
www.elsevier.com/locate/jvci

J. Vis. Commun. Image R. 16 (2005) 688–733
Technologies for 3D mesh compression: A survey

Jingliang Peng a, Chang-Su Kim b,*, C.-C. Jay Kuo a

a Integrated Media Systems Center, Department of Electrical Engineering,

University of Southern California, Los Angeles, CA 90089-2564, USA
b Department of Information Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong

Received 1 February 2004; accepted 5 March 2005
Available online 16 April 2005
Abstract

Three-dimensional (3D) meshes have been widely used in graphic applications for the rep-
resentation of 3D objects. They often require a huge amount of data for storage and/or trans-
mission in the raw data format. Since most applications demand compact storage, fast
transmission, and efficient processing of 3D meshes, many algorithms have been proposed
to compress 3D meshes efficiently since early 1990s. In this survey paper, we examine 3D mesh
compression technologies developed over the last decade, with the main focus on triangular
mesh compression technologies. In this effort, we classify various algorithms into classes,
describe main ideas behind each class, and compare the advantages and shortcomings of
the algorithms in each class. Finally, we address some trends in the 3D mesh compression tech-
nology development.
� 2005 Elsevier Inc. All rights reserved.

Keywords: 3D mesh compression; Single-rate mesh coding; Progressive mesh coding; MPEG-4
1. Introduction

Graphics data are more and more widely used in various applications, including
video gaming, engineering design, architectural walkthrough, virtual reality, e-com-
1047-3203/$ - see front matter � 2005 Elsevier Inc. All rights reserved.

doi:10.1016/j.jvcir.2005.03.001

* Corresponding author.
E-mail addresses: jingliap@usc.edu (J. Peng), cskim@ieee.org (C.-S. Kim), cckuo@sipi.usc.edu (C.-C.

Jay Kuo).

mailto:jingliap@usc.edu
mailto:cskim@ieee.org
mailto:cckuo@sipi.usc.edu


J. Peng et al. / J. Vis. Commun. Image R. 16 (2005) 688–733 689
merce, and scientific visualization. Among various representation tools, triangular
meshes provide an effective means to represent 3D mesh models. Typically, connec-
tivity, geometry, and property data are used to represent a 3D polygonal mesh. Con-
nectivity data describe the adjacency relationship between vertices; geometry data
specify vertex locations; and property data specify several attributes such as the nor-
mal vector, material reflectance, and texture coordinates. Geometry and property
data are attached to vertices in many cases. Thus, they are often called vertex data,
and most 3D triangular mesh compression algorithms handle geometry and property
data in a similar way. Therefore, we concentrate on the compression of connectivity
and geometry data in this survey.

To achieve a high level of realism, complex models are required, and they are
obtained from various sources such as modelling software and 3D scanning. They
usually demand a huge amount of storage space and/or transmission bandwidth
in the raw data format. As the number and the complexity of existing 3D meshes
increase explosively, higher resource demands are placed on storage space, com-
puting power, and network bandwidth. Among these resources, the network
bandwidth is the most severe bottleneck in network-based graphic applications
that demand real-time interactivity. Thus, it is essential to compress graphics data
efficiently. This research area has received a lot of attention since early 1990s, and
there has been a significant amount of progress along this direction over the last
decade.

Early research on 3D mesh compression focused on single-rate compression tech-
niques to save the bandwidth between CPU and the graphics card. In a single-rate
3D mesh compression algorithm, all connectivity and geometry data are compressed
and decompressed as a whole. The graphics card cannot render the original mesh un-
til the entire bit stream has been wholly received. Later, with the popularity of the
Internet, the progressive compression and transmission has been intensively re-
searched. When progressively compressed and transmitted, a 3D mesh can be recon-
structed continuously from coarse to fine levels of detail (LODs) by the decoder
while the bit stream is being received. Moreover, progressive compression can en-
hance the interaction capability, since the transmission can be stopped whenever
an user finds out that the mesh being downloaded is not what he/she wants or the
resolution is already good enough for his/her purposes.

Three-dimensional mesh compression is so important that it has been incorpo-
rated into several international standards. VRML [1] established a standard for
transmitting 3D models across the Internet. Originally, a 3D mesh was represented
in ASCII format without compression in VRML. For efficient transmission, Taubin
et al. developed a compressed binary format for VRML [2] based on the topological
surgery algorithm [3], which easily achieved a compression ratio of 50:1 over the
VRML ASCII format. MPEG-4 [4], which is an ISO/IEC multimedia standard
developed by the Moving Picture Experts Group for digital television, interactive
graphics, and interactive multimedia applications, also includes three-dimensional
mesh coding (3DMC) algorithm to encode graphics data. The 3DMC algorithm is
also based on the topological surgery algorithm, which is basically a single-rate
coder for manifold triangular meshes. Furthermore, MPEG-4 3DMC incorporates



690 J. Peng et al. / J. Vis. Commun. Image R. 16 (2005) 688–733
progressive 3D mesh compression, non-manifold 3D mesh encoding, error resiliency,
and quality scalability as optional modes.

In this survey, we intend to review various 3D mesh compression technologies
with the main focus on triangular mesh compression. It is worthwhile to point out
that there were several survey papers on this subject. Rossignac [5] briefly summa-
rized prior schemes on vertex data compression and connectivity data compression.
Taubin [6] gave a survey on various mesh compression schemes. Although the two
schemes in the MPEG-4 standard (i.e., topological surgery and progressive forest
split) were described in detail in [6], the review of other schemes was relatively sket-
chy. Shikhare [7] classified and described mesh compression schemes. However, this
work did not treat progressive schemes with enough depth. Gotsman et al. [8] gave a
tutorial on techniques for mesh simplification, connectivity compression, and geom-
etry compression. This tutorial gave a detailed treatment on mesh simplification and
geometry compression. However, its review on connectivity coding focused mostly
on single-rate region-growing schemes. Recently, Alliez and Gotsman [9] surveyed
techniques for both single-rate and progressive compression of 3D meshes. This sur-
vey gave a high-level algorithm classification, but focused only on static polygonal
3D mesh compression. Compared with previous survey papers, this work has at-
tempted to achieve the following three objectives.

• Comprehensive and up-to-date coverage. This survey covers both single-rate and
progressive mesh compression schemes. It covers not only techniques for triangu-
lar mesh compression, but also those for polygonal mesh compression, volume
mesh compression, isosurface compression, and animated-mesh compression.

• In-depth classification and explanation. This survey tries to make more detailed
classification and explanation of different algorithms.

• Analysis and comparison of coding performance and complexity. Coding effi-
ciency is compared between different schemes to help practical engineers in the
selection of schemes based on application requirements.

The rest of this paper is organized as follows. Section 2 provides a review of the
background and introduces some definitions necessary to understand 3D mesh com-
pression techniques. Sections 3 and 4 survey single-rate and progressive 3D mesh
compression algorithms, respectively. Section 5 discusses new trends in 3D mesh
compression research. Finally, concluding remarks are given in Section 6.
2. Background and basic concepts

Several definitions and concepts needed to understand 3D mesh compression
algorithms are presented in this section. More rigorous definitions can be found in
[10–12].

We say that two objects A and B are homeomorphic, if A can be stretched or bent
without tearing to B. A 3D mesh is called a manifold if its every point has a neigh-
borhood homeomorphic to an open disk or a half disk. In a manifold, the boundary



J. Peng et al. / J. Vis. Commun. Image R. 16 (2005) 688–733 691
consists of the points that have no neighborhoods homeomorphic to an open disk
but have neighborhoods homeomorphic to a half disk. In 3D mesh compression,
a manifold with boundary is often pre-converted into a manifold without boundary
by adding a dummy vertex to each boundary loop and then connecting the dummy
vertex to every vertex on the boundary loop. Fig. 1A is a manifold mesh, while Figs.
1B and C are non-manifold meshes. Fig. 1B is non-manifold since each point on the
edge (v1, v2) has no neighborhood that is homeomorphic to an open disk or a half
disk. Similarly, the vertex v1 in Fig. 1C has no neighborhood homeomorphic to a
open disk or a half disk.

The orientation of a polygon can be specified by the ordering of its bounding ver-
tices. The orientations of two adjacent polygons are called compatible if they impose
opposite directions on their common edges. A 3D mesh is said to be orientable if
there exists an arrangement of polygon orientations such that each pair of adjacent
polygons are compatible. Figs. 1A and C are orientable with the compatible orien-
tations marked by arrows. In contrast, Fig. 1B is not orientable, since three polygons
share the same edge (v1, v2). Note that, after we make polygon B and C compatible, it
is impossible to find an orientation of polygon A such that A is compatible with both
B and C.

The genus of a connected orientable manifold without boundary is defined as the
number of handles. For example, there is no handle in a sphere, one handle in a
torus, and two handles in an eight-shaped surface as shown in Fig. 2. Thus, their gen-
era are 0, 1, and 2, respectively. A mesh homeomorphic to a sphere is called a simple
mesh. For a connected orientable manifold without boundary, Euler�s formula is gi-
ven by
Fig. 1. Examples of (A) an orientable manifold mesh, (B) a non-orientable non-manifold mesh, and (C) an
orientable non-manifold mesh.

Fig. 2. (A) The sphere, (B) the torus, and (C) the eight-shaped mesh.



692 J. Peng et al. / J. Vis. Commun. Image R. 16 (2005) 688–733
v� eþ f ¼ 2� 2g; ð1Þ

where v, e, and f are, respectively, the number of vertices, edges, and faces in the
manifold, and g is the genus of the manifold.

Suppose that a triangular manifold mesh contains a sufficiently large number of
edges and triangles, and that the ratio of the number of boundary edges to the num-
ber of non-boundary edges is negligible. Then, we can approximate the number of
edges by

e ’ 3f =2; ð2Þ
since an edge is shared by two triangles in general. Substituting (2) into (1), we have
v . f/2 + 2 � 2g. Since f/2 is much larger than 2 � 2g, we get

v ’ f =2: ð3Þ
In other words, a typical triangular mesh has twice as many triangles as vertices.

Also, from (2) and (3), we have an approximate relation

e ’ 3v: ð4Þ
The valence (or degree) of a vertex is the number of edges incident on that vertex. It
can be shown that the sum of valences is twice the number of edges [12]. Thus, we
have X

valence ¼ 2e ’ 6v: ð5Þ

Thus, in a typical triangular mesh, the average vertex valence is 6.
When reporting the compression performance, some papers employ the measure

of bits per triangle (bpt) while others use bits per vertex (bpv). For consistency, we
adopt the bpv measure exclusively, and convert the bpt metric to the bpv metric by
assuming that a mesh has twice as many triangles as vertices.
3. Single-rate compression

A typical mesh compression algorithm encodes connectivity data and geometry
data separately. Most early work focused on the connectivity coding. Then, the cod-
ing order of geometry data is determined by the underlying connectivity coding.
However, since geometry data demand more bits than topology data, several meth-
ods have been proposed recently for efficient compression of geometry data without
reference to topology data.
3.1. Connectivity coding

We classify existing single-rate connectivity compression algorithms into six clas-
ses: the indexed face set, the triangle strip, the spanning tree, the layered decompo-
sition, the valence-driven approach, and the triangle conquest. They are described in
detail below.



J. Peng et al. / J. Vis. Commun. Image R. 16 (2005) 688–733 693
3.1.1. Indexed face set

In the VRML ASCII format [1], a triangular mesh is represented with an indexed
face set that consists of a coordinate array and a face array. The coordinate array
lists the coordinates of all vertices, and the face array lists each face by indexing
its three vertices in the coordinate array. For instance, Fig. 3 shows a mesh and
its face array.

If there are v vertices in a mesh, the index of each vertex requires log2v bits. There-
fore, a triangular face needs 3 log2v bits for its connectivity information. Since there
are about twice triangles as many as vertices in a typical triangular mesh, the connec-
tivity information costs about 6 log2v bpv in the indexed face set method. This meth-
od provides a straightforward way for the triangular mesh representation. There is
actually no compression involved in this method, but we still list it here to provide
a basis of comparison for the following compression schemes.

In this method, each vertex is indexed several times by all its adjacent triangles.
Repeated vertex references degrade the efficiency of connectivity coding. In other
words, a good connectivity coding scheme should reduce the number of repeated ver-
tex references. This observation leads to the triangle strip method.

3.1.2. Triangle strip

The triangle strip method attempts to divide a 3D mesh into long strips of trian-
gles, and then encode these strips. The primary purpose of this method is to reduce
the amount of data transmission between CPU and the graphic card, since triangle
strips are well supported by most graphic cards. Although this scheme demands less
storage space and transmission bandwidth than the indexed face set representation,
it is still not very efficient for the compression purpose.

Fig. 4A shows a triangle strip, where each vertex is combined with the previous
two vertices in a vertex sequence to form a new triangle. Fig. 4B shows a triangle
fan, where each vertex after the first two forms a new triangle with the previous ver-
tex and the first vertex. Fig. 4C shows a generalized triangle strip that is a mixture of
triangle strips and triangle fans. Note that, in a generalized triangle strip, a new tri-
angle is introduced by each vertex after the first two in the vertex sequence. However,
in an indexed face set, a new triangle is introduced by three vertices. Therefore, the
generalized triangle strip provides a more compact representation than the indexed
face set, especially when the strip length is long. In a rather long generalized triangle
strip, the ratio of the number of triangles to the number of vertices is very close to 1,
meaning that a triangle can be represented by almost exactly 1 vertex index.
Fig. 3. The indexed face set representation of a mesh: (A) a mesh example and (B) its face array.



Fig. 4. (A) The triangle strip, (B) the triangle fan, and (C) the generalized triangle strip.

