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Abstract—Multistage (MS) implementation of the minimum
mean-square error (MMSE), minimum output energy (MOE),
best linear unbiased estimation (BLUE), and maximum-likelihood
(ML) filter banks (FBs) is developed based on the concept of
the MS Wiener filtering (MSWF) introduced by Goldstein et al.
These FBs are shown to share a common MS structure for inter-
ference suppression, modulo a distinctive scaling matrix at each
filter’s output. Based on this finding, a framework is proposed
for joint channel estimation and multiuser detection (MUD) in
frequency-selective fading channels. Adaptive reduced-rank equal
gain combining (EGC) schemes for this family of FBs (MMSE,
MOE, BLUE, and ML) are proposed for noncoherent blind MUD
of direct-sequence code-division multiple-access systems, and
contrasted with the maximal ratio combining counterparts that
are also formed with the proposed common structure under the
assumption of known channel-state information. The bit-error
rate, steady-state output signal-to-interference plus noise ratio
(SINR), and convergence of the output SINRs are investigated via
computer simulation. Simulation results indicate that the output
SINRs attain full-rank performance with much lower rank for a
highly loaded system, and that the adaptive reduced-rank EGC
BLUE/ML FBs outperform the EGC MMSE/MOE FBs, due to
the unbiased nature of the implicit BLUE channel estimators
employed in the EGC BLUE/ML schemes.

Index Terms—Best linear unbiased estimation (BLUE), code-
division multiple access (CDMA), maximum-likelihood (ML),
minimum mean-square error (MMSE), minimum output energy
(MOE), multipath fading channels, multistage Wiener filtering
(MSWF), multiuser detection (MUD), reduced-rank filtering,
time-varying channels.

I. INTRODUCTION

REDUCED-RANK linear filtering based on the multistage
Wiener filter (MSWF) of [1] has proven to be an effective

detection scheme for multiuser direct-sequence code-divi-
sion multiple-access (DS-CDMA) systems in additive white
Gaussian noise (AWGN) channels [2]. A class of adaptive
reduced-rank schemes of MSWF was provided [2], and shown
to achieve near full-rank performance with relatively fewer
dimensions, in comparison with reduced-rank schemes based
on eigen-decomposition methods (e.g., [3]). Thus, the number
of samples required for adaptive implementation is greatly re-
duced, and better tracking performance can be obtained in time-
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Fig. 1. Framework for joint channel estimation and MUD in multipath fading
channels. For MRC receivers, the estimation scaling part is not necessary,
and z (m � 1) is replaced by the given channel vector � (m). For EGC
receivers, the matrices C and C can be any of the scaling matrices of the
MMSE/MOE/BLUE/ML FBs.

varying systems and channel conditions. Moreover, the MSWF
does not require an explicit estimate of the signal subspace,
which makes it more robust to estimation uncertainties.

To exploit the diversity offered by a multipath fading channel,
maximal ratio combining (MRC) is often employed to achieve
the maximal signal-to-noise ratio (SNR), given channel state in-
formation (CSI). In the absence of CSI, it was suggested in [4]
and [5] to adopt an adaptive multiple minimum mean-square
error (MMSE)/ minimum output energy (MOE) filter structure
for interference suppression along each resolvable transmission
path of the desired user. Filter outputs along each resolvable path
are first differentially decoded, and then results from each path
are linearly combined with an equal gain to form decision sta-
tistics. Detection schemes of this kind are referred to as nonco-
herent equal-gain combining (EGC) receivers [4]. However, for
reduced-rank detection, receivers which jointly suppress inter-
ference in a multipath fading channel outperform those that sup-
press interference path by path [6]. Based on these arguments
and the concept of MSWF [1], we develop herein multistage
(MS) implementation of the MMSE, MOE, best linear unbi-
ased estimation (BLUE), and maximum-likelihood (ML) filter
banks (FBs) for interference suppression in multipath fading
channels. These FBs are shown to share a common MS struc-
ture for interference suppression, modulo a distinctive scaling
matrix at each filter’s output. With this common structure, a
framework is proposed for joint channel estimation and mul-
tiuser detection (MUD) in fast-fading channels, as shown in
Fig. 1, whereby various combining schemes, e.g., BLUE-ML
and BLUE-MMSE combinings, can be efficiently implemented
and evaluated without extra implementation complexity.

For reduced-rank filters, the dimension of subspaces required
for achieving satisfactory output signal-to-interference plus
noise ratios (SINRs) is an important measure. With the same
output SINR, lower rank implies faster convergence, and thus,
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potentially better performance in dynamic environments. The
output SINRs of the MS FBs developed herein are investigated
through a recursive adaptation scheme generalized from [2] for
MSWF. Performance comparisons of the MMSE, MOE, BLUE,
and ML FBs are conducted for coherent MRC and noncoherent
EGC via simulations in the context of MUD of DS-CDMA in
multipath Rayleigh fading channels. Based on these results,
a new type of EGC ML detection scheme is proposed, which
accrues the advantages of both unbiased channel estimation
and reduced-rank MUD.

The rest of this paper is organized as follows. Section II de-
scribes the system model for asynchronous DS-CDMA in mul-
tipath fading channels. The MS MMSE/MOE receivers for mul-
tipath fading channels are derived in Section III. Extensions to
the MS BLUE/ML receivers are made in Section IV, followed
by the exposition of the common structure for reduced-rank
MUD in Section V. The structural differences between the MS
pre- and post-combining interference suppression are detailed
in Section VI. The numerical simulation results are presented in
Section VII, and concluding remarks are drawn in Section VIII.

