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Abstract—Most existing coding techniques for three-dimen-
sional (3-D) graphic models focus on coding efficiency. Due to
irregular structure of the 3-D mesh and the use of variable length
entropy codes, channel errors often propagate in the coded bit-
stream and severely distort the decoded model. By segmenting
a 3-D graphic model (or its connected components) into small
pieces, the impact of channel errors is confined to directly cor-
rupted pieces rather than the whole mesh. The mesh segmentation
schemes should be compatible with the underlying encoding
techniques to achieve the low computational and coding overhead.
In this research, we examine four mesh segmentation schemes, i.e.,
multiseed traversal, threshold traversal, morphing-based volume
splitting, and content-based segmentation, and apply them to the
context of error resilient mesh coding based on the constructive
traversal coding technique. The advantages and shortcomings of
each segmentation method are discussed. These schemes segment
a mesh into pieces according to the target piece size that is deter-
mined according to the channel error rate.

Index Terms—Constructive traversal, error resiliency, mesh par-
titioning, mesh segmentation, 3-D graphic model, 3-D mesh.

I. INTRODUCTION

MODELS of three-dimensional (3-D) objects generally
consist of triangular and/or polygonal meshes. Since the

resulting meshes usually consist of tens of thousands of vertices
and triangles, it is necessary to compress them with tolerable
distortion while maximizing the degree of data reduction. A
3-D graphic model is represented by topological and attribute
data. Topological data specify the connectivity information
among vertices (e.g., the adjacency of vertices, edges and faces)
while attribute data describe the position, surface normal, color
and other application-specific information of each vertex. We
will concentrate on manifold polygonal models with only the
position attribute information in this paper.

Early research on 3-D mesh processing focused on simpli-
fication of graphic models [1], [2]. Recent work has empha-
sized more on the compression of graphic models [2]–[4]. As
the third-generation (3G) telecom system and the wireless local
area networks (LANs) become more mature, wireless transmis-
sion of 3-D graphic models will be in place in the near future.
Errors often occur in wireless channels because of fading and in-
terference. Due to the irregular structure of the 3-D mesh and the
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Fig. 1. Block diagram of the encoder for a 3-D graphic model.

use of variable length entropy codes, the resulting errors often
propagate to a large area. This affects the decoding of subse-
quent connectivity information and leads to severe distortion
of the decoded mesh structure. Traditional mesh coding tech-
niques (e.g., [3], [4]) are very sensitive to channel errors since
the graphic model is encoded as a whole [5].

Little research has been done in the error resilient coding of
3-D graphic models before, e.g., [5], [6]. Based on Li and Kuo’s
constructive traversal coding technique in [4], we proposed
an efficient error resilient coding technique in [5] which can
achieve high error resiliency as well as incremental rendering
at a reasonable bit rate overhead. As shown in Fig. 1, the mesh
structure of each connected component of a 3-D graphic model
is segmented into a set of smaller pieces, according to the
target channel bit-error rate (BER). The relationship between
two neighboring pieces of a connected component is repre-
sented by the “joint boundary,” which contains information of
common vertices and links. The joint boundary and the piece
data of each connected component are separately encoded.
Since the joint boundary information is necessary to stitch
pieces back to obtain the original mesh, it is protected by using
Bose–Chaudhuri–Hocquenghem (BCH) error correcting code.
At the decoder, the joint boundary information of a connected
component is first extracted. After that, pieces are decoded
to reconstruct the connected components. Since the decoding
procedure can start as soon as coded data of the first con-
nected component is received, the model can be incrementally
rendered.

Mesh segmentation plays an important role in the error-re-
silient coding scheme presented in [5]. Several mesh segmenta-
tion schemes exist for efficient handling or parallel processing
to address issues such as scientific computing, fast graphics ren-
dering,andsoon[7]–[9].Their resultsarenotnecessarilysuitable
for error-resilient coding. In this research, we propose four mesh
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segmentation schemes that are specifically designed for error
resilient coding of 3-D graphic models, based on the constructive
mesh traversal idea as used in [4]. The constructive traversal
scheme starts from a chosen seed (i.e., vertex) and traverses
vertices and polygons with a uniform depth approach, where the
closest vertices and polygons are traversed first, followed by the
next closest ones, until the traversal process is completed. The
coded bitstream size increases with the traversal depth.

The features of the proposed mesh segmentation schemes in-
clude the following.