694 J. Peng et al. / J. Vis. Commun. Image R. 16 (2005) 688–733
However, since there are about twice as many triangles as vertices in a typical mesh,
some vertex indices should be repeated in the generalized triangle strip representa-
tion of the mesh, which indicates a waste of storage. To alleviate this problem,
several schemes have been developed, where a vertex buffer is utilized to store the
indices of recently traversed vertices.

Deering [13] first introduced the concept of the generalized triangular mesh. A
generalized triangular mesh is formed by combining generalized triangle strips with
a vertex buffer. He used a first-in-first-out (FIFO) vertex buffer to store the indices of
up to 16 recently visited vertices. If a vertex is saved in the vertex buffer, it can be
represented with the buffer index that requires a less number of bits than the global
vertex index. Assuming that each vertex is reused by the buffer index only once, Tau-
bin and Rossignac [3] showed that the generalized triangular mesh representation re-
quires approximately 11 bpv to encode the connectivity data for large meshes.
Deering, however, did not propose a method to decompose a mesh into triangle
strips.

Based on Deering�s work, Chow [14] proposed a mesh compression scheme opti-
mized for real-time rendering. He proposed a mesh decomposition method, illus-
trated in Fig. 5. First, it finds a set of boundary edges. Then, it finds a fan of
triangles around each vertex incident on two consecutive boundary edges. These tri-
angle fans are combined to form the first generalized triangle strip. The triangles in
this strip are marked as discovered, and a new set of boundary edges is generated to
separate discovered triangles from undiscovered triangles. The next generalized tri-
angle strip is similarly formed from the new set of boundary edges. With the vertex
Fig. 5. (A) A set of boundary edges, (B) triangle fans for the first strip, and (C) triangle fans for the second
strip, where thick arrows show selected boundary edges and thin arrows show the triangle fans associated
with each inner boundary vertex.



J. Peng et al. / J. Vis. Commun. Image R. 16 (2005) 688–733 695
buffer, the vertices in the previous generalized triangle strip can be reused in the next
one. This process continues until all triangles in a mesh are traversed.

The triangle strip representation can be applied to a triangular mesh of arbitrary
topology. However, it is effective only if the triangle mesh is decomposed into long
triangle strips. It is a challenging computational geometry problem to obtain an opti-
mal triangle strip decomposition [15,16]. Several heuristics have been proposed to
obtain sub-optimal decompositions at a moderate computational cost [17–19].

3.1.3. Spanning tree

Turan [20] observed that the connectivity of a planar graph can be encoded with a
constant number of bpv using two spanning trees: a vertex spanning tree and a tri-
angle spanning tree. Based on this observation, Taubin and Rossignac [3] presented a
topological surgery approach to encode mesh connectivity. The basic idea is to cut a
given mesh along a selected set of cut edges to make a planar polygon. The mesh
connectivity is then represented by the structures of cut edges and the polygon. In
a simple mesh, any vertex spanning tree can be selected as the set of cut edges.

Fig. 6 illustrates the encoding process. Fig. 6A is an octahedron mesh. First, the
encoder constructs a vertex spanning tree as shown in Fig. 6B, where each node cor-
responds to a vertex in the input mesh. Then, it cuts the mesh along the edges of the
vertex spanning tree. Fig. 6C shows the resulting planar polygon and the triangle
spanning tree. Each node in the triangle spanning tree corresponds to a triangle in
the polygon, and two nodes are connected if and only if the corresponding triangles
share an edge.

Then, the two spanning trees are run-length encoded. A run is defined as a tree
segment between two nodes with degrees not equal to 2. For each run of the vertex
spanning tree, the encoder records its length with two additional flags. The first flag
is the branching bit indicating whether a run subsequent to the current run starts at
the same branching node, and the second flag is the leaf bit indicating whether the
Fig. 6. (A) An octahedron mesh, (B) its vertex spanning tree, and (C) the cut and flattened mesh with its
triangle spanning tree shown by dashed lines.



696 J. Peng et al. / J. Vis. Commun. Image R. 16 (2005) 688–733
current run ends at a leaf node. For example, let us encode the vertex spanning tree
in Fig. 6B, where the edges are labelled with their run indices. The first run is repre-
sented by (1,0,0), since its length is 1, the next run does not start at the same node,
and it does not end at a leaf node. In this way, the vertex spanning tree in Fig. 6B is
represented by

ð1; 0; 0Þ; ð1; 1; 1Þ; ð1; 0; 0Þ; ð1; 1; 1Þ; ð1; 0; 1Þ:
Similarly, for each run of the triangle spanning tree, the encoder writes its length and
the leaf bit. Note that the triangle spanning tree is always binary so that it does not
need the branching bit. Furthermore, the encoder records the marching pattern with
one bit per triangle to indicate how to triangulate the planar polygon internally. The
decoder can reconstruct the original mesh connectivity from this set of information.

In both vertex and triangle spanning trees, a run is a basic coding unit. Thus, the
coding cost is proportional to the number of runs, which in turn depends on how the
vertex spanning tree is constructed. Taubin and Rossignac�s algorithm builds the ver-
tex spanning tree based on layered decomposition, which is similar to the way we
peel an orange along a spiral path, to maximize the length of each run and minimize
the number of runs generated.

Taubin and Rossignac also presented several modifications so that their algorithm
can encode general manifold meshes: meshes with arbitrary genus, meshes with
boundary, and non-orientable meshes. However, their algorithm cannot directly
handle non-manifold meshes. As a preprocessing step, the encoder should split a
non-manifold mesh into several manifold components, thereby duplicating non-
manifold vertices, edges, and faces. Experimentally, Taubin and Rossignac�s algo-
rithm costs 2.48–7.0 bpv for mesh connectivity. It was also shown that the time as
well as the space complexities of their algorithm are O(N), where N is the maximum
of the vertex number v, the edge number e, and the triangle number f in a mesh. This
method demands a large memory buffer due to its global random vertex access at the
decompression stage.

3.1.4. Layered decomposition

Bajaj et al. [21] presented a connectivity coding method using a layered structure
of vertices. It decomposes a triangular mesh into several concentric layers of vertices,
and then constructs triangle layers within each pair of adjacent vertex layers. The
mesh connectivity is represented by the total number of vertex layers, the layout
of each vertex layer, and the layout of triangles in each triangle layer. Ideally, a ver-
tex layer does not intersect itself and a triangle layer is a generalized triangle strip. In
such a case, the connectivity compression is reduced to the coding of the number of
vertex layers, the number of vertices in each vertex layer, and the generalized triangle
strip in each triangle layer. However, in practice, overhead bits are introduced due to
the existence of branching points, bubble triangles, and triangle fans.

Branching points are generated when a vertex layer intersects itself. In Fig. 7A,
the middle layer intersects itself at the branching point depicted by a big dot. Branch-
ing points divide a vertex layer into several segments called contours. To encode the
layout of a vertex layer, we need to encode the information of both contours and



Fig. 7. Illustration of (A) the layered vertex structure and the branching point depicted by a black dot, (B)
a triangle strip, (C) bubble triangles, and (D) a cross-contour triangle fan, where contours are depicted
with solid lines and other edges with dashed lines.

J. Peng et al. / J. Vis. Commun. Image R. 16 (2005) 688–733 697
branching points. Also, as shown in Figs. 7B–D, each triangle in a triangle layer can
be classified into one of three cases.

(1) Its vertices lie on two adjacent vertex layers. A generalized triangle strip is com-
posed of a sequence of triangles of this kind.

(2) All its vertices belong to one contour. It is called a bubble triangle.
(3) Its vertices lie on two or three contours in one vertex layer. A cross-contour

triangle fan consists of a sequence of triangles of this kind.

Therefore, in addition to encoding generalized triangle strips between two adjacent
vertex layers, this algorithm requires extra bits to encode bubble triangles and cross-
contour triangle fans.

Taubin and Rossignac [3] also employed layered decomposition in the vertex
spanning tree construction. However, Bajaj et al.�s algorithm [21] is different from
[3] in the following:

• It does not combine vertex layers into the vertex spanning tree.
• Its decoder does not require a large memory buffer, since it accesses only a small
portion of vertices at each decompression step.

• It is applicable to any kind of mesh topology, while [3] cannot encode non-man-
ifold meshes directly.

The layered decomposition method encodes the connectivity information using
about 1.40–6.08 bpv. Moreover, it has a desirable property. That is, each triangle de-
pends on at most two adjacent vertex layers and each vertex is referenced by at most



698 J. Peng et al. / J. Vis. Commun. Image R. 16 (2005) 688–733
two triangle layers. This property enables the error-resilient transmission of mesh
data, since the effects of transmission errors can be localized by encoding different
vertex and triangle layers independently. Based on the layered decomposition meth-
od, Bajaj et al. [22] also proposed an algorithm to encode large CAD models. This
algorithm extends the layered decomposition method to compress quadrilateral and
general polygonal models as well as CAD models with smooth non-uniform rational
B-splines (NURBS) patches.

3.1.5. Valence-driven approach

The valence-driven approach starts from a seed triangle whose three edges form
the initial borderline. The borderline divides the whole mesh into two parts, i.e.,
the inner part that has been processed and the outer part that is to be processed.
Then, the borderline gradually expands outwards until the whole mesh is processed.
The output is a stream of vertex valences, from which the original connectivity can
be reconstructed.

In [23], Touma and Gotsman proposed a pioneering algorithm known as the va-
lence-driven approach. It starts from an arbitrary triangle, and pushes its three ver-
tices into a list called the active list. Then, it pops up a vertex from the active list,
traverses all untraversed edges connected to that vertex, and pushes the new vertices
into the end of the list. For each processed vertex, it outputs the valence. Sometimes,
it needs to split the current active list or merge it with another active list. These cases
are encoded with special codes. Before encoding, for each boundary loop, a dummy
vertex is added and connected to all the vertices in that boundary loop, making the
topology closed. Fig. 8 shows an example of the encoding process, where the active
list is depicted by thick lines, the focus vertex by the black dot, and the dummy ver-
tex by the gray dot. Table 1 lists the output of each step in association with Fig. 8.

Since vertex valences are compactly distributed around 6 in a typical mesh, arith-
metic coding can be adopted to encode the valence information of a vertex effectively
[23]. The resulting algorithm uses less than 1.5 bpv on average to encode mesh con-
nectivity. This is the state-of-the-art compression ratio which has not been seriously
challenged till now. However, their algorithm is only applicable to orientable and
manifold meshes.

Alliez and Desbrun [24] proposed a method to further improve the performance of
Touma and Gotsman�s algorithm. They observed that split codes, split offsets, and
dummy vertices consume a non-trivial portion of coding bits in Touma and Gots-
man�s algorithm. To reduce the number of split codes, they used a heuristic method
that chooses the vertex with the minimal number of free edges as the next focus vertex,
instead of choosing the next vertex in the active list. To reduce the number of bits for
split offsets, they excluded the two adjacent vertices of the focus vertex in the current
active list that are not eligible for the split, and sort the remaining vertices according to
their Euclidean distances to the focus vertex. Then, a split offset is represented with an
index into this sorted list, which is further added by 6 and encoded in the same way as a
normal valence. To reduce the number of dummy vertices, they used one common
dummy vertex for all boundaries in the input mesh. In addition, they encoded the out-
put symbols with the range encoder [25], an effective adaptive arithmetic encoder.



Fig. 8. A mesh connectivity encoding example by Touma and Gotsman [23], where the active list is shown
with thick lines, the focus vertex with the black dot, and the dummy vertex with the gray dot.

J. Peng et al. / J. Vis. Commun. Image R. 16 (2005) 688–733 699
Alliez and Desbrun�s algorithm is also applicable only to orientable manifold
meshes. It performs better than Touma and Gotsman�s algorithm, especially for
irregular meshes. Alliez and Desbrun proved that if the number of splits is negligible,
the performance of their algorithm is upper-bounded by 3.24 bpv, which is exactly
the same as the theoretical bpv value computed by enumerating all possible planar
graphs [26].

3.1.6. Triangle conquest
Similar to the valence-driven approach, the triangle conquest approach starts

from the initial borderline, which divides the whole mesh into conquered and uncon-
quered parts, and inserts triangle by triangle into the conquered parts. The main



Table 1
The output of each step in Fig. 8

Figure Output Comments

(A) An input mesh is given
(B) Add a dummy vertex
(C) Add 6, add 7, add 4 Output the valences of starting vertices
(D) Add 4 Expand the active list
(E) Add 7 Expand the active list
(F) Add 5 Expand the active list
(G) Add 5 Expand the active list
(H) Choose the next focus vertex
(I) Add 4 Expand the active list
(J) Add 5 Expand the active list
(K) Split 5 Split the active list, and push the new active list into stack
(L) Choose the next focus vertex
(M) Add 4 Expand the active list
(N) Add dummy 5 Choose the next focus vertex and conquer the dummy vertex
(O) Pop the new active list from the stack
(P) Add 4 Expand the active list
(Q) Choose the next focus vertex
(R) Choose the next focus vertex
(S) The whole mesh is conquered

700 J. Peng et al. / J. Vis. Commun. Image R. 16 (2005) 688–733
difference is that the triangle conquest approach outputs the building operations of
new triangles, while the valence-driven approach outputs the valences of new vertices.

Gumhold and Straßer [27] first proposed a triangle conquest approach, called the
cut-border machine. At each step, this algorithm inserts a new triangle into the con-
quered part, closed by the cut-border, using one of the five building operations: �new
vertex,� �forward,� �backward,� �split,� and �close.� The sequence of building operations
is encoded using Huffman codes. This algorithm can encode manifold meshes that
are either orientable or non-orientable. Experimentally, its compression performance
lies within 3.22–8.94 bpv, mostly around 4 bpv. Its most important feature is that the
decompression speed is very fast and the decompression method is easy to implement
in hardware. Moreover, compression and decompression operations can be pro-
cessed in parallel. These properties make the method very attractive in real-time cod-
ing applications. In [28], Gumhold further improved the compression performance
using an adaptive arithmetic coder and optimizing the border encoding. The exper-
imental compression ratio is within the range of 0.3–2.7 bpv, and on average 1.9 bpv.