II. SYSTEM MODEL

A standard model for asynchronous DS-CDMA is consid-
ered. The baseband representation of the transmitted signal for
the th user can be written as

(1)

where is the symbol duration, and , , and are
the data bit at time , energy per bit, and relative delay
with reference to the base station, respectively, for the

th user. The transmitted symbols, , are identically
and independently distributed (i.i.d.), taking on the values

with equal probabilities. The spreading waveform is
given by , where

is the signature sequence for the th

user with a period of . The function is a normalized chip
pulse-shaping function of duration , with being
the spreading gain.

The th user’s signal propagates through a mul-
tipath fading channel with the complex impulse response

, where is the Dirac
delta function, is the number of the paths for user , is the
delay time associated with the th tap of the tapped-delay-line
channel model, and is the fading process corresponding
to the tap. The value of is assumed to be constant during
one symbol interval, and changes from symbol to symbol.
Thus, can be modeled by a discrete-time fading process

, where is a time-invariant nonnegative channel
gain, and is a complex zero-mean Gaussian process
satisfying
(here denotes the Kronecker delta function), and the
autocorrelation value of two adjacent channel samples is

, , . Convolving

Fig. 2. Delay pattern of a three-path DS-CDMA channel of user k. The light-
shaded regions belong to the symbols that arrive earlier inside the sampling
interval of y(m), compared with the dark-shaded regions, which belong to the
symbols that arrive later in the same transmission paths of the same sampling
interval.

the transmitted signal with the channel impulse response, the
received signal due to the th user is given by

(2)

where . The overall received signal is given by
, where is the number of users, and

is complex zero-mean white Gaussian noise.
To demonstrate the main ideas of our proposed schemes,

we consider one-shot detection, and assume that the maximum
delay spread for all users.
Thus, the delay for the first path of every user, and

, . For cases where delay spreads are larger than
, the detection windows can be simply extended for more

than one symbol duration to capture the signal belonging to the
longest delay path among all users. Without loss of generality,
user 1 is chosen to be the desired user. It is assumed that the
delay time for each path of the desired user is known, and it is
further assumed that the receiver’s clock is synchronized with
the reception of the first path of the desired user, i.e.,
and , . We define , ,
where denotes the largest integer less than or equal to the
argument, , , ,
and , , where denotes the
remainder of divided by . An example of a three-path delay
pattern for user is illustrated in Fig. 2.

The received signal is passed through a filter matched to the
chip pulse-shaping function , and then sampled
at the chip rate. We define

and ;
both vectors are of dimension . Due to the asynchronous
arrival times, the contribution of the signature sequence due to
the earlier arrival symbol for path in Fig. 2 can be expressed as

, and the contribution
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of the signature sequence due to the later arrival symbol on path
is equal to . Thus, the

discrete-time signal vector obtained by collecting consec-
utive samples of the matched-filter output is given by (e.g., [4])

(3)

where . The filtered noise vector is com-
plex Gaussian distributed with covariance matrix . Note that

. For convenience of analysis, the discrete-time re-
ceived signal can be rewritten as

(4)

where , ,
, and . The matrix

is referred to as the steering matrix for the desired user’s
signal.

Note that in this paper, a boldface capital letter denotes
a matrix of dimension by , and a boldface lowercase letter

denotes a vector of dimension . The Hermitian of a
matrix or vector is denoted by or , and the transpose of
a matrix or vector is denoted by or . For convenience of
presentation, the time index of a variable is suppressed if not
necessary, and in the remainder of this paper.

III. MS MMSE-BASED FBS

Before we introduce the MS implementation of the MMSE
and MOE FBs, we first briefly review the MMSE reception of
DS-CDMA and its limitations in fast-fading channels. The con-
cept of the MSWF is later introduced to motivate the succeeding
derivations for the MS MMSE/MOE FBs.

The MMSE receiver for DS-CDMA systems is given by (see,
e.g., [7])

(5)

where . In fast-fading channels, , and
the MMSE receiver in (5) degenerates to the zero vector. A mod-
ified MMSE filter, in conjunction with the use of differential
encoding, was proposed in [4] to exploit the multipath diversity
without the desired user’s channel information. The cost func-
tion in (5) is modified to the form of

(6)

where the objective of estimation becomes the product of the
channel and the data, and , by definition
in the previous section. The filter’s soft-output vector, , of

dimension and the detection method for differential BPSK
(DBPSK) are given by

(7)

(8)

where is the decision statistic for . This type of recep-
tion is referred to as differential EGC of the MMSE FB (EGC-
MMSE-FB) [4]. With the same argument, the MOE filter for
AWGN channels in [8] is also modified in [4] for differential
detection in multipath channels, with the criterion given by

subject to (9)

The solution can be shown equal to

(10)

The corresponding detection method, (8), is referred to as dif-
ferential EGC of the MOE FB (EGC-MOE-FB) [4].

