC), Los Angeles, as Professor of Electrical
Engineering and Mathematics. His research interests are in the areas of digital
media processing, multimedia compression, communication and networking
technologies, and embedded multimedia system design. He has guided 55
students to their Ph.D. degrees and supervised 15 postdoctoral research fellows.
Currently, his research group at USC consists of around 30 Ph.D. students and
five postdoctors (please visit website http://viola.usc.edu), which is one of the
largest academic research groups in multimedia technologies. He is coauthor of
more than 700 technical publications in international conferences and journals
as well as the following seven books: Content-based Audio Classification and
Retrieval for Audiovisual Data Parsing (with Tong Zhang, New York: Kluwer,
2001), Semantic Video Object Segmentation for Content-based Multimedia
Applications (with Ju Guo, New York: Kluwer, 2001), Intelligent Systems for
Video Analysis and Access over the Internet (with Wensheng Zhou, Englewood
Cliffs, NJ: Prentice-Hall, 2002), Video Content Analysis Using Multimodal
Information (with Ying Li, New York: Kluwer, 2003) Quality of Service for
Internet Multimedia (with Jitae Shin and Daniel Lee, Englewood Cliffs, NJ:
Prentice-Hall, 2003), Radio Resource management for Multimedia QoS support
in Wireless Cellular Networks (with Huan Chen, Lei Huang, and Sunil Kumar,
New York: Kluwer, 2003) and High Fidelity Multichannel Audio Coding (with
Dai Tracy Yang and Chris Kyriakakis, Sylvania, OH: Hindawi, 2004).

Dr. Kuo is a Fellow of SPIE. He received the National Science Foundation
Young Investigator Award (NYI) and Presidential Faculty Fellow (PFF) Award
in 1992 and 1993, respectively. He is Editor-in-Chief for the Journal of Visual
Communication and Image Representation, Editor for the Journal of Informa-
tion Science and Engineering, and the RURASIP Journal of Applied Signal Pro-
cessing. He is also on the Editorial Board of the IEEE Signal Processing Maga-
zine. He served as Associate Editor for I[EEE Transactions on Image Processing
in 1995-1998, IEEE Transactions on Circuits and Systems for Video Technology
in 1995-1997 and IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING in
2001-2003.




	toc
	Joint Temporal Spatial Bit Allocation for Video Coding With Depe
	Shan Liu and C.-C. Jay Kuo, Fellow, IEEE
	I. I NTRODUCTION
	II. P ROBLEM F ORMULATION
	A. Preliminaries
	1) Spatial QP Adaptation: The classical bit allocation problem w
	2) Affine MCI: No matter how a sequence is compressed and transm

	B. Dependent Temporal Spatial Bit Allocation


	Fig.€1. Trellis for the temporal spatial bit allocation problem.
	C. Complexity
	III. S OLUTIONS TO THE P ROBLEM

	Fig.€2. R-D optimization procedure via iterations on $\lambda$ .
	A. SIA
	1) Cost Function: First, a cost function $J$ is defined to measu
	2) FS and QP Constraint: Skip nodes are introduced to represent 
	3) Monotonic Property: Ramchandran et al. [ 2 ] pointed out an i
	Fig.€3. Illustrative example of the SIA.

	4) Description of SIA: The SIA is described below with an illust


	Fig.€4. Illustrative example of the GIA.
	B. GIA
	IV. F AST A PPROACH W ITH A DAPTIVE F RAME G ROUPING
	A. Adaptive Frame Grouping
	Definition: A GOF is a group of frames, including both coded and



	Fig.€5. Trellis for fast temporal spatial bit allocation with a 
	Fig.€6. Simplified trellis for fast temporal spatial bit allocat
	B. GIA Applied to GOF
	V. E XPERIMENTAL R ESULTS
	A. Frame-Based SIA versus GIA
	B. Frame-Based GIA versus Adaptive Quantization [ 2 ]


	Fig. 7. R-D performance comparison of SIA (- ${\circ}$ -) and GI
	Fig. 8. R-D performance comparison of proposed GIA (- ${\circ}$ 
	Fig.€9. Frame-to-frame quality comparison of the proposed GIA (s
	C. Frame-Based GIA versus H.263 ${+}$ /TMN8 With Fixed FS/QP

	Fig. 10. R-D performance comparison of proposed GIA (- ${\circ}$
	D. GOF-Based GIA, Frame-Based GIA, and TMN8 With Fixed FS/QP

	Fig.€11. Frame-to-frame quality comparison of the proposed GIA (
	TABLE I T ARGET AND A CTUAL B IT R ATES, A VERAGE PSNR V ALUES, 
	Fig.€12. Adaptive FS/QP allocation by GIA applied to Frames 1 12
	TABLE II T ARGET AND A CTUAL B IT R ATES, A VERAGE PSNR V ALUES,
	Fig.€13. MAD analysis of the Suzie sequence from Frames 1 to 120
	Fig.€14. MAD differential analysis of the Suzie sequence from Fr
	Fig.€15. Adaptive frame grouping result for the Suzie sequence b
	Fig.€16. Adaptive frame grouping result for the Suzie sequence b
	Fig.€17. R-D performance comparison between GOF-based GIA, frame
	TABLE IV T ARGET AND A CTUAL B IT R ATES, A VERAGE PSNR V ALUES,
	TABLE V C OMPLEXITY C OMPARISON OF P ROPOSED M ETHODS
	VI. C ONCLUSION
	M. Gallant, G. Cote, B. Erol, and F. Kossentini, UBCs H.263 ${+}
	K. Ramcharidran, A. Ortega, and M. Vetterli, Bit allocation for 

	Coding of Moving Pictures and Associated Audio for Digital Stora
	Generic Coding of Moving Pictures and Associated Audio Informati
	Overview of the MPEG-4 Standard, Mar. 2002. ISO/IEC JTC1/SC29/WG
	Video Codec for Audiovisual Services at ${\rm p}\times 64$ kbits
	Video Codec for Low Bitrate Communication, May 1996. ITU-T Recom
	The Emerging JVT/H.26L Video Coding Standard, Sep. 2002. ICIP Tu
	A. M. Tekalp, Digital Video Processing . Englewood Cliffs, NJ: P
	A. Ortega, Optimization techniques for adaptive quantization of 
	H. Song, J. Kim, and J. Kuo, Real-time H.263 ${+}$ frame rate co
	E. C. Reed and J. S. Lim, Multidimensional bit rate control for 
	D. P. Bertsekas, Dynamic Programming: Deterministic and Stochast
	T. Kuo and C.-C. J. Kuo, Motion-compensated interpolation for lo
	K. Zhang, M. Sober, and J. Kittler, Video coding using affine mo