• Coding efficiency for a given piece size (in terms of
number of vertices) is improved by minimizing the depths
from the seed. Other mesh segmentation schemes may
not perform well under this constraint.

• Relatively uniform size pieces are obtained, as determined
by the channel BER. For a BER of 10 , the target piece
size can be as small as 32 vertices. Applications addressed
byothermeshsegmentationschemesusuallydonotdemand
graphicmodels tobedivided intopiecesof suchasmall size.

• The number of vertices in each joint boundary is kept very
small, to ensure very low overhead in the coding of the
joint boundary.

Even though Li and Kuo’s encoding scheme [4] can work
with other mesh segmentation schemes as presented in [7]–[9],
we have observed that coding efficiency decreases considerably
when the segmentation method results in nonuniform pieces,
containing small isolated pieces or long boundaries.

This paper is organized as follows. Four mesh segmentation
schemes are described in Section II. Experimental results and
conclusion are given in Sections III and IV, respectively.

II. PROPOSED MESH SEGMENTATION SCHEMES

We first determine the piece size for a given channel BER, fol-
lowed by mesh segmentation algorithms by considering coding
efficiency and error resiliency.

A. Piece Size Determination

The topology structure of 3-D graphic models usually contain
many connected components of different size, in terms of ver-
tices and polygons. Each connected component can be treated
as an independent unit of the original graphic model. Large con-
nected components should be segmented into pieces for better
error resiliency. We determine the piece size (in terms of the
number of vertices) based on the target BER.

(1)

Here, represents the number of bits required
to code a vertex. The coding of topology data requires an av-
erage of 2 b/vertex in [4]. Therefore, statistically, there would be
1 bit error for every 500 vertices of a coded mesh, at a BER of
10 . The is the number of pieces (i.e. 10 pieces
in our scheme) whose coded topology data will have only 1 bit
error in total. The minimum piece size is set to 32 to avoid high
bit rate overhead. For a piece size of 50, there would thus be
an average of 1 bit error in 10 pieces. Since each piece consists

of complete polygons, the actual piece size will be slightly dif-
ferent. Now, we can determine the target number of pieces
as a ratio of number of vertices in the mesh component to the

.

B. Mesh Segmentation

Since no two pieces share the same polygon, the union of
polygon sets of all pieces form the complete polygon set of the
original model. We represent the original 3-D polygonal mesh

by using set of all vertices (geometry position and vertex
index) and set of all polygons (indices of vertices) of the
mesh. We segment mesh into pieces ,
where is characterized by and .

Four mesh segmentation schemes are discussed below: mul-
tiseed traversal, threshold traversal, morphing-based volume
splitting, and the content-based segmentation method.

1) Multiseed Traversal Algorithm: The basic idea of this al-
gorithmissimilartothatofsimultaneouslyburningfiresfrommul-
tiple starting seeds, which would grow uniformly toward their re-
spectiveneighborhooduntilallpolygonsandverticesofthewhole
mesh are covered. Each traversed region is called a piece.

The algorithm can be described by the following steps.

1) Initialize polygon sets and vertex sets , where
. All sets are empty in the beginning and

implemented as a FIFO queue structure.
2) Choose starting seeds by using the seed selection al-

gorithm described later in this section. Push each seed
in its corresponding vertex set , and mark the seed as
unvisited. Set the size of this vertex set to 1.

3) Get the first unvisited seed in vertex set that has the
smallest size. If there are multiple vertex sets that satisfy
the smallest size requirement, choose the one with the
smallest index.

4) Traverse the polygons associated with the chosen seed
in a counterclockwise order, and find the first unvis-
ited polygon. Push all its unvisited vertices into the cor-
responding vertex set exclusively. Increase the size
of by the number of vertices pushed in. Mark the
polygon as visited, and push it into the corresponding
polygon set . Otherwise, mark the seed as visited, if
no unvisied polygon can be found.

5) Repeat Steps 3–4 until no unvisited vertex and polygon
can be located.

Seed selection: To obtain pieces of uniform size, starting
seeds should be carefully selected in the mesh structure, by
using the far distance approach, as explained below.

1) Calculate the geometrical center of all the vertices of the
connected component, and choose the vertex with the
largest Euclidean distance from the center point as the
“first seed.”