To motivate the derivations for the MMSE/MOE FBs, we next
briefly review the key idea of MSWF. It is shown in [1] that the
mean-squared error (MSE) of an MMSE filter is invariant to an
unitary transform applied to the signal , i.e.,

(11)

If the matrix is chosen to be , where
and , denoted by , the

MMSE filter in (5) can be decomposed into a linear combina-
tion of a matched filter and another MMSE filter. Successively
applying the idea of (11) to every resultant MMSE filter, the
MMSE filter in (5) can finally be decomposed to a structure of
MS matched filters, and is thus referred to as the MSWF. The
MSWF was later applied to DS-CDMA in AWGN channels in
[2] for reduced-rank MUD. Our objective herein is to extend
the notion of the MSWF to a host of blind MUD schemes for
DS-CDMA signaling in multipath fading channels.

A. MS MMSE FB

We next generalize the method in [1] to estimate the vector
. Assuming that the steering matrix is of full column

rank, it can be decomposed via the Gram–Schmidt process as

(12)

where the column vectors of form an orthonormal basis, i.e.,
, that spans the column space of . We denote

the subspace spanned by the column vectors of by , and
refer to it as the signal subspace. Next, we form a unitary matrix

of the form

(13)

where , denoted by . The ma-
trix is often referred to as the blocking matrix of , and
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Fig. 3. Structure of the MS MMSE/MOE/BLUE/ML FBs for channel estimation and MUD in multipath fading channels. The output scaling matrix isA U E

for the MS-MMSE-FB,A U for the MS-MOE-FB,A U for the MS-BLUE-FB, andA U F for the MS-ML-FB. The objective of estimation is b � .

can be obtained via the QR factorization of . We now invoke
the invariance of the MSE to a unitary transform, i.e.,

(14)

The solution to (14) is given by

(15)

The invariance of the MSE can be easily verified, due to the fact
that , since

. The application of separates the signal component of
lying in the subspace from the component lying in ’s

orthogonal complement, , which is spanned by the column
vectors of . The projected vector is used to suppress
the projected multiple-access interference (MAI) in the signal
subspace . This concept will be discussed more rigorously
in Section III-C, following the derivation of the MS-MOE-FB.

Substituting (13) into (15) and applying the matrix-inversion
lemma [9] to , the MMSE FB becomes

(16)

where and ; and
are the autocorrelation matrices of and , respectively; and

is the crosscorrelation matrix of and

. The matrix , and the ma-
trix is not specified, as its form is not necessary in the sequel.
The soft output of the filter is given by

(17)

where

(18)

Now, observe that

(19)

Therefore, is the MMSE FB that minimizes
, and is the corresponding error-

covariance matrix. Similarly, we can form another
unitary matrix with

and , and
still have .
The same procedure from (14)–(17) for calcu-
lating can also be applied to , resulting in

, where
, , ,

and . Recursively

employing the above procedure for and the
resultant , , until the dimension

is exhausted, an MS implementation of the MMSE-FB is
constructed and shown in Fig. 3. Multiplying the current output
of the MS-MMSE-FB with the previous one forms the decision
statistic in (8). It is noted that the MS-MMSE-FB reduces to
the MSWF for the cases of flat-fading channels, in which case,
the rank of , , is equal to one.

B. MS MOE FB

The concept of MS filtering can also be extended to the MOE
FB. Recall from (14) that the MSWF differs from the original
MMSE by using the transformed received signal , instead of
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, to form the MMSE FB. Motivated by this observation, the
MOE criterion in (9) can be reformulated as

subject to (20)

Let and . The optimal FB is given
by

(21)

It is clear that the filter’s soft output remains invariant to the
unitary transformation . Using the same transformation ma-
trix given by (13) and applying the matrix-inversion lemma
to , as shown in (16), it is straightforward to show that

. Inserting this result back into
(21), and following the same procedure from (16) to (17) for
handling the term, the MOE-FB in (21) can be shown
equal to

(22)

The filter’s soft output is given by

(23)

An important point shown by this formula is that the
MS-MMSE-FB in (16) and the MS-MOE-FB in (22) differ
only by the matrix in (19), which is a scaling matrix at
the filter’s output. The MS implementation of the MOE-FB is
depicted in Fig. 3.

C. MS Interference Suppressor

Notice from (17) and (23) that is a common component
filter of both the MS MMSE and MOE implementations. As will
be shown later in Section IV, it also plays an important role in the
development of the MS-BLUE/ML-FBs. Thus, it is of interest to
examine the physical meaning of . To investigate properties
of , we rewrite the received signal as

(24)

where is the interference to the desired user’s signal,
given by

(25)

The FB can be rewritten as
. Since

and , we can show that

(26)

using the property that and are uncorrelated. Similarly,
one can show that , Then, the FB
is equivalent to the one obtained by the following optimization:

(27)

Therefore, essentially takes the projected interference in the
subspace to suppress the projected interference in
signal subspace , in the sense of the MMSE. In the absence
of MAI and intersymbol interference (ISI) such that , the
filter reduces to in (27), due to the fact that .
There will be no need for the extra stages of the MMSE/MOE
FBs other than the first stage, . Thus,
functions as an MS interference suppressor with the output au-
tocorrelation matrix . By a similar procedure,
the term in (19) can also be expressed as

(28)

where is the autocorrelation
matrix of the desired user’s signal in signal subspace . So,
the matrix can be interpreted as the desired user’s signal
covariance matrix, plus the covariance matrix of the residual
interference in signal subspace .