Rossignac [5] proposed the edgebreaker algorithm, which is another example of
the triangle conquest approach. It is nearly equivalent to the cut-border machine, ex-
cept that it does not encode the offset data associated with the split operation. The
triangle traversal is controlled by edge loops as shown in Fig. 9A. Each edge loop
bounds a conquered region and contains a gate edge. At each step, this algorithm
focuses on one edge loop and its gate edge is called the active gate, while the other
edge loops are stored in a stack and will be processed later. Initially, for each con-
nected component, one edge loop is defined. If the component has no physical
boundary, two half edges corresponding to one edge are set as the edge loop. For



Fig. 9. Illustration of (A) edge loops and (B) gates and initial edge loops for a mesh without boundary,
and (C) gates and initial edge loops for a mesh with boundary, where thick lines depict edge loops, and g

denotes the gate.

J. Peng et al. / J. Vis. Commun. Image R. 16 (2005) 688–733 701
example, in Fig. 9B, the mesh has no boundary and the initial edge loop is formed by
g and gÆo, where gÆo is the opposite half edge of g. In Fig. 9C, the initial edge loop is
the mesh boundary.

At each step, this algorithm conquers a triangle incident on the active gate, up-
dates the current loop, and moves the active gate to the next edge in the updated
loop. For each conquered triangle, this algorithm outputs an op-code. Assume that
the triangle to be removed is enclosed by active gate g and vertex v, there are five
kinds of possible op-codes as shown in Fig. 10A:

(1) C (loop extension), if v is not on the edge loop;
(2) L (left), if v immediately precedes g in the edge loop;
(3) R (right), if v immediately follows g;
(4) E (end), if v precedes and follows g;
(5) S (split), otherwise.

Essentially, the compression process is a depth-first traversal of the dual graph of
the mesh. When the split case is encountered, the current loop is split into two, and
one of them is pushed into the stack while the other is further traced. Fig. 10B shows



Fig. 10. (A) Five op-codes C, L, R, E, and S, where the gate g is marked with an arrow, and (B) an
example of the encoding process in the edgebreaker algorithm where the arrows and the numbers show the
traversal order and different filling patterns are used to represent different op-codes.

702 J. Peng et al. / J. Vis. Commun. Image R. 16 (2005) 688–733
an example of the encoding process, where the arrows and the numbers give the or-
der of the triangle conquest. The triangles are filled with different patterns to repre-
sent different op-codes, which are generated when they are conquered. For this case,
the encoder outputs the series of op-codes as CCRSRLLRSEERLRE.

The edgebreaker method can encode the topology data of orientable manifold
meshes with multiple boundary loops or with arbitrary genus, and guarantee a
worst-case coding cost of 4 bpv for simple meshes. However, it is unsuitable for
streaming applications, since it requires a two-pass process for decompression, and
the decompression time is O(v2). Another disadvantage is that, even for regular
meshes, it requires about the same bitrate as that for non-regular meshes.

King and Rossignac [29] modified the edgebreaker method to guarantee a worst-
case coding cost of 3.67 bpv for simple meshes, and Gumhold [30] further improved
this upper bound to 3.522 bpv. The decoding efficiency of the edgebreaker method
was also improved to exhibit linear time and space complexities in [29,31,32]. Fur-
thermore, Szymczak et al. [33] optimized the edgebreaker method for meshes with
high regularity by exploiting dependencies of output symbols. It guarantees a
worst-case performance of 1.622 bpv for sufficiently large meshes with high
regularity.

As mentioned earlier, we can reduce the amount of data transmission between
CPU and the graphic card by decomposing a mesh into long triangle strips, but find-



J. Peng et al. / J. Vis. Commun. Image R. 16 (2005) 688–733 703
ing a good decomposition (or stripification) is often computationally intensive. Thus,
it is often desirable to generate long strips from a given mesh only once and distrib-
ute the stripification information together with the mesh. Based on this observation,
Isenburg [34] proposed an approach to encode the mesh connectivity together with
its stripification information. It is basically a modification of the edgebreaker meth-
od, but its traversal order is guided by strips obtained with the STRIPE algorithm
[17]. When a new triangle is included, its relation to the underlying triangle strip is
encoded with a label. The label sequences are then entropy encoded. The experimen-
tal compression performance ranges from 3.0 to 5.0 bpv.

3.1.7. Summary

Table 2 summarizes the bitrates of various connectivity coding methods reviewed
above. The bitrates marked by �*� are the theoretical upper bounds obtained by the
worst-case analysis, while the others are experimental bitrates. Among these meth-
ods, Touma and Gotsman�s algorithm [23] is considered as the state-of-the-art tech-
nique for single-rate 3D mesh compression. With some minor improvements on
Touma and Gotsman�s algorithm, Alliez and Desbrun�s algorithm [24] yields an im-
proved compression ratio.

The indexed face set, triangle strip, and layered decomposition methods can encode
meshes with arbitrary topology. In contrast, the other approaches can handle only
manifold meshes with additional constraints. For instance, the valence-driven ap-
proach [23,24] require that the manifold is also orientable. Szymczak et al.�s algorithm
[33] requires that themanifold has neither boundary nor handles. Note that using these
algorithms, a non-manifold mesh can be handled only if it is pre-converted to a man-
ifold mesh by replicating non-manifold vertices, edges, and faces as in [35].
Table 2
The bitrates of single-rate mesh connectivity coding algorithms

Category Algorithm Bitrate (bpv) Comment

Indexed face set VRML ASCII Format [1] 6 log2v No compression
Triangle strip Deering [13] 11
Spanning tree Taubin and Rossignac [3] 2.48–7.0
Layered decomposition Bajaj et al. [21] 1.40–6.08
Valence-driven
approach

Touma and Gotsman [23] 0.2–2.4, 1.5 on average Especially good for
regular meshes

Alliez and Desbrun [24] 0.024–2.96, 3.24*

Triangle conquest Gumhold and Straßer [27] 3.22–8.94, 4 on average Optimized for
real-time
applications

Gumhold [28] 0.3–2.7, 1.9 on average
Rossignac [5] 4*

King and Rossignac [29] 3.67*

Gumhold [30] 3.522*

Szymczak et al. [33] 1.622* for sufficiently large
meshes with high regularity

Optimized for
regular meshes

The bitrates marked by �*� are theoretical upper bounds obtained by the worst-case analysis.



704 J. Peng et al. / J. Vis. Commun. Image R. 16 (2005) 688–733
3.2. Geometry coding

The state-of-the-art connectivity coding schemes require only a few bits per ver-
tex, and their performance is regarded as being very close to the optimal. In contrast,
geometry coding received much less attention in the past. Since geometry data dom-
inate the total compressed mesh data, more focus has been shifted to geometry cod-
ing recently.

All the single-rate mesh compression schemes encode connectivity data losslessly,
since connectivity is a discrete mesh property. However, geometry data are generally
encoded in a lossy manner. To exploit high correlation between the positions of adja-
cent vertices, most single-rate geometry compression schemes follow a three-step
procedure: pre-quantization of vertex positions, prediction of quantized positions,
and entropy coding of prediction residuals.

3.2.1. Scalar quantization

Uncompressed geometry data typically specify each coordinate component with
an IEEE 32-bit floating-point number. However, this precision is beyond human
eyes� perceiving capability and is far more than needed for most applications. Thus,
quantization can be performed to reduce the data amount without serious impair-
ment on visual quality. Quantization is a lossy procedure since it represents a large
or infinite set of values with a smaller set.

Quantization techniques can be classified into scalar/vector and uniform/non-uni-
form ones [36]. Each cell is of the same length in the uniform scalar quantizer while
cells have different lengths in the non-uniform scalar quantizer. Compared with non-
uniform vector quantization, uniform scalar quantization is simple and computa-
tionally efficient even though it is not optimal in the rate-distortion (R-D)
performance.

Typical mesh geometry coding schemes uniformly quantize each coordinate at 8-
to 16-bit quantization resolutions. In [13,3,23,21], the same quantization resolution
is globally applied. In [14], a mesh is partitioned into several regions, and then dif-
ferent quantization resolutions are adaptively chosen for different regions according
to local curvature and triangle sizes. Within each region, the vertex coordinates are
still uniformly quantized.

3.2.2. Prediction

After the quantization of vertex coordinates, vertex positions are predictively en-
coded. The prediction step exploits the correlation between adjacent vertex coordi-
nates and is most crucial in reducing the amount of geometry data. A good
prediction scheme generates prediction errors that have a highly skewed distribution,
which are then encoded with entropy coders, such as the Huffman coder or the arith-
metic coder. More detailed information on entropy coding can be found in [37].

Different geometry prediction schemes have been proposed in the literature, such
as delta prediction [13,14], linear prediction [3], parallelogram prediction [23], and
second-order prediction [21]. All these prediction schemes can be treated as a special
case of the linear prediction scheme with carefully chosen coefficients.



J. Peng et al. / J. Vis. Commun. Image R. 16 (2005) 688–733 705
Delta prediction. Adjacent vertices tend to have slightly different coordinates, and
the differences (or deltas) between the coordinates are usually very small. In Deer-
ing�s work [13] and Chow�s work [14], the deltas of coordinates, instead of the origi-
nal coordinates, were encoded with variable length codes according to the histogram
of deltas. In Deering�s geometry coder, the quantization resolutions range between
10 and 16 bits per coordinate component and the performance is roughly between
36 and 17 bpv. Chow�s geometry coder achieves bitrates of 13–18 bpv at quantiza-
tion resolutions of 9–12 bits per coordinate component.

Linear prediction. Taubin and Rossignac [3] employed a linear prediction scheme,
where the position of a vertex is predicted from a linear combination of positions of
K previous vertices in the vertex spanning tree. The K previous vertices are uniquely
selected along the path from the root to the current vertex in the vertex spanning
tree. More specifically, the position vn of the nth vertex is given by

vn ¼
XK
i¼1

ki � vn�i þ �ðvnÞ; ð6Þ

where k1,k2, . . . ,kK are chosen to minimize the mean square error

Efk�ðvnÞk2g ¼ Efkvn �
XK
i¼1

ðki � vn�iÞk2g;

and transmitted to the decoder as the side information. The bitrate of geometry cod-
ing is not directly reported in [3]. However, as estimated by Touma and Gotsman
[23], it is about 13 bpv at 8-bit quantization resolution. Note that the delta prediction
is a special case of the linear prediction with K = 1 and k1 = 1.

Parallelogram prediction. Touma and Gotsman [23] used a more sophisticated
prediction scheme. To encode a new vertex r, it considers a triangle with two vertices
u and v on the active list, where triangle (u,v,w) is already encoded as shown in Fig.
11. The parallelogram prediction assumes that the four vertices w, u, v, and r form a
parallelogram. Therefore, the new vertex position can be predicted as rp1 ¼ vþ u� w.
This method performs well only if the four vertices are exactly or nearly co-planar.
Fig. 11. Parallelogram prediction.



706 J. Peng et al. / J. Vis. Commun. Image R. 16 (2005) 688–733
To further improve the prediction accuracy, the crease angle between the two trian-
gles (u,v,w) and (u,v, r) can also be estimated using the crease angle, h, between the
two triangles (s,v,w) and (s,v, t). In Fig. 11, rp2 is the predicted position of r using the
crease angle estimation. This work achieves an average bitrate of 9 bpv at 8-bit quan-
tization resolution. The parallelogram prediction is also a linear prediction in essence
since the predicted vertex position is a linear combination of the three previously vis-
ited vertex positions.

Second-order prediction. In [21], the coordinates of branching points are encoded
directly while those of vertices along contours are encoded with a second-order pre-
diction. This is done in two steps. The first step computes and quantizes the differ-
ences between adjacent vertex positions. This first step alone is equivalent to the
delta prediction. The second step calculates the difference of quantized difference
codes. It was confirmed experimentally that the second-order prediction provides
a better performance than the delta prediction, when incorporated with entropy cod-
ing techniques. The geometry coding bitrate is about 11 bpv at 8-bit quantization
resolution and about 14 bpv at 15-bit quantization resolution. The second-order pre-
diction predicts vn � vn�1 from vn�1 � vn�2. Therefore, it is still a linear predictor,
which predicts vn from 2vn�1 � vn�2.

3.2.3. Vector quantization

Recently, vector quantization (VQ) has been proposed for geometry compression
in [38,39], which do not follow the conventional quantization-prediction-entropy
coding approach. The conventional approach pre-quantizes each vertex coordinate
using a scalar quantizer and then predictively encodes the quantized coordinates.
In contrast, the VQ approach first predicts vertex positions and then jointly com-
presses the three components of each prediction residual. Thus, it can utilize the cor-
relation between different coordinate components of the residual. Compared with
scalar quantization, the main advantages of VQ include a superior R-D perfor-
mance, more freedom in choosing quantization cell shapes, and better exploitation
of dependence between vector components [36].

In Lee and Ko�s work [38], the Cartesian coordinates of a vertex are transformed
into a model space vector using the three previous vertex positions. The model space
transformation is a kind of prediction and the model space vector can be regarded as
a prediction residual. Then, the model space vector is quantized using the generalized
Lloyd algorithm [36]. Since they use the original positions of previous vertices in the
model space transform, the quantization errors can be accumulated in the decoder.
To overcome this encoder–decoder mismatch problem, they periodically insert cor-
rection vectors into the bitstream. Experimentally, this scheme requires about
6.7 bpv on average to achieve the same visual quality as conventional methods at
8-bit quantization resolution. (Note that Touma and Gotsman�s work requires about
9 bpv at 8-bit resolution [23].) This scheme is especially efficient for 3D meshes with
high-geometry regularity.