2) After choosing seeds, the th seed is chosen as
the vertex with the largest distance from the set of
seeds that satisfies max (min (distance(vertex , seed
))). Here, seed is a vertex in the set of already

chosen seeds, and vertex is a vertex from the remaining
mesh component vertices.

3) Repeat the above step until all seeds are selected.
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Fig. 2. Illustration of the middle stage in the multiseed traversal scheme by using three starting seeds. Generation of two anchor-vertices is shown here.

Fig. 3. Illustration of the final stage in multiseed traversal scheme by using three starting seeds, where the three joint boundaries are shown, after joint boundary
smoothing.

In Fig. 2, we show a mesh of 119 vertices, with a target piece
size of 40 vertices. By using the far distance approach, we select
three seeds denoted by “1,” “2,” “3.” Starting from each seed,
we traverse polygons as described above, and assign their cor-
responding seed number to each of them. For each seed, 23 to 26
traversed vertices associated with traversed polygons are shown.
It should be pointed out that the boundaries of Pieces 1 and 3
(and also Pieces 2 and 3) start to merge at a common vertex,
which we call “anchor vertex.” As the traversal progresses, more
anchor vertices will be generated. Fig. 3 shows the three re-
sulting pieces and their corresponding joint-boundaries, along
with anchor vertices.

Two adjacent pieces share a number of vertices and links on
their joint boundary. We do not allow any polygon in the joint
boundary. Care has also been taken in mesh segmentation to
make sure that the joint boundary is composed by vertices which
are linked one by one to form a 3-D curve. The joint boundary

information is critical as it is used to help stitch different pieces
of a connected component together, when one or more pieces are
corrupted by channel errors. Since, the coding of joint boundary
information contributes to the bit rate overhead, we described a
simple smoothing scheme in [5], which reduces the number of
vertices of the joint boundary while keeping the mesh segmen-
tation result nearly the same.

2) Threshold Traversal Algorithm: Similar to the multiseed
traversal algorithm, the threshold traversal algorithm also
chooses the starting seed, burns the fire and lets it grow. How-
ever, the threshold traversal algorithm selects only one seed at a
time, and traverses its neighboring polygons and vertices. The
traversal process stops, when the required number of vertices,
determined by a threshold (i.e., the target piece size), have been
traversed. Traversed polygons and vertices are extracted from
the model and assigned to the current piece. A new seed is then
selected from the remaining mesh and the traversal process is
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Fig. 4. Illustration of the threshold traversal scheme.

repeated. This is how the whole mesh is traversed and pieces are
obtained. The threshold traversal algorithm works as follows.

1) Denote the total number of vertices in the connected
component by . If the desired number of pieces is ,
the vertex threshold is .

2) Initialize polygon sets and a vertex set , where
. All sets are empty in the beginning

and implemented as a FIFO queue structure.
3) Choose one starting seed from the model and push it into

V, mark the seed as unvisited. Set the size of to 1. Set
the index starting from 1.

4) Get the first unvisited seed in , traverse the polygons
associated with it in a counterclockwise order, and find
the first unvisited polygon. Push all its unvisited vertices
into the vertex set exclusively. Increase the size of
by the number of vertices pushed in. Mark the polygon
as visited, and push it into the corresponding polygon set

. Otherwise, mark the seed as visited, if no unvisited
polygon is found.

5) Repeat Steps 3–4 until the size of exceeds threshold
or no unvisited vertex and polygon can be located.

6) Delete polygon set from the model. Empty set , and
increase by 1.

7) Repeat Steps 3–6 until reaches . Put all remaining
polygons in a new polygon set .

The resulting polygon sets and their asso-
ciated vertices form pieces. Fig. 4(a) shows the starting seed
for Piece I and its 32 traversed vertices. With Piece I having been
extracted, the starting seed for Piece II is shown in Fig. 4(b).

3) Morphing-Based Volume Splitting: It is relatively easy to
divide a regular 3-D object, such as a ball or candy bar, into
geometrically equal sized pieces. The morphing-based volume
splitting scheme carries out segmentation by first mapping the
mesh to a regular object (i.e., morphing) and then partitioning
it into pieces geometrically (i.e., volume splitting), as discussed
below.

Fig. 5. Illustration of the morphing-based volume splitting scheme.

Fig. 6. Volume splitting applied to three predefined structures. (a) Sphere. (b)
Cylinder. (c) Long bar.