IV. MS ML FBS

For coherent detection of BPSK signals where the
channel vector is available, the decision statistic is
given by employing MRC. The
vector is the soft output of the MMSE-based esti-
mator for . In contrast, for noncoherent detection of
DBPSK where the channel vector is unknown, the deci-
sion statistic is given by
employing EGC. In the ideal case, ,
and thus . A
common interpretation for EGC is that serves
as the channel estimate required by MRC. However, it
is noted that conditioned on the channel vector and the
data, the MMSE and MOE estimators for are biased.
That is, , and

. We also observe that
the bias of the MMSE estimator is a function of system
loading through its dependence on . Furthermore, when MS
implementations are employed, the mean values of the MS
MMSE/MOE estimator become, respectively

(29)

(30)

For full-rank implementations, is unitary, i.e., , [cf.
(13)], the biases are not affected by the transformation. How-
ever, as will be shown in Section V, for reduced-rank imple-
mentations, is replaced by the reduced-rank transformation
matrices, e.g., [cf. (49)], for -stage implementations,
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thus . The biases also change with the number
of stages of implementations. To eliminate the bias effects, we
consider unbiased estimation of .

A. MS Blue FB

We treat as a deterministic unknown vector, and aggre-
gate the MAI, ISI, and complex Gaussian noise described in (4),
as an interference vector as given in (24), with covariance ma-
trix . The BLUE [9] for can be obtained
according to the following criterion:

subject to

(31)

where, to emphasize time dependency and the difference from
the MMSE/MOE approaches in which is a random vector,
we define . The estimate of is

(32)

Due to the fact that and are deterministic, and is
a complex Gaussian vector, the interference vector is a
zero-mean, complex-Gaussian distributed vector. Thus, (24) is
the Gaussian linear model for . The ML estimator for
will attain the Cramer–Rao lower bound (CRLB) [9], and is
equivalent to the BLUE estimator given in (32).

We now develop the MS implementation of the BLUE FB.
Transforming the received signal with the unitary matrix

given in (13), the resultant signal is of the form

(33)

Let and . The BLUE/ML esti-
mator for is given by

(34)

The equality can be easily verified, since . Like
the MS MMSE/MOE-FBs, a unitary transformation does not
change the estimation result. Now, we apply the matrix-inver-
sion lemma [9] to , such that

(35)

where , ; and are the au-
tocovariance matrices of and , respectively,

is the cross-covariance matrix of and , and

(36)

Inserting (35) back into (34), the BLUE estimator can be sim-
plified to

(37)

where and . As has been shown
in (26), and

, the BLUE estimator is
equal to

(38)

Furthermore, . By (28) and (36), we
have

(39)

Again, plays a crucial role for the MS BLUE.
The BLUE-FB shares the same MS interference suppressor,

, with the MMSE/MOE-FBs, with a distinctive
scaling matrix . Thus, the implementation is straight-
forward, as shown in Fig. 3.

Now, we have the MS BLUE-FB as an unbiased “channel”
estimator of . It is not difficult to show that the covariance
matrices for the MS MMSE/BLUE-FBs conditioned on
are given by

(40)

(41)

Let . By (40) and the positive def-
initeness of a covariance matrix, it is straightforward to show
that . Thus, we have

(42)

So the BLUE-FB, while unbiased, exhibits a larger estimation
variance than that of the MMSE-FB. However, for the roles
of the channel estimator and the data detector in MRC/EGC
methods, there are different sensitivities to the bias and the vari-
ance. Both of these effects will be studied via simulation, in
the context of adaptive coherent detection for BPSK and non-
coherent detection for DBPSK.

B. MS ML FB

So far, we have the MS BLUE-FB as an implicit ML channel
estimator for EGC. What is missing is a MS FB for ML symbol
detection, although the BLUE-FB can serve as a detector, as can
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the MS MMSE/MOE-FBs. Given that the ML detector max-
imizes the SINR conditioned on [10], it should provide
better performance.

We consider the blind ML MUD. Given that in (24) is
Gaussian distributed, the probability density function (pdf) of

conditioned on is of the form

(43)

The ML symbol detector is given by

(44)

Similarly, for the transformed signal , the soft output of the
ML-FB is given by

(45)

where the results from (35)–(39) have been used for the above
simplifications, and , [cf. (39)]. The same
MS structure for the MMSE-FB also applies to the blind ML
detector by replacing the output scaling matrix with .

V. REDUCED-RANK MS MULTIUSER RECEIVERS

A. Common Structure for MRC/EGC MUD

It is clear now that the MS MMSE/MOE/BLUE/ML FBs all
share a common MS interference suppressor, ,
with distinctive scaling matrices. The filters’ soft outputs can
be represented with a common form

mmse, moe, blue, ml

(46)

with , ,
, and . Different filters scale

the output of the MS interference suppressor with different
matrices to achieve their specific optimization criteria, e.g.,
MOE is equivalent to minimizing .

The computational complexity for the common MS interfer-
ence suppressor of stages is , ,
as opposed to the complexity of for the tradi-
tional implementation of the MMSE-FB. As is usually the case
for DS-CDMA channels, is much greater than , and a sig-
nificant amount of implementation cost can be saved for the
proposed reduced-rank MS implementation without sacrificing
output performance. Moreover, with this common structure, one
can easily build different filters for specific applications without
employing redundant implementation logics for each filter. With
the aid of this specific characteristic, we have a common frame-
work for the implementation of coherent MRC and noncoherent
EGC detection of DS-CDMA systems, as shown in Fig. 1. For
MRC schemes, the block of estimation scaling is removed and
replaced by the known channel vector .