Chou and Meng [39] also proposed a predictive VQ (PVQ) scheme for mesh
geometry compression. To ensure a linear time complexity, a simple predictor is
adopted to predict a new vertex from the midpoint of two previously traversed



J. Peng et al. / J. Vis. Commun. Image R. 16 (2005) 688–733 707
vertices. Several VQ techniques, including the open loop VQ, the asymptotic closed-
loop VQ, and the product code pyramid VQ are applied for residual vector quanti-
zation. All these VQ techniques yield a better R-D performance than Deering�s work
[13], which employs the uniform scalar quantizer and delta coding. A beneficial side
effect of this PVQ scheme is that linear vertex transformation forms a rendering pipe-
line and can be greatly accelerated.
4. Progressive compression

Progressive compression of 3D meshes is desirable for transmission of complex
meshes over networks with limited bandwidth. In progressive compression and
transmission, a coarse mesh is transmitted and rendered first. Then, refinement data
are transmitted to enhance the mesh representation until the mesh is rendered in its
full resolution or the transmission task is cancelled by the user. In other words, pro-
gressive compression allows transmission and rendering of different levels of details.
However, there is a tradeoff between the compression ratio and the number of
LODs. Generally speaking, a progressive coder is less effective than a single-rate co-
der in terms of the coding gain, since it cannot exploit the correlation in mesh data as
freely as the single-rate coder.

Progressive mesh compression is closely related to the work on mesh simplifica-
tion. A detailed review of mesh simplification techniques is beyond the scope of this
paper. We refer interested readers to [40–42] for a broader survey on mesh simplifi-
cation techniques. Typically, to progressively encode a 3D mesh, we first gradually
simplify it to a base mesh, which has a much smaller number of vertices, edges,
and faces than the original one. During the simplification process, each operation
is recorded. By reversing the series of simplification operations, the base mesh can
be restored to the original mesh. Progressive mesh coders attempt to compress the
base mesh and the series of reversed simplification operations. Progressive mesh cod-
ers differ in their mesh simplification techniques, geometry coding methods, and
interaction between connectivity coding and geometry coding.

As in single-rate compression, in many progressive coding schemes, the compact
representation of connectivity data is given a priority and geometry coding is driven,
but restrained at the same time, by connectivity coding. However, new approaches
have emerged that compress geometry data with little reference to connectivity data,
that drive connectivity coding with geometry coding, and that even change mesh
connectivity in favor of a better compression of geometry data. Therefore, we clas-
sify the progressive coding schemes into two classes: connectivity-driven compres-
sion and geometry-driven compression.

4.1. Connectivity-driven compression

4.1.1. Progressive meshes

Hoppe [43] first introduced the concept of progressive mesh coding with a new
mesh representation called progressive mesh (PM). This algorithm simplifies a given



708 J. Peng et al. / J. Vis. Commun. Image R. 16 (2005) 688–733
orientable manifold mesh with successive edge collapse operations. As shown in Fig.
12, when an edge is collapsed, its two end points are merged into one, two triangles
(or one triangle if the collapsed edge was on the boundary) incident on this edge are
removed, and all vertices previously connected to the two end points are re-con-
nected to the merged vertex. The inverse operation of edge collapse is vertex split
which inserts a new vertex into the mesh together with corresponding edges and
triangles.

An initial mesh M = Mk can be simplified into a coarser mesh M0 by applying k

successive edge collapse operations. Each edge collapse ecoli transforms mesh Mi to
Mi�1, with i = k,k � 1, . . . , 1. Since edge collapse operations are invertible, we can
represent an arbitrary triangle meshM with a base meshM0 and a sequence of vertex
split operations. Each vertex split vspliti refines mesh Mi�1 toMi, with i = 1,2, . . . ,k.
Thus, (M0,vsplit1, . . . , vsplitk) is referred to as the progressive mesh representation
of M.

In the construction of a progressive mesh, it is essential to select a proper edge to
be collapsed at each step. As done in Hoppe et al.�s mesh optimization method [44],
one can employ an energy function E that takes into account distance accuracy,
attribute accuracy, regularization, and discontinuity curves. Each edge is put into
a priority queue, where the priority value is its estimated energy cost DE. Initially,
the algorithm calculates the priority value of each edge. Then, at each iteration, it
collapses the edge e with the smallest priority value and then updates the priorities
of edges in the neighborhood of e.

The connectivity of base meshM0 can be encoded using any single-rate coder. The
vertex split in Fig. 12 can be specified by the indices of the split vertex vs and its left
and right vertices, vl and vr. If there are vi vertices in an intermediate mesh Mi, the
index of vs can be encoded with log2vi bits. Then, the two indices of vl and vr can
be encoded with log2 (b(b � 1)) bits, where b is the number of vertices connected
to vs. Since the average vertex valence is 6 in a typical mesh, the indices of vl and
vr can be encoded with about 5 (.log2 (6 · 5)) bits. Thus, about (log2vi + 5) bits
are required to represent the vertex split operation. Overall, PM requires O(v logv)
bits to represent the topology of a mesh with v vertices. Associated with the vertex
split operation, positions of vt and vs are Huffman-coded after delta prediction.

Despite its innovative nature, the original PM is not a very efficient compression
scheme. To improve coding efficiency, Hoppe proposed another PM implementation
method in [45]. It reorders the vertex split operations to increase the compression
Fig. 12. Illustration of the edge collapse and the vertex split processes.



J. Peng et al. / J. Vis. Commun. Image R. 16 (2005) 688–733 709
ratio at the cost of quality degradation of intermediate meshes. It requires about
10.4 bits to represent each vertex split operation.

Hoppe�s PM method has been extended by several researchers as discussed
below.

Progressive simplicial complex. Popovic and Hoppe [46] observed that PM [43] has
two restrictions. First, it is applicable only to orientable manifold meshes. Second, it
does not have the freedom to change the topological type of a given mesh during the
simplification and refinement, which limits coding efficiency. To overcome these
problems, they proposed a method, called progressive simplicial complex (PSC).
In this approach, a more general vertex split operation is introduced to encode the
changes in both geometry and topology. A PSC representation consists of a sin-
gle-vertex base model followed by a sequence of generalized vertex split operations.
PSC can be employed to compress meshes of any topology type.

To construct a PSC representation, a sequence of vertex unification operations are
performed to simplify a given mesh model. Each vertex unification merges an arbi-
trary pair of vertices, which are not necessarily connected by an edge, into a single
vertex. The inverse of the vertex unification is the generalized vertex split operation
that splits a vertex into two. Suppose that vertex ai in mesh Mi is to be split to gen-
erate a new vertex which will be assigned index i + 1 in mesh Mi+1. Each simplex
adjacent to ai in Mi is the vertex unification result of one of four configurations as
shown in Fig. 13. For a rigorous definition of simplex, readers are referred to [46].
Intuitively, a zero-dimensional simplex is a point, a one-dimensional simplex is an
edge, a two-dimensional simplex is a triangle face, and so on. For each simplex
adjacent to ai, PSC records a code to indicate one of the four configurations given
in Fig. 13.
Fig. 13. Possible configurations after a generalized vertex split for one- and two-dimensional simplices.



710 J. Peng et al. / J. Vis. Commun. Image R. 16 (2005) 688–733
Since the generalized vertex split operation is more flexible than the original vertex
split operation in PM, PSC may demand more bits for connectivity coding than PM.
Specifically, PSC requires about (log2vi + 8) bits to specify the connectivity change
around the split vertex, while PM requires about (log2vi + 5) bits. However, the main
benefit of PSC is its capability to deal with arbitrary triangular models without any
topology constraint. Similar to PM, the geometry data in PSC are encoded using del-
ta prediction.

Progressive forest split. Taubin et al. [47] proposed the progressive forest split
(PFS) presentation that is applicable to manifold meshes. As done in PM [43], a tri-
angular mesh is represented with a low resolution base model and a sequence of
refinement operations in PFS. Instead of using the vertex split operation, the PFS
representation adopts the forest split operation as illustrated in Fig. 14. The forest
split operation cuts a mesh along the edges in the forest and fills in the resulting cre-
vice with triangles. In Fig. 14, the forest contains only one tree for the sake of sim-
plicity. However, a forest can be composed of many complex trees, and a single
forest split operation can double the number of triangles in a mesh. Therefore,
PFS can achieve a much higher compression ratio than PM at the expense of reduced
granularity.

For each forest split operation, the structure of the forest, the triangulation infor-
mation of the crevices, and the vertex displacements are encoded. To encode the
structure of the forest, one bit is used for each mesh edge indicating whether it be-
longs to the forest. To encode the triangulation of the crevices, the triangle spanning
tree and the marching patterns can be used as in Taubin and Rossignac�s algorithm
[3], or a constant length encoding scheme can be employed, which requires exactly
2 bits per new triangle. To encode the vertex displacements, a smoothing algorithm
[48] is applied after connectivity refinement, and then the difference between the ori-
ginal vertex position and the smoothed vertex position is Huffman-coded.

To progressively encode a given mesh with four or five LODs, PFS requires about
7–10 bpv for the connectivity data and 20–40 bpv for the geometry data at 6-bit
quantization resolution. Note that the bpv performance is measured with respect
to the number of vertices in the original mesh in this section. PFS was adopted in
MPEG-4 3DMC [4] as an optional mode for progressive mesh coding.

Compressed progressive mesh. Pajarola and Rossignac [49] proposed a modified
PM, called the compressed progressive mesh (CPM), which is applicable to manifold
Fig. 14. A forest split operation: (A) an original mesh with a forest marked with thick lines, (B) the cut of
the original mesh along the forest edges, (C) triangulation of the crevice, (D) the cut mesh in (B) is filled
with the triangulation in (C).



J. Peng et al. / J. Vis. Commun. Image R. 16 (2005) 688–733 711
meshes. CPM also improves the compression performance at the cost of reduced
granularity. To use fewer bits for connectivity data, vertex splits are grouped into
batches. CPM uses a sequence of marking bits to specify the vertices to be split in
one batch, while PM uses log2vi bits for each vertex split in an intermediate mesh
Mi. For geometry coding, an edge (v1,v2) is collapsed to its midpoint v = (v1 + v2)/
2. Thus, if the vector D = v2 � v1 is known, the positions of v1 and v2 can be recon-
structed from v and D. CPM obtains the prediction D̂ of D using vertices which have
a topological distance of 1 or 2 from vertex v in a similar way to the butterfly sub-
division technique [50,51]. The prediction error E ¼ D� D̂ is then Huffman-coded.
CPM uses the Laplacian distribution to approximate the prediction error histogram.
For each batch, it calculates and transmits the variance of the Laplacian distribution
for the decoder to reconstruct the Huffman coding table, thus saving the need to
transmit the table.

CPM can encode all connectivity information using about 7.0 bpv and all geom-
etry information using about 12–15 bpv at 8- to 12-bit quantization resolutions.
Overall, CPM requires about 22 bpv, which is approximately half the bitrate of
PFS [47].

In [52], Pajarola and Rossignac optimized CPM for real-time applications. They
adopted the half-edge collapse operation to collapse an edge into one of its ending
points instead of its midpoint. The half-edge collapse is adopted, since the midpoint
may not lie on the quantized coordinate grid which makes geometry coding more
complex. Also, to reduce the computational overhead, a new vertex position is esti-
mated from the average of only adjacent vertices within the topological distance of 1.
Furthermore, a faster Huffman decoder [53] and a group of pre-computed Huffman
coding tables are used. With these optimizations, this algorithm provides a faster
decoding speed than Hoppe�s efficient implementation of PM [45].

4.1.2. Patch coloring

A triangular mesh can be simplified and hierarchically represented using vertex
decimation [54,55]. Being different from the edge collapse approach, the vertex dec-
imation approach removes a vertex and its adjacent edges, and then re-triangulates
the resulting hole. The topology data record the way of re-triangulation after each
vertex is decimated, or equivalently, the neighborhood of each new vertex before
it is inserted.

Cohen-Or et al. [56] proposed the patch coloring algorithm for progressive mesh
compression based on vertex decimation. First, an input mesh is simplified by itera-
tively decimating a set of vertices. At each iteration, decimated vertices are selected
such that they are not adjacent to one another. Each vertex decimation leads to a
hole, which is then re-triangulated. The set of new triangles filling in this hole is
called a patch. By reversing the simplification process, a hierarchical progressive
reconstruction process is obtained. In order for the decoder to identify the patches,
two patch coloring techniques were proposed: 4-coloring and 2-coloring. The 4-col-
oring scheme colors adjacent patches with distinct colors, requiring 2 bits per trian-
gle. It is applicable to patches of any degree. The 2-coloring scheme further saves
topology bits by coloring the whole mesh with only two colors. It enforces the re-tri-



712 J. Peng et al. / J. Vis. Commun. Image R. 16 (2005) 688–733
angulation of each patch in a zigzag way, and encodes the two outer triangles with
bit �1,� and the other triangles with bit �0.� Thus, it requires only 1 bit per triangle but
applies only to patches with a degree greater than 4. During the encoding process, at
each level of detail, either the 2-coloring or the 4-coloring scheme is chosen based on
the distribution of patch degrees. Then, the coloring bitstream is encoded with the
Ziv–Lempel coder. For geometry coding, the position of a new vertex is simply pre-
dicted from the average of its direct neighboring vertices. Experimentally, this ap-
proach costs about 6 bpv for connectivity coding and about 16–22 bpv for
geometry coding at the 12-bit quantization resolution.