Morphing: Many meshes can usually be mapped to a reg-
ular 3-D object, such as a sphere, cylinder or long bar, by using
3-D morphing. We explain the scheme with the help of an ex-
ample where we map our mesh to a sphere that can hold all its
vertices and polygons. First, we place the mesh inside a sphere
as shown in Fig. 5(a). Then, mesh vertices are moved outward to
the sphere surface. The morphing is complete when all vertices
are uniformly distributed on the sphere surface in the geometry
sense as shown in Fig. 5(b). Connectivity between vertices (i.e.,
topology) remains untouched in this procedure. Note that not
all graphic models can be morphed to a sphere, cylinder or long
bar, and a more complicated 3-D object may be needed. Since,
we segment each connected component separately, most of them
can be mapped to a regular object. However, this technique of
morphing/moving vertices can also be generalized to use im-
plicit surfaces that are more complex than regular 3-D objects,
as discussed in [10] and [11].

Volume splitting: Since all vertices are uniformly dis-
tributed on the sphere surface, cutting the sphere into geometri-
cally equal sized regions will result in segmenting the mesh into
topologically equal sized pieces. Fig. 5(c) shows the volume
splitting of an object into two pieces. After volume splitting,
mesh vertices are moved back to their original positions as
shown in Fig. 5(d). Again, connectivity between vertices re-
mains unchanged.

In Fig. 6, we show the application of this scheme to three
predefined structures, i.e., sphere, cylinder and long bar. In
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Fig. 7. Three-layer hierarchical mesh segmentation scheme.

Fig. 6(a), the sphere is partitioned into four uniform regions.
For this, a group of half-infinite lines are built, starting from
the center of the sphere. Any two adjacent lines form a partial
plane that cut into the sphere. The directions of these lines
are calculated to ensure that they divide the 360 3-D solid
angle into surfaces of the same size. In Fig. 6(b), the cylinder
is partitioned into uniform regions. Basically, starting from
the central vertical line of the cylinder, a group of half-infinite
planes are built, each of which cuts into the cylinder through the
central line. The directions of the planes are calculated to ensure
uniform partitioning. In Fig. 6(c), the long bar is partitioned
into uniform regions. Here, a group of infinite planes is built,
where each plane cuts into the long bar. The distance between
two consecutive planes is set to ensure uniform splitting.

4) Content-Based Segmentation: In many applications, it
may be useful if a model can initially be segmented in a few
semantically meaningful parts. Each part can then be further
divided in smaller pieces by using one or more segmentation
schemes. It is possible to choose smaller sizes for semantically
important pieces and provide them higher protection against
channel errors by using “unequal error protection.” Since our
error resilient coding scheme supports incremental rendering,
pieces belonging to semantically more important regions can
be transmitted first. In this case, a few corrupted pieces will
not introduce much distortion in the reconstructed model, and
some scheme(s) could be used to conceal them at the decoder.

Since it is difficult to train a computer for extracting the se-
mantic meaning of a specific graphic model, we extract pieces
by using the user-input about the approximate location of piece
boundary, which includes the following information.

1) Several vertices on the piece boundary are selected.
For example, to segment the head from the “dinosaur”
model, several vertices around the neck should be se-
lected.

2) A closed path is formed passing through these vertices to
divide the mesh. For this, the order of vertex selection is
important. Let us denote vertices by , up to ,
according to the order in which they are selected. The
closed path is constructed by forming the path to ,

to to , and to , in that order.
The path from to , , should
satisfy the shortest path requirement, i.e., traversing the
minimum number of vertices between them.

Three pieces of the “dinosaur” model are shown in Fig. 11,
where the “head” piece is constructed by selecting five vertices
around the neck, and the “middle body” piece is constructed by
selecting 12 vertices between this and the “tail” piece.

5) Discussion: We tested our proposed segmentation algo-
rithms on MPEG-4 test models. The multiseed traversal algo-
rithm achieves better results when the mesh is divided in two to
four pieces. The threshold traversal algorithm is more efficient
when the model is divided in six or more pieces. This may be due
to the fact that selection of seeds in the multiseed traversal algo-
rithm becomes more critical when the number of pieces is large.
It is quite likely that two seeds are selected much closer than
other seeds, which would result in nonuniform pieces. The mor-
phing-based volume splitting scheme is computationally more
complex , because it requires mapping and redistribu-
tion of vertices according to the reference object, followed by
volume splitting and reverse mapping. Here refers to the
number of vertices in the mesh. This scheme should be pri-
marily used to initially partition the mesh into a small number
of pieces. Furthermore, the multiseed and threshold traversal
algorithms are more efficient, with computational complexity

. The traversal information is recorded in these two seg-
mentation schemes that can later be used in the piece encoding
process. However, the system complexity also depends on the
target BERs, piece size, layered hierarchies, etc. Nevertheless,
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Fig. 8. Segmentation of the dinosaur model by multiseed traversal algorithm,
with the “far distance” seed selection approach. Only four pieces are shown for
the purpose of illustration.