Despite the fact that a number of detection schemes can be
implemented and evaluated using the same common framework

with different matrices for and , as shown in Fig. 1,
we highlight a specific noncoherent EGC receiver with the de-
cision statistic given by

(47)

Recall that the BLUE-FB acts as an implicit ML channel esti-
mator for EGC, and the ML-FB is a ML symbol detector. There-
fore, this receiver scheme is referred to as EGC of the ML FBs
(EGC-ML-FB).

It appears that bias in the channel estimate can have a
deleterious effect on overall performance, and thus, the BLUE
channel estimator offers superior performance; similarly, the
ML detection strategy most directly optimizes the detection
error. Thus, employing the best channel-estimation method
with the best detection method offers the best combined per-
formance. This is confirmed via simulation in Fig. 11. The
implementation of the EGC-ML-FB can be achieved by having

and in Fig. 1. Different from the
EGC MMSE/MOE/BLUE FBs, where outputs of the same FB
are combined with equal gain, the EGC-ML-FB is a heteroge-
neous combining of two different types of FBs’ outputs.

B. Reduced-Rank MS Interference Suppressor

To improve the tracking performance and reduce the vari-
ance of the estimation error in dynamic channel environments,
reduced-rank implementations are often considered for MMSE
estimation. For MSWF, a transformation matrix for its re-
duced-rank implementation was given in [3]. The performance
of MSWF was later shown in [11] to be independent of the
choice of the blocking matrix embedded in the trans-
formation matrix. For the MS FBs introduced in this paper,
reduced-rank implementations also follow the same rule for
the MSWF by keeping the first stages of the MS FBs. The
basis vectors for the reduced-rank MS FBs are the same, be-
cause the common MS interference suppressor for these FBs is
constructed with the same set of basis vectors. Let denote
the subspace spanned by the basis vectors for the -stage MS
interference suppressor. The matrix of the basis vectors
is given by Proposition 1, and the proof is provided in the Ap-
pendix. The subspace is a generalization of the subspace
associated with the MSWF given in [3].

Proposition 1: The basis vectors for the MS MMSE/MOE/
BLUE/ML FBs.

1) Let the blocking matrix at each stage in Fig. 3 be
constructed by . A recursive pro-
cedure for generating the matched FBs at each
stage is given as follows, with the matched filter of the
first stage, :

(48)

where , , and .
and , , .



WU et al.: REDUCED-RANK MULTISTAGE RECEIVERS FOR DS-CDMA IN FREQUENCY-SELECTIVE FADING CHANNELS 373

Fig. 4. Structure of the PC MMSE/MOE/ML/BLUE filters, where h � = S A � for the PC MMSE/MOE/ML filters, and h � = H U A �
for the PC-BLUE filter. Dimension of the blocking matrix B is (N � 1) � N for the PC MMSE/ML filters, and (N � L + 1) � N for the PC MOE/BLUE
filters. Output scaling value is � E for the PC-MMSE filter, � for the PC-MOE, � for the PC-BLUE, and � F for the PC-ML filter. The objective of
estimation is b .

2) The basis vectors which span the subspace, , for the
reduced-rank FBs of stages are given by the row vec-
tors of the transformation matrix of the form

(49)

The reduced-rank implementation of the MS MMSE/
MOE/BLUE/ML FBs is equivalent to replacing the
transformation matrix in (15), (21), (34), and (45) by

.

VI. MS PRECOMBINING FILTERS FOR COHERENT DETECTION

It is clear from Proposition 1 that the entire implementation
structure for the MS receivers proposed herein depends on the
steering matrix and the autocorrelation matrix , which
are relatively stationary, compared with the channel coefficient
vector . Once the matrices and are available, MUD can
be realized without the knowledge of explicit CSI, using EGC
in conjunction with differential encoding/decoding. If the CSI
is somehow available in real time using training symbols or a
pilot channel, then MRC FBs can serve the task of MUD. It
is noted that the MS structure for interference suppression does
not change before the next updates for matrices and , even
if the channel coefficients may change every symbol time. The
reason is that MAI and ISI are mitigated before the multipath
combining using EGC or MRC. The interference residing in
each basis vector of the signal subspace is jointly suppressed
with the MS interference suppressor. However, as opposed to
this postcombining approach that underlies the EGC/MRC re-
ceivers, multipath combining could also be done before inter-
ference suppression if CSI is available. This precombining (PC)
strategy leads to a set of MS PC filters for coherent detection as
well, at a higher cost for MS implementations in time-varying
multipath channels. Before we compare and contrast MRC and
PC approaches, we shall first introduce the MS PC MMSE,
MOE, BLUE, and ML filters, as well as their reduced-rank im-
plementations. We start with the PC MOE and BLUE filters, be-
cause these two filters can be directly derived from their MRC
counterparts.