4.1.3. Valence-driven conquest

Alliez and Desbrun [57] proposed a progressive mesh coder for manifold 3D
meshes. Observing that the entropy of mesh connectivity is dependent on the distri-
bution of vertex valences, they iteratively applied the valence-driven decimating con-
quest and the cleaning conquest in pair to get multiresolution meshes. The vertex
valences are output and entropy encoded during this process.

The decimating conquest is a mesh simplification process based on vertex decima-
tion. It only decimates vertices with valences less or equal to 6 to maintain a statis-
tical concentration of valences around 6. In the decimating conquest, a 3D mesh is
traversed from patch to patch. A degree-n patch is a set of triangles incident to a
common vertex of valence n, and a gate is an oriented boundary edge of a patch,
storing the reference to its front vertex. The encoder enters a patch through one
of its boundary edges, called the input gate. If the front vertex of the input gate
has a valence less or equal to 6, the encoder decimates the front vertex, re-triangu-
lates the remaining polygon, and outputs the front vertex valence. Then, it pushes
the other boundary edges, called output gates, into a FIFO list, and replaces the cur-
rent input gate with the next available gate in the FIFO list. This procedure repeats
until the FIFO list becomes empty.

In fact, a breadth-first patch traversal is performed in the decimating conquest.
Fig. 15A illustrates the decimating conquest on a 6-regular mesh. An initial input
gate g1 is chosen, a degree-6 patch is conquered and the output gates, g2–g6, are
pushed into the FIFO list. Next, g2 is chosen as the new input gate and another patch
is conquered, and so on. Each conquered patch is re-triangulated so that the valences
of half of the vertices on the patch boundary become lower. Therefore, the mesh
after the decimating conquest have many vertices with valence 3 as shown in Fig.
15B, and the vertex valences are no more concentrated around 6.

To maintain the statistical concentration of valences, a cleaning conquest is ap-
plied after each decimating conquest. The cleaning conquest is almost the same as
the decimating conquest, except that the output gates are placed on the two edges
of each face adjacent to the patch border, instead of on the patch border itself,
and that only valence-three vertices are decimated. For example, in Fig. 15B, sup-
pose that an initial input gate g1 is chosen. Then, its front vertex of valence 3 is dec-
imated, and g2–g5 are chosen as the output gates. Fig. 15C shows the resulting mesh
after a pair of decimating and cleaning conquests. We can see that the resulting mesh
is also a 6-regular mesh as the original mesh in Fig. 15A. If an input mesh is irreg-



Fig. 15. An example of (A) the decimating conquest, (B) the cleaning conquest, and (C) the resulting mesh
after the decimating conquest and the cleaning conquest, where the shaded areas represent the conquered
patches and the thick lines represent the gates. The gates to be processed are depicted in the black color,
while the gates already processed are in the gray color. Each arrow represents the direction of entrance
into a patch.

J. Peng et al. / J. Vis. Commun. Image R. 16 (2005) 688–733 713
ular, it may not be completely covered by patches in the decimating conquest. In
such a case, null patches are generated.

For geometry coding, Alliez and Desbrun [57] used the barycentric prediction and
the approximate Frenet coordinate frame. The normal and the barycenter of a patch
approximates the tangent plane of the surface. Then, the position of the inserted ver-
tex is encoded as an offset from the tangent plane.

For connectivity coding, this scheme requires about 2–5 bpv, on average 3.7 bpv,
which is about 40% better than the results reported in [49,56]. For geometry coding,
the cost typically ranges from 10 to 16 bpv for quantization resolutions between 10
and 12 bits. Especially, the geometry coding cost is much less than 10 bpv for meshes
with high-connectivity regularity and geometry uniformity. Furthermore, this
scheme has a comparable performance with that of the state-of-the-art single-rate co-
der. This scheme yields a compressed file size only about 1.1 times larger than Touma
and Gotsman�s algorithm [23], even though it supports full progressiveness.

4.1.4. Embedded coding
Li and Kuo [58] introduced the concept of embedded coding to encode connectiv-

ity and geometry data in an interwoven manner. The geometry data as well as the
connectivity data are encoded progressively. Thus, as the coded data stream is re-
ceived and decoded by the receiver, not only new vertices are added to the model,
but also the precision of each old vertex position is progressively increased. This cod-
ing scheme is applicable to triangular meshes of any topology and it preserves the
topology during mesh simplification.

For mesh simplification, Li and Kuo also adopted the vertex decimation method.
To record the neighborhood of each new vertex before it is inserted, their algorithm
utilizes a pattern table. It encodes the index to the pattern table and the indices of
one marked triangle and one marked edge to locate the selected pattern within the



714 J. Peng et al. / J. Vis. Commun. Image R. 16 (2005) 688–733
mesh. For each vertex insertion, the topology data requires about (log2vi + 6) bits
experimentally, where vi is the number of vertices in current mesh Mi.

The position of each vertex is predicted from the average position of its adja-
cent vertices, and the residue is obtained. Then, the encoder multiplexes topology
data and geometry residual data into one data bitstream. Suppose that a residue is
quantized as 0Æa0a1� � � in binary format. Fig. 16 shows the integration process,
where each column represent the data associated with a vertex insertion. �*� de-
notes the topology data, a0a1� � � denotes the residue data for that vertex, and
the flags �0� and �1� determine the order of bits in the final bitstream, which is de-
picted by the zigzag lines in Fig. 16. As more bits are received and decoded, more
vertices are inserted and the precision of each vertex positions is increased. The
order of bits, determined by the flags, is selected by the encoder to achieve the
R-D tradeoff.

This algorithm requires about 20 bpv to decode a mesh model at acceptable qual-
ity. However, at this bitrate, only one-third of the total number of vertices and tri-
angles are reconstructed, since a significant portion of bits are used to increase the
precisions of important vertices rather than to increase the number of reconstructed
vertices.

4.1.5. Layered decomposition

In [59], Bajaj et al. generalized their single-rate mesh coder [21] based on layered
decomposition to a progressive mesh coder that is applicable to arbitrary meshes. An
input mesh is decomposed into layers of vertices and triangles. Then, the mesh is sim-
plified through three stages: intra-layer simplification, inter-layer simplification, and
generalized triangle contraction. The former two are topology-preserving, whereas
the last one may change the mesh topology.

The intra-layer simplification operation selects vertices to be removed from each
contour. After those vertices are removed, re-triangulation is performed in the region
between the simplified contour and its adjacent contours. A bit string is encoded to
indicate which vertices are removed, and extra bits are encoded to reconstruct the
Fig. 16. The multiplexing of topology data and geometry data, where the zigzag lines illustrate the bit
order.



J. Peng et al. / J. Vis. Commun. Image R. 16 (2005) 688–733 715
original connectivity between the decimated vertex and its neighbors in the refine-
ment process.

In the inter-layer simplification stage, a contour can be totally removed. Then, the
two triangle strips sharing the removed contour are replaced by a single coarse strip
[60]. Fig. 17 shows an example of contour removal and re-triangulation. A dashed
line in Fig. 17B, called a constraining chord, is associated with each edge in the con-
tour to be removed, which is illustrated with a thick line. The simplification process
is encoded as (0,6,2,3,1,3), where the first bit indicates whether the contour is open
or closed, the second number is the number of vertices in the removed contour, and
the remaining numbers indicate the number of triangles between every two consec-
utive constraining chords in the coarse strip.

After intra-layer and inter-layer simplifications, the mesh can be further simplified
using the generalized triangle contraction [61], which contracts a triangle t into a sin-
gle point p. To reduce the storage overhead, the single point p is chosen as the bary-
center of the triangle t. By allowing the generalized triangle contraction, this scheme
can simplify even a very complex model into a single triangle or vertex, achieving a
guaranteed size of the coarsest level mesh.

The connectivity cost for the whole mesh is O(v) due to the locality of the layering
structure, which is much better than PM that requires O(v log2v) bits. Experimen-
tally, it costs about 10–17 bpv for connectivity coding and 30 bpv for geometry cod-
ing at 10 or 12-bit quantization resolution. For geometry coding, as in the
corresponding single-rate algorithm [21], the second-order prediction is used to ex-
ploit the correlation between consecutive correction vectors.

4.2. Geometry-driven compression

4.2.1. Kd-tree decomposition

In most mesh compression techniques, geometry coding is guided by the underly-
ing connectivity coding. Gandoin and Devillers [62] proposed a fundamentally differ-
ent strategy, where connectivity coding is guided by geometry coding. Their
algorithm works in two passes: the first pass encodes geometry data progressively
without considering connectivity data. The second pass encodes connectivity changes
between two successive LODs. Their algorithm can encode arbitrary simplicial com-
plexes without any topological constraint.
Fig. 17. Inter-layer simplification: (A) the fine level, (B) constraining chords, and (C) the coarse strip,
where dashed lines depict constraining chords, and thick lines depict the contour to be removed.



716 J. Peng et al. / J. Vis. Commun. Image R. 16 (2005) 688–733
For geometry coding, their algorithm employs a kd-tree decomposition based on
cell subdivisions [63]. Each time it subdivides a cell into two child cells, it encodes the
number of vertices in one of the two child cells. If the parent cell contains p vertices,
the number of vertices in one of the child cells can be encoded using log2 (p + 1) bits
with an arithmetic coder [64]. This subdivision is recursively applied, until each non-
empty cell is small enough to contain only one vertex and enable a sufficiently precise
reconstruction of the vertex position. Fig. 18 illustrates the geometry coding process
with a 2D example. First, the total number of vertices, 7, is encoded using a fixed
number of bits (32 in this example). Then, the entire cell is divided vertically into
two cells, and the number of vertices in the left cell, 4, is encoded using
log2 (7 + 1) bits. Note that the number of vertices in the right cell is not encoded,
since it is deducible from the number of vertices in the entire cell and the number
of vertices in the left cell. The left and right cells are then horizontally divided,
respectively, and the numbers of vertices in the upper cells are encoded, and so
on. To improve the coding gain, the number of vertices in a cell can be predicted
from the point distribution in its neighborhood.

For connectivity coding, their algorithm encodes the topology change after each
cell subdivision using one of two operations: vertex split [43] or generalized vertex
split [46]. Specifically, after each cell subdivision, the connectivity coder records a
symbol, indicating which operation is used, and parameters specific to that opera-
tion. Compared to [43,46], their algorithm has the advantage that split vertices are
implicitly determined by the subdivision order given in geometry coding, reducing
the topology coding cost. Moreover, to improve the coding gain further, they pro-
posed several rules, which predict the parameters for vertex split operations effi-
ciently using already encoded geometry data.

On average, this scheme requires 3.5 bpv for connectivity coding and 15.7 bpv for
geometry coding at 10 or 12-bit quantization resolution, which is better than pro-
gressive mesh coders presented in [52,57]. This scheme is even comparable to the sin-
gle-rate mesh coder given in [23], achieving a full progressiveness at the cost of only
5% overhead bitrate. It is also worthwhile to point out that this scheme is especially
useful for terrain models and densely sampled objects, where topology data can be
losslessly reconstructed from geometry data. Besides its good coding gain, it can
be easily extended to compress tetrahedral meshes.
Fig. 18. Illustration of the kd-tree geometry coding in the 2D case.



J. Peng et al. / J. Vis. Commun. Image R. 16 (2005) 688–733 717
4.2.2. Octree decomposition

Peng and Kuo [65] proposed a progressive lossless mesh coder based on the octree
decomposition, which can encode triangular meshes of arbitrary topology.Given a 3D
mesh, an octree structure is first constructed through recursive partitioning of the
bounding box. The mesh coder traverses the octree in a top-down fashion and encodes
the local changes of geometry and connectivity associated with each octree cell subdi-
vision. In [65], the geometry coder does not encode the vertex number in each cell, but
encodes the information whether each cell is empty or not, which is usually more con-
cise in the top levels of the octree. For connectivity coding, a uniform approach is
adopted, which is efficient and easily extendable to arbitrary polygonal meshes.

For each octree cell subdivision, the geometry coder encodes the number, T

(1 6 T 6 8), of non-empty-child cells and the configuration of non-empty-child cells
among KT ¼ CT

8 possible combinations. When the data are encoded straightfor-
wardly, T takes 3 bits and the non-empty-child-cell configuration takes log2KT bits.
To further improve coding efficiency, T is arithmetic coded using the context of the
parent cell�s octree level and valence, leading to 30–50% bit saving. Furthermore, all
KT possible configurations are sorted according to their estimated probability values,
and the index of the configuration in the sorted array is arithmetic coded. The prob-
ability estimation is based on the observation that non-empty-child cells tend to
gather around the centroid of the parent-cell�s neighbors. This technique leads to
more than 20% improvement.

For the connectivity coding, each octree cell subdivision is simulated by a se-
quence of kd-tree cell subdivisions. Each vertex split corresponds to a kd-tree cell
subdivision, which generates two non-empty-child cells. Let the vertex to split be de-
noted by v, the neighbor vertices before the vertex split by Ni�s and the two new ver-
tices from the vertex split by v1 and v2. Then, the following information will be
encoded: (1) vertices among Ni�s that are connected to both v1 and v2 (called the pivot
vertices); (2) whether each non-pivot vertex in Ni is connected to v1 or v2; and (3)
whether v1 and v2 are connected in the refined mesh. During the coding process, a
triangle regularity metric is used to predict each neighbor vertex�s probability of
being a pivot vertex, and a spatial distance metric is used to predict the connectivity
of non-pivot neighbor vertices to the new vertices. At the decoder side, the facets are
constructed from the edge-based connectivity without an extra coding cost. To fur-
ther improve the R-D performance, prioritized cell subdivision is applied. Higher
priorities are given to cells of a bigger size, a bigger valence, and a larger distance
from neighbors.