Fig. 9. Extracted pieces of the “dinosaur” model by threshold traversal
algorithm.

we found in our research that the most computational com-
plexity comes from the encoding and assembling of the seg-
mented pieces.

To achieve the best performance, we should use a segmenta-
tion scheme repetitively or in a combination of other scheme(s),
to exploit the strength of each scheme. A hierarchical segmen-
tation scheme using the three-layer structure is shown in Fig. 7,
where the value of divider indicates the number of pieces to be
obtained by the segmentation process at that stage. Each seg-
mentation scheme can be applied repetitively. The segmented
piece from layer 1 becomes the input data to layer 2 for fur-
ther segmentation. For example, the “spock” graphic model has
16 386 vertices. Target piece size of 32 vertices requires it to be
divided in about 500 pieces. We can first use the morphing-based
volume splitting algorithm twice to divide the model in four
pieces each time. Then, the multiseed traversal algorithm can
be used to further divide each piece into four pieces, leading to
a total of 64 pieces. Finally, the threshold-traversal algorithm
can be applied to further divide each of the 64 pieces into six to
eight pieces.

III. EXPERIMENTAL RESULTS

Figs. 8–10 show three to four pieces extracted from the
“dinosaur” graphic model by using the multiseed traversal,
threshold traversal, and morphing-based volume splitting
schemes. These schemes give pieces of reasonably uniform
size, with no isolated or broken pieces. We show in Fig. 11
the content-based segmentation of the “dinosaur” and “eight”
models. Each of these pieces can be morphed to three structures
(i.e., sphere, cylinder, and long bar) and thus morphing-based
volume splitting can be further applied.

The multiseed and threshold traversal algorithms allow
pieces to grow uniformly around the seeds. As a result, we get
small joint boundary with an average of seven and ten joint
boundary vertices for a piece size of 32 and 64, respectively,
for the dinosaur model. The pieces obtained by using these
scheme can be simply or multiply connected, depending on
the original mesh structure of the connected component. The

Fig. 10. Segmentation of the “dinosaur” model into four pieces by line-based
volume splitting.

Fig. 11. Content-based segmentation: “dinosaur” model segmented into three
pieces (upper row); “eight” model segmented into two pieces (bottom row).

morphing-based volume splitting scheme however does not
guarantee small boundaries.

The proposed segmentation schemes achieve relatively low
bit rate overhead and high success rate (i.e., error resiliency)
at different BERs. The bit rate overhead normally increases as
the size of the graphic model becomes smaller and/or the BER
increases. In [5], we discussed the result of the error resilient
coding scheme applied to graphic models at different BERs. If
the topology of one or more pieces cannot be decoded success-
fully, there would be some holes in the reconstructed model. If
the topology of all pieces is decoded correctly while the geom-
etry data of a piece is not correctly decoded, the corresponding
piece is decoded with some distortions.

IV. CONCLUSION AND FUTURE WORK

Existing mesh segmentation schemes may not be suitable for
the constructive traversal-based error resilient encoding scheme,
since coding efficiency may decrease considerably when one
obtains nonuniform, very small and isolated pieces, with long
boundaries. In this research, four mesh segmentation schemes
were studied to obtain smaller and uniform sized pieces, for
error resilient encoding based on the constructive mesh traversal
technique. The piece size is determined according to the channel
BER. The proposed mesh segmentation schemes ensure a small
number of vertices on the joint boundary between two neigh-
boring pieces of a connected component, which is vital for high
error resiliency and low bit rate overhead.

The proposed segmentation algorithms were primarily devel-
oped for manifold polygonal models. We observed that their per-
formance is not well defined for more generic models including
the “unclean” ones. It should be interesting to modify them for
more generic models. It may also be challenging but worthwhile
to study a robust automatic method to hierarchically apply the
different proposed algorithms in an “optimal” way for an arbi-
trary mesh.
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