A. MS PC MOE/BLUE Filters

Given the desired user’s channel parameter , (23) and (38)
for the MS MOE and BLUE FBs, respectively, can be further
simplified by merging the channel parameter with the output
scaling matrix as shown below, since and are constant
matrices

(50)

(51)

The corresponding variables are defined as
, ,

, and . The MRC MOE/
BLUE FBs with the steering matrix are equivalent to the
filters obtained by using the PC steering vectors
and of dimension , respectively.
They are referred to as the PC MOE/BLUE filters. Their MS
implementations are shown in Fig. 4. With a similar procedure
for proving Proposition 1, it is straightforward to show that the
subspace, denoted by , spanned by the basis vectors
for the -stage PC MOE/BLUE filters, is equal to the row
space of the matrix given by

and (52)

where and ,
. We emphasize that the subspaces for the

PC-MOE and the PC-BLUE filters are, in essence, different
due to the structural differences after the second stage of these
two filters. The reason is that their steering vectors are not
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the same: for the PC-MOE filter, and
for the PC-BLUE filter. The rank

for each vector , , is one. The total rank for
the -stage implementations of the PC MOE/BLUE filters is

, instead of as for the MRC MOE/BLUE FBs.

B. MS PC MMSE/ML Filters

For the cases of the MMSE/ML FBs, the output scaling ma-
trices in (19) for the MMSE-FB, and in (39) for the
ML-FB, are functions of and the number of stages that is also
revealed in the rank of . Therefore, the PC MMSE/ML fil-
ters are, in essence, different from the MRC MMSE/ML FBs.
The PC-MMSE filter is exactly the MSWF proposed in [1], with
the steering vector equal to . The PC-ML filter
is equal to the MSWF by replacing the output scaling with

.1 Their MS implementations are also shown in Fig. 4. The
subspace associated with the -stage implementations of
these two filters is equal to the row space of of the form
[3]

(53)

The total rank of the -stage PC MMSE/ML filters is . The
extra dimensions for the reduced-rank PC MOE/BLUE filters
are used to satisfy the constraints for optimization.

C. MRC Versus PC

Comparing the MRC FBs and PC filters, it is clear that the
underlying subspaces defined by these two approaches have dis-
tinctly different dimensions, given the same number of stages.
As has been shown at the beginning of Section VI, the dimen-
sional difference is due to the fact that PC coherently com-
bines with the channel coefficients prior to interference sup-
pression, while MRC does so after interference suppression. By
exploiting the structural invariance of the MS interference sup-
pressor, a common framework is developed in Section V-A for
coherent MRC or noncoherent EGC MUD. While, for PC filters,
the steering vectors are functions of the channel coefficients, as
well. As the process of constructing the filters continues down
the MS hierarchy, as shown in (52) and (53), the channel coef-
ficients will be involved in every stage of the filters. Due to this
difference, the PC-based interference suppressors change with
the channel coefficients, while the MRC-based schemes do not.
The MS interference suppressor of a PC filter has to be recon-
structed whenever the channel coefficients get updated. More-
over, due to the differences in forming the steering vectors, as
shown in (50) and (51), there does not exist a unified framework
for the interference suppression of PC filters.

Another advantage for MRC is its flexibility for performance
analysis. By decoupling the channel coefficients from the MS
structure for interference suppression, we are able to define the
signal subspace , and its orthogonal complement subspace

associated with the MRC FBs, separately from the realiza-
tions of channel coefficients. By evaluating the channel varia-
tion and the capability for interference suppression, as revealed

1Matrices E and F are scalar in this case, since the rank of the steering
vector S A � is one.

in the recursive structure of the receiver, separately, we can pro-
ceed with the performance analysis for coherent MRC or non-
coherent EGC MS receivers in multipath Rayleigh fading chan-
nels more easily. The analytical results for the output SINRs and
bit-error rates (BERs) are presented in [12]. Hence, the common
structure presented in Fig. 1 is an efficient framework for both
practical implementation and performance analysis.

On the other hand, for PC filters, the channel coefficients are
encapsulated in every stage of the filters, making performance
analysis extremely complicated for fading channels. The ad-
vantage of PC is more pronounced if the channel coefficients
are time invariant or more stationary. This is not simply be-
cause of the practical consideration. With the assumption of
stationary channel coefficients, the subspace spanned by the
steering vector of a PC filter has a concrete geometric meaning.
Otherwise, it is ambiguous to define a subspace that is spanned
by a steering vector with mean zero, due to the zero-mean
channel coefficients involved in the vector.

Nevertheless, PC is still useful in certain scenarios. As has
been shown in Section III-C, the MS interference suppressor
takes the projected interference onto the subspace to sup-
press the interference in the signal subspace . If the channel
coefficients are not given a priori, then interference in each
vector subspace of needs to be suppressed before EGC or
MRC. However, for PC filtering, an interference suppressor only
needs to mitigate the interference along the composite signal
subspace, given the channel vector . As a result, the ranks of
the MRC MMSE/ML filters and the MRC MOE/BLUE filters
can be drastically reduced from to and , re-
spectively. With this dimensional reduction, the output SINRs
of the PC filters will converge faster than those of the MRC
FBs, as will be shown in simulation results. This will enhance
the receivers’ adaptive performance for nonstationary system
loadings, where the received signal’s autocorrelation matrix
changes with time.