The octree-based mesh coder outperforms the kd-tree algorithm [62] in both
geometry and connectivity coding efficiency. For the geometry coding, it provides
about 10–20% improvement for typical meshes, but up to 50–60% improvement
for meshes with highly regular geometry data and/or tightly clustered vertices. For
the connectivity coding, the improvement ranges from 10 to 60%.

4.2.3. Spectral coding

Spectral (or transform) coding has been successfully used in the compression of
2D image and video data [66]. The discrete cosine transform (DCT) or the discrete



718 J. Peng et al. / J. Vis. Commun. Image R. 16 (2005) 688–733
Fourier transform (DFT) is often used to represent a sequence of source samples to
another sequence of transform coefficients, whose energy is concentrated in relatively
few low frequency coefficients. Thus, graceful degradation can be obtained if we en-
code low frequency coefficients while discarding higher frequency ones.

Karni and Gotsman [67] used the spectral theory on meshes [68] to compress
geometry data. Suppose that a mesh consists of n vertices. Then, the mesh Laplacian
matrix L of size n · n is derived from the mesh connectivity, given by

Li;j ¼
1 if i ¼ j;

�1=di if vertices i and j are adjacent;

0 otherwise;

8><
>:

ð7Þ

where di is the valence of vertex i. The eigenvectors of L form an orthogonal basis of
Rn and the associated eigenvalues represent the frequencies of those basis functions.
The encoder projects the x, y, and z coordinate vectors of the mesh onto the basis
functions to obtain the geometry spectra, respectively. Then, the encoder quantizes
these spectra, truncates high-frequency coefficients, and entropy encodes the quan-
tized coefficients. This approach can naturally support progressiveness by transmit-
ting the coefficients in the increasing order of frequencies.

Experimentally, this approach requires only 1/2–1/3 of the bitrate of Touma and
Gotsman�s algorithm [23] to achieve a similar visual quality. This approach is espe-
cially suitable for smooth meshes, which can be faithfully represented with a fewer
number of low frequency coefficients.

Finding the eigenvectors of an n · n matrix requires O(n3) computational com-
plexity. To reduce the computations, an input mesh can be partitioned into several
segments, and each segment can be independently encoded. However, the eigenvec-
tors should be computed in the decoder as well. Thus, even though the partitioning
is incorporated, the decoding complexity is too high for many real-time applica-
tions. To overcome this problem, Karni and Gotsman [69] proposed to use fixed
basis functions, which are computed from a 6-regular connectivity. Those basis
functions are actually the Fourier basis functions. Therefore, the encoding and
the decoding can be performed with the fast Fourier transform (FFT) efficiently.
Before encoding, the connectivity of an input mesh is mapped into a 6-regular con-
nectivity. No geometry information is used during the mapping. Thus, the decoder
can perform the same mapping with separately received connectivity data and
determine the correct ordering of vertices. The use of fixed basis functions is obvi-
ously not optimal, but provides an acceptable performance at much lower
complexity.

4.2.4. Wavelet coding

Khodakovsky et al. [70] proposed a progressive compression algorithm based on
the wavelet transform. It first remeshes an arbitrary manifold mesh M into a semi-
regular mesh, where most vertices have degree 6, using the MAPS algorithm [71].
MAPS generates a semi-regular approximation of M by finding a coarse base mesh
and successively subdividing each triangle into four triangles. Fig. 19 shows a reme-



Fig. 19. A remeshing example: (A) an irregular mesh, (B) the corresponding base mesh, and (C) the
corresponding semi-regular mesh, where triangles are illustrated with a normal flipping pattern to clarify
the semi-regular connectivity.

J. Peng et al. / J. Vis. Commun. Image R. 16 (2005) 688–733 719
shing example. In this figure, vertices within the region bounded by white curves in
Fig. 19A are projected onto a base triangle. These projected vertices are depicted by
black dots in Fig. 19B. Each projected vertex onto the base triangle contains the
information of the original vertex position. By interpolating these original vertex
positions, each subdivision point can be mapped approximately to a point (not nec-
essarily a vertex) in the original mesh.

Note that the connectivity information of the semi-regular mesh can be efficiently
encoded, since it can be reconstructed using only the connectivity of the base mesh
and the number of subdivisions. However, this algorithm attempts to preserve only
the geometry information. Thus, the original connectivity of M cannot be recon-
structed at the decoder.

Then, using the Loop algorithm [72], the semi-regular mesh geometry is repre-
sented by the base mesh geometry and a sequence of wavelet coefficients. These coef-
ficients represent the differences between successive LODs, and have a concentrated
distribution around zero, which favors entropy coding. The wavelet coefficients are
encoded using a zerotree approach, introducing progressiveness into the geometry
data. More specifically, they modified the SPIHT algorithm [73], which is one of
the successful 2D image coders, to compress the Loop wavelet coefficients. Their
algorithm provides about 12 dB or four times better image quality than CPM [47],
and even a better performance than Touma and Gotsman�s single-rate coder [23].
This is mainly due to the fact that they employed semi-regular meshes, enabling
the wavelet coding approach.

Khodakovsky and Guskov [74] later proposed another wavelet coder based on the
normal mesh representation [75]. In the subdivision, their algorithm restricts that the
offset vector should be in the normal direction of the surface. Therefore, whereas 3D
coefficients are used in [70], 1D coefficients are used in the normal mesh algorithm.
Furthermore, their algorithm employs the unlifted version of butterfly wavelets
[50,51] as the transform. As a result, it achieves about 2–5 dB image quality improve-
ment over that in [70].



720 J. Peng et al. / J. Vis. Commun. Image R. 16 (2005) 688–733
4.2.5. Geometry image coding

Gu et al. [76] proposed to represent the geometry of a 3D manifold surface with a
2D regular array of resampled vertices, which constitute a geometry image. Each pix-
el value in the geometry image represents a 3D position vector (x,y,z). Due to its
regular structure, the geometry image representation can facilitate the compression
and rendering of 3D data.

To generate the geometry image, an input manifold mesh is cut and opened to be
homeomorphic to a disk. The cut mesh is then parameterized onto a 2D square,
which is in turn regularly sampled. In the cut process, an initial cut is first selected
and then iteratively refined. At each iteration, it selects a vertex of the triangle with
the biggest geometric stretch and inserts the path, connecting the selected vertex to
the previous cut, into the refined cut. After the final cut is determined, the boundary
of the square domain is parameterized with special constraints to prevent cracks
along the cut, and the interior is parameterized using the geometry-stretch parame-
trization in [77], which attempts to distribute vertex samples evenly over the 3D
surface.

Geometry images can be compressed using standard 2D image compression tech-
niques, such as wavelet-based coders. To seamlessly zip the cut in the reconstructed
3D surface, especially when the geometry image is compressed in a lossy manner, it
encodes the sideband signal, which records the topological structure of the cut
boundary and its alignment with the boundary of the square domain.

The geometry image compression provides about 3 dB worse R-D performance
than the wavelet mesh coder [70]. Also, since it maps complex 3D shapes onto a sim-
ple square, it may yield large distortions for high-genus meshes and unwanted
smoothing of 3D features. Praun and Hoppe [78] and Hoppe and Praun [79] pro-
posed an approach to parameterize a manifold 3D mesh with genus 0 onto a spher-
ical domain. Compared with the square domain approach [76], this approach leads
to a simple cut topology and an easy-to-extend image boundary. It was shown by
experiments that the spherical geometry image coder achieves better R-D perfor-
mance than the square domain approach [76] and the wavelet mesh coder [70], but
slightly worse performance than the normal mesh coder [74].

4.3. Summary

In Table 3, we summarize the bitrates of progressive mesh coding algorithms,
which are extracted from experimental results reported in the original papers. Those
explicit bitrates stand for the final bitrates required to decode meshes at the most re-
fined level.

The progressive mesh (PM) coder [43] was a pioneering algorithm that has a con-
nectivity cost of O(v logv). PFS [47], CPM [49], the patch coloring technique [56],
and the layered decomposition algorithm [59] reduced the cost to O(v). The va-
lance-driven conquest algorithm [57] and the kd-tree decomposition algorithm [62]
require less than 4 bpv on the average for the connectivity coding. The embedded
coding concept was introduced to multiplex the connectivity and the geometry data
in [58].



Table 3
Bitrates of progressive mesh coding algorithms, which are of the form ‘‘geometry bitrate in bpv:connectivity bitrate in bpv (quantization resolutions in bits)’’

Category Algorithm Bitrate C:G (Q) Comment

Connectivity-driven
compression

Progressive meshes Hoppe [43] O(v log2v):N/A
Popovic and Hoppe [46] O(v log2v):N/A
Taubin et al. [47] 7–10:20–40 (6)
Pajarola and Rossignac [49] 7:12–15 (8,10,12)

Patch coloring Cohen-Or et al. [56] 6:16–22 (12)
Valence-driven conquest Alliez and Desbrun [57] 3.7:10–16 (10,12)
Embedded Coding Li and Kuo [58] O(v log2v):N/A Embedded multiplexing
Layered decomposition Bajaj et al. [59] 10–17:30 (10,12)

Geometry-driven
compression

Kd-tree decomposition Gandoin and Devillers [62] 3.5:15.7 (10,12) for manifold meshes Capable of encoding
triangle soups

Octree decomposition Peng and Kuo [65] 40–90% bitrate of [62] for similar quality
Spectral coding Karni and Gotsman [67] 30–50% bitrate of [23] for similar quality
Wavelet coding Khodakovsky et al. [70] 12 dB better quality than [47] at the

same bitrate
Loss of original connectivity

Khodakovsky and Guskov [74] 2–5 dB better quality than [70] at the
same bitrate

Geometry image coding Gu et al. [76] 3 dB worse quality than [70] Loss of original connectivity
Praun and Hoppe [78,79] Better R-D than [76,70], slightly

worse R-D than [74]

J
.
P
en
g
et

a
l.
/
J
.
V
is.

C
o
m
m
u
n
.
Im

a
g
e
R
.
1
6
(
2
0
0
5
)
6
8
8
–
7
3
3

721



722 J. Peng et al. / J. Vis. Commun. Image R. 16 (2005) 688–733
For the geometry coding, a bitrate of 15 bpv at a quantization resolution of
around 10 bits has been achieved by CPM [49], the valence-driven conquest [57],
or the kd-tree decomposition [62]. These progressive coders [57,62] have excellent
performance in the sense that they support the progressive coding property at a bi-
trate that is slightly higher than the state-of-the-art single-rate coder [23]. The octree
decomposition algorithm [65] further reduces the overall bitrate of [62] by 10–60%.

The spectral coding [67], the wavelet coding [70,74], and the geometry image cod-
ing methods [76,78,79] improve the coding gain and provide even better compression
performance than the single-rate coder in [23]. It is worthwhile to point out that
these coding algorithms are generalizations of successful 2D image coding tech-
niques, e.g., JPEG and JPEG-2000.

PSC [46] and the kd-tree decomposition algorithm [62] can compress arbitrary
simplicial complexes. The patch coloring algorithm [56], the embedded coding algo-
rithm [58] the layered decomposition algorithm [59], and the octree decomposition
algorithm [65] can encode triangular meshes with arbitrary topology. All the remain-
ing algorithms can deal with manifold triangular meshes only. In the wavelet coding
[70,74] and the geometry image coding [76,78,79], the original connectivity is lost due
to the remeshing procedure.
5. Trends

5.1. Polygonal mesh compression

Most 3D mesh compression algorithms focus on triangular meshes. To handle
polygonal meshes, they triangulate polygons before the compression task. However,
there are several disadvantages in this approach. First, the triangulation process im-
poses an extra cost in computation and efficiency. Second, the original connectivity
information may be lost. Third, attributes associated with vertices or faces may re-
quire duplicated encoding. To address these problems, several algorithms have been
proposed to encode polygonal meshes directly without pre-triangulation.

King et al. [80] first proposed a connectivity coding algorithm for quadrilateral or
mixed triangle/quadrilateral meshes, by generalizing the edgebreaker algorithm
[5,31] that is one of the triangle conquest methods. It guarantees the worst-case cod-
ing cost of 2.67 bpv for meshes without valence-two vertices. Isenburg and Snoeyink
[81] proposed another extension of the triangle conquest methods, called the face fix-
er, to encode polygonal meshes. The connectivity coding cost is within 1.67–2.93 bpv
for several test models.

Lee et al. [82] proposed the angle-analyzer for triangle/quadrilateral mesh coding.
They also extended the triangle conquest approach, and introduced 12 kinds of op-
codes to encode the connectivity of a mixed triangle/quadrilateral mesh. To mini-
mize the entropy of the op-code sequence, their algorithm chooses each gate adap-
tively to suppress the splitting and the merging of edge loops. Also, they proposed
the local coordinate-based scheme and the angle-based scheme to compress geometry
data effectively. On average, their algorithm yields 40 and 20% better compression



J. Peng et al. / J. Vis. Commun. Image R. 16 (2005) 688–733 723
ratios for connectivity data and geometry data than the state-of-the-art triangular
mesh coder given in [23].

Isenburg [83] and Khodakovsky et al. [84] independently proposed similar algo-
rithms to encode the connectivity of a manifold polygonal mesh. Their algorithms
are extensions of the valence-driven approach [23,24], and represent the connectivity
of a polygonal mesh by a sequence of vertex valences and a sequence of face degrees.
Vertex valences and face degrees are highly correlated. Specifically, low valence ver-
tices are likely to be surrounded by high-degree faces. This property is exploited for
the mutual prediction of vertex valences and face degrees. Isenburg�s algorithm pro-
vides slightly better compression performance than Khodakovsky et al.�s algorithm,
and requires 0.76–2.54 bpv for connectivity coding experimentally.