VII. SIMULATION RESULTS

Simulations have been conducted to study the performance of
the MS MRC MMSE/MOE/BLUE/ML FBs for coherent detec-
tion of BPSK-modulated DS-CDMA systems, and the perfor-
mance of the MS EGC MMSE/MOE/BLUE/ML FBs for non-
coherent detection of DBPSK-modulated systems. A short-code
DS-CDMA system with spreading gains or

is considered. The signature sequences are either randomly
generated for investigating the average output SINRs, or ran-
domly chosen from a set of Gold codes, to demonstrate the
BER performance. The simulation channel for each user is a
three-path (i.e., ) Rayleigh fading channel with the nor-
malized Doppler shift . The path delay
for each user is randomly generated with uniform distribution
over subject to the constraint that the delay spread sat-
isfies: , where is
defined as the maximum allowable delay spread for all users,
and serves as an experimental parameter for investigating de-
tectors’ performance. The sensitivities of the output SINRs to
different amounts of maximum delay spreads are inves-
tigated via simulations, and presented in the following results.
There are 10 users in the system, and all are assumed to have the
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Fig. 5. Convergence characteristics of the output SINRs of the adaptive
reduced-rank MRC versus PC MMSE/MOE/BLUE/ML filters for BPSK-
modulated signal over a Rayleigh fading channel, with L = 3 and the
normalized Doppler shift f T = 5�10 . Maximum allowable delay spread
� = 10 chips for all users, and K = 10. Number of stages is D = 6 for
all reduced-rank filters.

same received power, with equal to 20 dB in all simula-
tion studies for output SINRs. Finally, the adaptive implemen-
tations of the proposed FBs follow the recursive algorithm pro-
vided in [2], with the autocorrelation matrix being estimated
by the time average with

.
Convergence of the output SINR has utility in characterizing

the performance of an adaptive filter, as is estimated by the
time average , to account for time-varying channel statis-
tics. A special feature of the MS filters is that their steady-state
output SINRs, as well as their convergence rates, are a function
of the number of applied stages. With more stages applied in
their reduced-rank implementations, the filters can potentially
achieve higher levels of steady-state output SINRs at the cost of
slower convergence, due to the fact that larger sample sizes are
required to approximate the steady-state reduced-rank autocor-
relation matrix . As has been shown in Section VI,
if the parameter vector of a fading channel is given, then
it can be combined with the steering matrix to form PC
MMSE/MOE/BLUE/ML filters. The ranks of the -stage MRC
MMSE/ML FBs can drop from to for PC MMSE/ML
filters, and to for PC MOE/BLUE filters. Therefore, a
faster convergence rate can potentially be achieved by PC filters.
Fig. 5 confirms this conjecture by showing the simulation results
of various filters. The convergence of the output SINRs for the
six-stage MRC MMSE/MOE/BLUE/ML FBs are presented
in this figure, in comparison with the convergence of their PC
counterparts of the same number of stages. The spreading gain

is equal to 64, and the spreading sequences are randomly
generated for each Monte Carlo run to eliminate the dependence
on a specific spreading code. The convergence of the PC filters is
obviously faster than that of theMRC FBs. The performance fluc-
tuations at low sample points are due to the fact that the estimate
of is ill-conditioned for a small number of observations.

Fig. 6. Steady-state output SINRs of the adaptive reduced-rank MRC MMSE/
MOE/BLUE/ML FBs versus the number of stages for BPSK-modulated signals
over a Rayleigh fading channel, with the number of paths L = 3, and the
normalized Doppler shift f T = 5�10 . Stage 11 in the plot corresponds to
the full-rank (N = 31) SINRs. Maximum allowable delay spread � = 10
chips for all users, and K = 10.

The steady-state output SINRs with respect to the number
of stages for the reduced-rank MMSE/MOE/BLUE/ML FBs
are also studied for both BPSK and DBPSK modulations. The
spreading gain and the spreading sequences are also
randomly generated for each Monte Carlo run. The simulation
results are evaluated by averaging over 200 Monte Carlo runs.
Fig. 6 shows the results of the MRC MMSE/MOE/BLUE/ML
FBs for coherent detection of BPSK versus the number of
stages. The channel coefficient vector is assumed given,
and the maximum allowable delay chips. The total
rank is equal to , and corresponds to the full-rank
implementation . It is obvious that the full-rank
SINRs can virtually be attained by six-stage reduced-rank
implementations.

The output SINRs of the EGC MMSE/MOE/BLUE/ML FBs
for noncoherent detection with DBPSK versus the number of
stages are shown in Fig. 7. The simulation setup is the same
as that for BPSK, except that the soft outputs of the previous
symbol serve as the implicit channel estimates of in this
case. In contrast to the MRC-MMSE-FB, the output SINR of
the EGC-MMSE-FB performs the worst among the EGC FBs.
The output SINR degrades by 4.6 dB relative to its MRC coun-
terpart, while the output SINR of the EGC-ML-FB degrades by
only 1.4 dB relative to the MRC-ML-FB. Due to the fact that
the variance of the MMSE estimator of is smaller than that of
the BLUE estimator [cf. (42)], an interpretation of this simula-
tion result is that the detection performance in multipath fading
channels is more sensitive to the biases of the channel estimates
than their variances. The EGC BLUE/ML FBs, both with the un-
biased BLUE estimator for , suffer much less performance
degradation than the EGC MMSE/MOE FBs.