Isenburg and Alliez [85] applied the parallelogram prediction rule to encode
geometry data in polygonal meshes. This scheme attempts to form a parallelogram
prediction within a polygon rather than across polygons. Since polygons tend to be
planar and convex, the �within� prediction leads to a better coding gain in general.
Experimentally, this scheme requires about 23% less geometry bitrates than the con-
ventional parallelogram prediction rule.

5.2. Volume mesh compression

The field of volume visualization has received much attention and made substan-
tial progress recently. Its main applications include medical diagnostic data represen-
tation and physical phenomenon modelling. Tetrahedral meshes are popularly used
to represent volume data, since they are suitable for irregularly sampled data and
facilitate multiresolution analysis and visibility sorting. A tetrahedral mesh is typi-
cally represented by two tables: the vertex table that records the position and the
attributes (such as the temperature or the pressure) of each vertex, and the tetrahe-
dron table that stores a quadruple of four vertex indices for each tetrahedron. A tet-
rahedral mesh often requires an enormous storage space even at a moderate
resolution. The huge storage requirement puts a great burden on the storage, commu-
nication, and rendering systems. Thus, efficient compression schemes are necessary.

Szymczak and Rossignac [86] proposed a connectivity coding algorithm for tetra-
hedral meshes. It can be seen as an extension of the topological surgery algorithm [3],
and encodes the connectivity of a mesh using two strings: the tetrahedron spanning
tree string and the folding string. The required bitrate is around 7 bits per tetrahe-
dron. Gumhold et al. [87] proposed another approach by extending the cut-border
machine [27]. In a tetrahedral mesh, the cut-border is the triangular surface dividing
the conquered volume from the unconquered volume, and the gate is a triangle on
the cut-border. Each time a face-adjacent tetrahedron is added at the gate, an op-
code is generated. Experimentally, the bitrate is less than 2.4 bits per tetrahedron.
Pajarola et al. [88] proposed a progressive connectivity coding algorithm for tetrahe-
dral meshes. Similar to PM [43], it simplifies a tetrahedral mesh into a base mesh
using edge collapse operations, and then represents the original mesh with the base
mesh and a sequence of vertex split operations. This scheme requires about 5 bits per
tetrahedron.



724 J. Peng et al. / J. Vis. Commun. Image R. 16 (2005) 688–733
Recently, hexahedral meshes also have become popular due to their numerical
advantages in finite element computations over tetrahedral meshes. Isenburg and Al-
liez [89] proposed a compression algorithm for hexahedral meshes, by extending
Touma and Gotsman�s algorithm [23]. Specifically, the topology of a hexahedral
mesh is represented by a sequence of edge degrees. Note that the degree of an edge
is defined as the number of faces adjacent to that edge. Also, the vertex positions are
predictively encoded using the parallelogram prediction rule. On average, their algo-
rithm requires 1.55 bits per hexahedron for topology coding, and 17.28 bpv for
geometry coding at the 16-bit resolution.

5.3. Isosurface compression

Numerous volume data have been and are being produced and/or utilized in fields
including 3D photography, scientific visualization, magnetic resonance imaging
(MRI), and computed tomography (CT). Typically, volume data are produced by
sampling a scalar field (function) x (x), x 2 R3 at points on a 3D grid, and are often
visualized with isosurfaces. The isosurface for isovalue c consists of all 3D points sat-
isfying x (x) = c, and is often represented with a polygonal mesh. Due to the high
resolution, an isosurface often demands a huge amount of storage/bandwidth. At
the same time, due to the high-topology complexity (i.e., a great variety of the con-
nected component number and the genus number), general polygonal mesh compres-
sion schemes often fail to yield satisfying performance. In the recent couple of years,
special purpose algorithms have been proposed to compress isosurfaces exploiting
their special structure properties: restricted vertex positions in cells of intersect
and restorable mesh connectivity from geometry data. Those algorithms again can
be classified into single-rate and progressive methods.

Saupe and Kuska [90] proposed an isosurface compression scheme with the
Marching Cubes (MC) algorithm [91], where each vertex is restricted to one inter-
secting grid edge. Three coding phases are preformed: coding intersecting cells with
an octree, coding the intersecting edge configuration in each intersecting cell with an
integer between 0 and 6, and coding the interpolating value for each vertex along the
corresponding intersecting edge with a quantized integer. The output symbols from
all three phases are further compressed with gzip. Note that connectivity is not
explicitly encoded, which can be reconstructed at the decoder from geometry data.
As a result, it achieves about 2.2–2.8 better compression ratio than the general pur-
pose polygonal mesh coder [3] for high-complex CT scanned volumes. Later on,
Saupe and Kuska [92] improved their algorithm in, where a modified pruned octree
is used, and eight neighboring grid edges of an intersecting grid edge form a context
exploited by an adaptive arithmetic coder. The resultant compression ratio improve-
ment is around 50%.

In Zhang et al.�s algorithm [93], grid points are organized into slices, and the cells
between two adjacent slices form a layer. A grid point is called relevant if it is one
end point of an intersecting grid edge. For a cell, once we know which points of
its eight corners are relevant, we can determine which of its bounding edges are inter-
secting edges. One bit is associated with each grid point (cell) to indicate whether it is



J. Peng et al. / J. Vis. Commun. Image R. 16 (2005) 688–733 725
a (an) relevant grid point (intersecting cell). The exact positions of vertices can be
derived from the function values at the eight corners. This algorithm encodes all
the slice bitmaps and layer bitmaps with arithmetic coding and encodes the function
values associated with the relevant points in each slice with quantization, second-or-
der differential, and arithmetic coding. Experimentally, the compression ratio
improvement upon the general mesh coder [21] is 22–44%. Another advantage is that
the coding (decoding) process is incremental with a small memory requirement.

Yang and Wu [94] proposed to compress MC-generated triangular isosurfaces
through cube index encoding, edge index encoding, and vertex coordinate encoding.
Using a 3D-checkbox structure, this algorithm encodes at most 1/4 of cube indices.
The cubes to encode in a layer are organized into multiple chains, each of which is
chain-coded. In edge index encoding, one sign bit is associated with each cube corner
indicating whether its function value is greater or less than the isovalue. The sign bits
of the eight corners form the sign pattern of an intersecting cube, which implies the
configuration of the intersecting edges and the triangulation of the vertices in that
cube. The sign patterns corresponding to the chain-coded cubes are encoded. Similar
to [90], the vertex coordinates are also encoded with quantized interpolating values.
Experimentally, this algorithm achieves 2.01–2.10 bits per triangle (bpt) with indis-
tinguishable visual quality for 32-bit coordinate quantization, and about 1.5 bpt with
some visual artifacts for 8-bit coordinate quantization.

Taubin [95] applied some ideas used in the JBIG image compression standard to
isosurface compression, where the context-based arithmetic coding is used, exploiting
the correlation between the volume data at adjacent grid points. Basically, several 3D
binary images are encoded. One is occupancy image, formed by the sign bits at all grid
points and compressed with an adaptive arithmetic coder. At each grid point, adja-
cent sign bits in the same and the previous layers form the context for the bit to en-
code. For vertex coordinate encoding, the quantized interpolating values are encoded
bit layer by bit layer. For each bit layer and each axis, a 3D binary image is formed
and encoded similarly to the occupancy image. As an option, this algorithm encodes
the vertex normals with a 2 + 2S scheme, where S is the times of Loop subdivision
[72]. As a result, suppose that the interpolating values are quantized to B bits, the bi-
trate is about 0.60–0.95 bits per face (bpf) for B = 0, 1.20–1.80 bpf for B = 1, and
2.10–2.90 bpf for B = 3. The main limitation of this algorithm is its high-computa-
tional complexity at the decoder, which is proportional to the number of grid points.

Laney et al. [96] introduced progressiveness into the isosurface compression. Their
algorithm can encode an isosurface or a triangular mesh through the wavelet com-
pression of a signed-distance volume. The original mesh or isosurface can be recon-
structed by extracting the isosurface with zero distance, though the original
connectivity is lost. As a first step, an input isosurface or triangular mesh is distance
transformed to produce an approximation of the actual distance function, using the
modified closest-point propagation algorithm [97]. Secondly, a multiresolution rep-
resentation is generated with the fast wavelet transform [98]. Then, a distance-based
thresholding is performed to remove all wavelet coefficients not contributing to the
reconstructed surface. Finally, the resultant wavelet coefficients are compressed with
a zero-tree coder [73]. Compared with the wavelet mesh coding approach [70], no



726 J. Peng et al. / J. Vis. Commun. Image R. 16 (2005) 688–733
base mesh construction is needed, which is often difficult for complex meshes. Thus,
this algorithm is more suitable for surfaces with complex topology and many com-
ponents. However, its R-D performance for smooth meshes is worse than that of
[70].

Lee et al. [99] proposed another progressive isosurface compression scheme which
performs three steps on input volume data: (1) an adaptive octree is built up to rep-
resent the 3D sign bitmap; (2) the octree structure is encoded; and (3) the geometry
refinement data are encoded. The octree structure encoding is called connectivity
encoding in [99], which encodes the sign bits for cell corners and the leaf bits for
homogeneous cells, i.e., cells with the same sign bits at the eight corners. These
two bit streams are encoded using arithmetic coders with different contexts. For
the sign bitstream, the seven neighboring sign bits from the same cell and the eight
sign bits from the parent cell form a 15-bit context. For the leaf bitstream, the con-
text consists of the previous 1 leaf bit transmitted. Geometry refinement data are en-
coded at the end of connectivity encoding. Being different from MC-based methods,
it localizes vertex positions not on grid edges but within cells. In each intersecting
cell, the vertex position is predicted as the barycenter of all intersecting edge mid-
points, the prediction residual is represented in a local frame formed by a fixed
choice of orthogonal basis vectors with the help of a local interpolating plane. Then,
the three components of the residuals are quantized and encoded with context-based
arithmetic coders whose context is formed by the eight sign bits of the containing
cell. Experimentally, the average compression ratio is 6.10 bpv, of which 0.65 bpv
is used for the octree encoding, and the average ratio of improvement over the sin-
gle-rate isosurface coder [95] is 76%.

Note that all the above algorithms only deal with isosurfaces from regular struc-
tured volume data. Compression of isosurfaces from unstructured volume data is
still an unexploited field.

5.4. Animated-mesh coding

Three-dimensional animation becomes more and more popular these days. A 3D
animation sequence has not only spatial correlation within each frame, but also tem-
poral correlation between adjacent frames. Most 3D animation compression algo-
rithms utilize the spatio-temporal correlation to achieve a high-coding gain.

Lengyel [100] proposed an innovative algorithm for mesh sequence compression.
The input mesh is first segmented and the motion of each segment is approximated
by an affine transform. Then, the transform parameters and the approximation resid-
uals are encoded. Ahn et al. [101] proposed another segmentation-based algorithm,
where the approximation residuals are encoded using DCT. Zhang and Owen
[102,103] proposed an octree-based coder, which represents the motion between
adjacent frames with an octree. Each octree cell has eight motion vectors associated
with its corners, and the motion of each vertex in that cell is approximated by the tri-
linear interpolation of the corner motion vectors.

Instead of using the segmentation-based approach, Yang et al. [104] proposed a
sequence coder based on the vertex-wise motion vector prediction. The first frame



J. Peng et al. / J. Vis. Commun. Image R. 16 (2005) 688–733 727
is intra-coded using the technique given in [23], and the following frames are tra-
versed in the same breadth-firth order. The motion vector of each vertex is spatio-
temporally predicted using the information already available in the traversed region.
Ibarria and Rossignac [105] proposed a similar algorithm that traverses each mesh
surface in a depth-first order. Each vertex location is predicted from the spatial
neighbor vertices and the corresponding vertices in the previous frame.

Alexa and Müller [106] proposed another scheme that represents 3D animation
sequences based on the principal component analysis (PCA). Their algorithm forms
a matrix that contains the geometry information of all frames and performs its sin-
gular value decomposition to measure the importance of each principal component.
By omitting less important components, a coding gain can be achieved. However, the
main disadvantage is that it demands a huge computational complexity for the large
matrix manipulation. Karni and Gotsman [107] also proposed a PCA-based se-
quence coder by identifying spatial and temporal components and improving the
coding gain with a predictive coding scheme.

Briceño et al. [108] proposed a scheme called the geometry video coding, which is a
generalization of the geometry image coding [76]. They developed uniform cut and
parametrization schemes that can be applied to all frames in a sequence. The first frame
is intra-coded while subsequent frames are predictively coded with an affine motion
compensation. Guskov and Khodakovsky [109] proposed a wavelet coding method
for mesh sequences. A progressive mesh hierarchy and an anisotropic wavelet are built
for the first frame and maintained for subsequent frames. To exploit the temporal cor-
relation, wavelet coefficients between adjacent frames are encoded differentially.

Most animation coding schemes consider the compression of isomorphic se-
quences only, where the topology and the number of vertices are invariant through-
out all frames. An exception is Yang et al.�s scheme [110,111], which can encode non-
isomorphic sequences as well. It first constructs a semi-regular mesh for the first
frame and maps the regular structure to subsequent frames based on 3D motion esti-
mation. The semi-regular wavelet coefficients are then encoded using an embedded
coding scheme that supports SNR and temporal scalability modes.

Some standardization effort for the 3D animation coding is under way. To ad-
dress the representation and coding of high-quality 2D and 3D animation data,
the MPEG-4 animation framework extension (AFX) [112] is being developed by
MPEG in cooperation with the Web3D Consortium. Features supported by AFX
include a compact representation and low bitrate animation of static and dynamic
data, and techniques such as subdivision, interpolator compression, dead-reckoning,
and compression of animated paths and animated models are employed.
6. Conclusion

In this paper, we performed a survey on current 3D mesh compression techniques
by classifying major algorithms, describing main ideas behind each category, and
comparing their strength and weakness. Currently, the state-of-the-art single-rate
mesh compression schemes are those based on the valence-driven approach. For pro-



728 J. Peng et al. / J. Vis. Commun. Image R. 16 (2005) 688–733
gressive mesh compression, the valence-driven approach is still among the best ones.
However, schemes driven by kd-tree/octree decomposition and those using trans-
form and wavelet coding techniques have emerged recently.