To evaluate the impact of delay spreads (or the strength of
ISI on the performance of one-shot detection), the sensitivities
of the full-rank output SINRs to the maximum allowable delay,



376 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 53, NO. 2, FEBRUARY 2005

Fig. 7. Steady-state output SINRs of the adaptive reduced-rank EGC MMSE/
MOE/BLUE/ML FBs versus the number of stages for DBPSK-modulated signal
over a Rayleigh fading channel, with the number of paths L = 3, and the
normalized Doppler shift f T = 5�10 . Stage 11 in the plot corresponds to
the full-rank (N = 31) SINRs. Maximum allowable delay spread � = 10
chips for all users, and K = 10.

Fig. 8. Steady-state output SINRs of the adaptive full-rank MRC MMSE/
MOE/BLUE/ML FBs versus the maximum allowable delay spread for BPSK-
modulated signal over a Rayleigh fading channel, with the number of paths
L = 3, and the normalized Doppler shift f T = 5 � 10 . The maximum
allowable delay spread � ranges from 2 to N chips.

, are characterized via simulation studies. For each Monte
Carlo run of each value of , the spreading sequences are
randomly generated with , and the path delay for each
user is also randomly generated for each run. The maximum
allowable ranges from 2 to 30 chips in simulations. For
each value of , the data is evaluated by averaging over 200
Monte Carlo runs. Fig. 8 shows the results of the full-rank output
SINRs for BPSK. The sensitivities of the output SINRs to
for DBPSK are also presented in Fig. 9. Both results show that
MS ML/BLUE FBs are more robust to varying delay spreads.

Fig. 9. Steady-state output SINRs of the adaptive full-rank EGC MMSE/
MOE/BLUE/ML FBs versus the maximum allowable delay spread for DBPSK-
modulated signal over a Rayleigh fading channel with the number of paths
L = 3, and the normalized Doppler shift f T = 5 � 10 . Maximum
allowable delay spread � ranges from 2 to N chips.

Fig. 10. BER performance of the adaptive reduced-rank MRC MMSE/MOE/
BLUE/ML FBs for BPSK-modulated signal over a Rayleigh fading channel
with L = 3, and the normalized Doppler shift f T = 5� 10 . Maximum
allowable delay spread � = 5 chips. Number of stages D = 6 for all
reduced-rank FBs.

Note that has to be greater than to maintain the
full column-rank assumption for , i.e., rank .

The BER performance for both BPSK/DBPSK-modulated
systems are given in Figs. 10 and 11, respectively. Gold codes
of length are adopted in the simulations. For BPSK, the
performance of all FBs are comparable. For DBPSK, as implied
by the results of the output SINRs, the EGC-ML-FB obviously
outperforms other FBs, and the EGC-MMSE-FB is not sug-
gested for noncoherent adaptive detection. It is noted that even
though the reduced-rank SINRs are very close to the full-rank
ones, full-rank FBs still have BER advantages at high SNR. The
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Fig. 11. BER performance of the adaptive reduced-rank EGC MMSE/MOE/
BLUE/ML FBs for DBPSK-modulated signal over a Rayleigh fading channel
with L = 3, and the normalized Doppler shift f T = 5� 10 . Maximum
allowable delay spread � = 10 chips. Number of stages D = 6 for all
reduced-rank FBs.

reason is that even a modest increase in SINR can yield a signifi-
cant improvement in BER. A complete theoretical performance
analysis of the schemes proposed herein can be found in [12]
and [13].

VIII. CONCLUSIONS

A common structure for MS implementation of reduced-rank
MMSE, MOE, ML, and BLUE FBs was developed in this paper.
Based on these results, a framework was proposed for joint
channel estimation and symbol detection in multipath fading
channels. The performance of a family of MRC as well as dif-
ferential EGC schemes was examined in the context of coherent
and noncoherent detection of DS-CDMA in multipath fading
channels. Simulation results show that the output SINRs of re-
duced-rank FBs can attain near full-rank performance with just
a few stages. The output SINRs of the PC filters achieve the
same performance levels as the MRC FBs with much lower
ranks, and thus, faster convergence. Although the output SINRs
of the MS MRC MMSE/ML FBs are the highest among the
MRC FBs when they serve as symbol detectors, the bias ef-
fects of the MMSE/MOE FBs as channel estimators dominate
the performance for noncoherent EGC schemes, and thus, cause
significant performance degradation. Therefore, the proposed
EGC-ML-FB with unbiased BLUE channel estimator exhibits
superior performance over the EGC MMSE/MOE FBs proposed
in [4] without any additional implementation effort.

APPENDIX

PROOF OF PROPOSITION 1

Recall that the matched FB of the first stage is given
by . From Fig. 3,

. Let blocking matrix ,
. Then, and

. Moreover, the matched
FB at each stage can be decomposed into

by the Gram–Schmidt process. Applying these
facts, the proof is achieved by the induction method shown
below.

Proof:

1) For stage

(54)

Then, we have , , and .
For stage

(55)

Then, we have , , , and
.

For stage , assume ,
, , , and

(56)

Then, we have

(57)

Thus, , , ,
.

By induction, we have and , .
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2) From Fig. 3, we see that the received signal is mul-
tiplied by and , , to form the FBs.
Therefore, the basis vectors which span the subspace,

, for the -stage FBs are given by the row vectors
of the matrix

(58)

Since , , we have

(59)
Thus

(60)
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