In early mesh coding schemes, geometry coding was tightly coupled with and re-
strained by connectivity coding. However, this dependence has been weakened or
even reversed. Geometry data tend to consume a dominant portion of the storage
space, and their correlation can be exploited more effectively without the restraint
of connectivity. Furthermore, remesh-based progressive mesh coders completely dis-
card the irregular connectivity of an input mesh, and resample the surface with a reg-
ular pattern. Due to regular resampling, connectivity coding requires almost no
information while geometry data can be efficiently compressed.

Research on single-rate coding seems to be mature except for further improve-
ment on geometry coding. Progressive coding has been thought to be inferior to sin-
gle-rate coding in terms of the coding gain. However, high-performance progressive
codecs have emerged these days and they often outperform some of the state-of-the-
art single-rate codecs. In other words, a progressive mesh representation seems to be
a natural choice, which demands no extra burden in the coding process. There is still
room to improve progressive coding to provide better R-D performance at a lower
computational cost.

Future mesh coding schemes will be inspired by new 3D representations such as
the normal mesh representation and the point-based geometry representation. An-
other promising research area is animated-mesh coding that was overlooked in the
past but is getting more attention recently.
Acknowledgment

The authors thank Prof. Mathieu Desbrun at the California Institute of Technol-
ogy for his useful comments and suggestions.
References

[1] The Virtual Reality Modeling Language (VRML). ISO/IEC 14772-1, 1997.
[2] G. Taubin, W. Horn, F. Lazarus, J. Rossignac, Geometry coding and VRML, Proc. IEEE 96 (6)

(1998) 1228–1243.
[3] G. Taubin, J. Rossignac, Geometric compression through topological surgery, ACM Trans. Graph.

17 (2) (1998) 84–115.
[4] Coding of Audio-Visual Objects: Visual. ISO/IEC 14496-2. July 2001.
[5] J. Rossignac, Edgebreaker: connectivity compression for triangle meshes, IEEE Trans. Vis. Comput.

Graph. 5 (1) (1999) 47–61.
[6] G. Taubin, 3D geometry compression and progressive transmission, in: EUROGRAPHICS—State

of the Art Report, September 1999.
[7] D. Shikhare, State of the art in geometry compression. Technical Report, National Centre for

Software Technology, India, 2000.
[8] C. Gotsman, S. Gumhold, L. Kobbelt, Simplification and compression of 3D meshes, in: Tutorials

on Multiresolution in Geometric Modelling, 2002.



J. Peng et al. / J. Vis. Commun. Image R. 16 (2005) 688–733 729
[9] P. Alliez, C. Gotsman, Recent advances in compression of 3D meshes, in: Proceedings of the
Symposium on Multiresolution in Geometric Modeling, September 2003.

[10] H. Edelsbrunner, Geometry and Topology for Mesh Generation, Cambridge University Press,
Cambridge, 2001.

[11] D.W. Kahn, Topology: an Introduction to the Point-set and Algbraic Areas, Dover Publications,
1995.

[12] J. Gross, J. Yellen, Graph Theory and Its Applications, CRC Press, Boca Raton, 1998.
[13] M. Deering, Geometry compression, in: ACM SIGGRAPH, 1995, pp. 13–20.
[14] M. Chow, Optimized geometry compression for real-time rendering, in: IEEE Visualization, 1997,

pp. 347–354.
[15] E.M. Arkin, M. Held, J.S.B. Mitchell, S. Skiena, Hamiltonian triangulations for fast rendering, Vis.

Comput. 12 (9) (1996) 429–444.
[16] F. Evans, S. Skiena, A. Varshney, Completing sequential triangulations is hard. Technical Report,

Department of Computer Science, State University of New York at Stony Brook, 1996.
[17] F. Evans, S.S. Skiena, A. Varshney, Optimizing triangle strips for fast rendering, in: IEEE

Visualization, 1996, pp. 319–326.
[18] B. Speckmann, J. Snoeyink, Easy triangle strips for tin terrain models. In Proceedings of 9th CCCG,

pages 239–244, 1997..
[19] X. Xiang, M. Held, J. Mitchell, Fast and efficient stripification of polygonal surface models, in:

ACM 1999 Symposium on Interactive 3D Graphics, 1999, pp. 71–78.
[20] G. Turan, On the succinct representations of graphs, Discr. Appl. Math. 8 (1984) 289–294.
[21] C.L. Bajaj, V. Pascucci, G. Zhuang, Single resolution compression of arbitrary triangular meshes

with properties, Comput. Geom. Theor. Appl. 14 (1999) 167–186.
[22] C. Bajaj, V. Pascucci, G. Zhuang, Compression and coding of large cad models. Technical Report,

University of Texas, 1998.
[23] C. Touma, C. Gotsman, Triangle mesh compression, in: Proceedings of Graphics Interface, 1998,

pp. 26–34.
[24] P. Alliez, M. Desbrun, Valence-driven connectivity encoding for 3D meshes, in: EUROGRAPHICS,

2001, pp. 480–489.
[25] M. Schindler, A fast renormalization for arithmetic coding, in: Proceedings of IEEE Data

Compression Conference, 1998, p. 572.
[26] W. Tutte, A census of planar triangulations, Can. J. Math. 14 (1962) 21–38.
[27] S. Gumhold, W. Straßer, Real time compression of triangle mesh connectivity, in: ACM

SIGGRAPH, 1998, pp. 133–140.
[28] S. Gumhold, Improved cut-border machine for triangle mesh compression, in: Erlangen Workshop

�99 on Vision, Modeling and Visualization, IEEE Signal Processing Society, November 1999.
[29] D. King, J. Rossignac. Guaranteed 3.67v bit encoding of planar triangle graphs, in: 11th Canadian

Conference on Computational Geometry, 1999, pp. 146–149.
[30] S. Gumhold, New bounds on the encoding of planar triangulations. Technical Report WSI-2000-1,

Wilhelm-Schickard-Institut für Informatik, University of Tübingen, Germany, January 2000.
[31] J. Rossignac, A. Szymczak, Wrap and zip decompression of the connectivity of triangle meshes

compressed with edgebreaker, Comput. Geom. 14 (1-3) (1999) 119–135.
[32] M. Isenburg, J. Snoeyink, Spirale reversi: reverse decoding of the edgebreaker encoding, in: 12th

Canadian Conference on Computational Geometry, 2000, pp. 247–256.
[33] A. Szymczak, D. King, J. Rossignac, An edgebreaker-based efficient compression scheme for regular

meshes, in: Proceedings of 12th Canadian Conference on Computational Geometry, 2000, pp. 257–
264.

[34] M. Isenburg, Triangle strip compression, in: Proceedings of the Graphics Interface, May 2000, pp.
197–204.

[35] A. Guéziec, G. Taubin, F. Lazarus, W. Horn, Converting sets of polygons to manifold surfaces by
cutting and stitching, in: IEEE Visualization, 1998, pp. 383–390.

[36] A. Gersho, R.M. Gray, Vector Quantization and Signal Compression, Kluwer Academic Publishers,
Dordrecht, 1992.



730 J. Peng et al. / J. Vis. Commun. Image R. 16 (2005) 688–733
[37] T.M. Cover, J.A. Thomas, Elements of Information Theory, Wiley, New York, 1991.
[38] E.-S. Lee, H.-S. Ko, Vertex data compression for triangular meshes, in: Pacific Graphics, 2000,

p. 225.
[39] P.H. Chou, T.H. Meng, Vertex data compression through vector quantization, IEEE Trans. Vis.

Comput. Graph. 8 (4) (2002) 373–382.
[40] P. Heckbert, M. Garland, Survey of polygonal surface simplification algorithms, in: Multiresolution

Surface Modeling Course Notes of SIGGRAPH�97, 1997.
[41] P. Cignoni, C. Montani, R. Scopigno, A comparison of mesh simplification algorithms, Comput.

Graph. 22 (1) (1998) 37–54.
[42] D.P. Luebke, A developer�s survey of polygonal simplification algorithms, IEEE Comput. Graph.

Appl. 21 (3) (2001) 24–35.
[43] H. Hoppe, Progressive meshes, in: ACM SIGGRAPH, 1996, pp. 99–108.
[44] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, W. Stuetzle, Mesh optimization, in: ACM

SIGGRAPH, 1993, pp. 19–25.
[45] H. Hoppe, Efficient implementation of progressive meshes, Comput. Graph. 22 (1) (1998) 27–36.
[46] J. Popovic, H. Hoppe, Progressive simplicial complexes, in: ACM SIGGRAPH, 1997, pp. 217–224.
[47] G. Taubin, A. Gueziec, W. Horn, F. Lazarus, Progressive forest split compression, in: ACM

SIGGRAPH, 1998, pp. 123–132.
[48] G. Taubin, A signal processing approach to fair surface design, in ACM SIGGRAPH, 1995, pp.

351–358.
[49] R. Pajarola, J. Rossignac, Compressed progressive meshes, IEEE Trans. Vis. Comput. Graph. 6 (1)

(2000) 79–93.
[50] N. Dyn, D. Levin, J.A. Gregory, A butterfly subdivision scheme for surface interpolation with

tension control, ACM Trans. Graph. 9 (2) (1990) 160–169.
[51] D. Zorin, P. Schröder, W. Sweldens, Interpolating subdivision for meshes with arbitrary topology,

in: ACM SIGGRAPH, 1996, pp. 189–192.
[52] R. Pajarola, J. Rossignac, Squeeze: fast and progressive decompression of triangle meshes, in:

Proceedings of Computer Graphics International Conference, 2000, pp. 173–182.
[53] R. Pajarola, Fast Huffman code processing. Technical Report UCI-ICS-99-43, Information and

Computer Science, UCI, 1999.
[54] W.J. Schroeder, J.A. Zarge, W.E. Lorensen, Decimation of triangle meshes, in: ACM SIGGRAPH,

1992, pp. 65–70.
[55] M. Soucy, D. Laurendeau, Multiresolution surface modeling based on hierarchical triangulation,

Comput. Vis. Image Understand. 63 (1) (1996) 1–14.
[56] D. Cohen-Or, D. Levin, O. Remez, Progressive compression of arbitrary triangular meshes, in: IEEE

Visualization, 1999, pp. 67–72.
[57] P. Alliez, M. Desbrun, Progressive encoding for lossless transmission of triangle meshes, in: ACM

SIGGRAPH, 2001, pp. 198–205.
[58] J. Li, C.-C.J. Kuo, Progressive coding of 3-D graphic models, Proc. IEEE 86 (6) (1998) 1052–1063.
[59] C. Bajaj, V. Pascucci, G. Zhuang, Progressive compression and transmission of arbitrary triangular

meshes, in: IEEE Visualization, 1999, pp. 307–316.
[60] C.L. Bajaj, E.J. Coyle, K.-N. Lin, Arbitrary topology shape reconstruction from planar cross

sections, Graph. Models Image Proc. 58 (6) (1996) 524–543.
[61] T.S. Gieng, B. Hamann, K.I. Joy, G.L. Schussman, I.J. Trotts, Constructing hierarchies for triangle

meshes, IEEE Trans. Vis. Comput. Graph. 4 (2) (1998) 145–161.
[62] P.M. Gandoin, O. Devillers, Progressive lossless compression of arbitrary simplicial complexes,

ACM Trans. Graph. 21 (3) (2002) 372–379.
[63] O. Devillers, P. Gandoin, Geometric compression for interactive transmission, in: IEEE Visuali-

zation, 2000, pp. 319–326.
[64] I.H. Witten, R.M. Neal, J.G. Cleary, Arithmetic coding for data compression, Commun. ACM 30

(6) (1987) 520–540.
[65] J. Peng, C.-C.J. Kuo, Geometry-guided progressive lossless 3D mesh coding with octree (OT)

decomposition, accepted by SIGGRAPH, 2005.



J. Peng et al. / J. Vis. Commun. Image R. 16 (2005) 688–733 731
[66] N.S. Jayant, P. Noll, Digital Coding of Waveforms—principles and Applications to Speech and
Video, Prentice Hall, New Jersey, 1984.

[67] Z. Karni, C. Gotsman, Spectral compression of mesh geometry, in: ACM SIGGRAPH, 2000, pp.
279–286.

[68] G. Taubin, A signal processing approach to fair surface design, in: ACM SIGGRAPH, 1995, pp.
351–358.

[69] Z. Karni, C. Gotsman, 3D mesh compression using fixed spectral bases, in: Proceedings of the
Graphics Interface, 2001, pp. 1–8.

[70] A. Khodakovsky, P. Schröder, W. Sweldens, Progressive geometry compression, in: ACM
SIGGRAPH, 2000, pp. 271–278.

[71] A.W.F. Lee, W. Sweldens, P. Schröder, L. Cowsar, D. Dobkin, MAPS: multiresolution adaptive
parametrization of surfaces, in: ACM SIGGRAPH, 1998, pp. 95–104.

[72] C. Loop, Smooth subdivision surfaces based on triangles. Master�s thesis, Department of
Mathematics, University of Utah, August 1987.

[73] A. Said, W.A. Pearlman, A new, fast, and efficient image codec based on set partitioning in
hierarchical trees, IEEE Trans. Circuits Syst. Video Technol. 6 (3) (1996) 243–250.

[74] A. Khodakovsky, I. Guskov, Normal mesh compression, in: Geometric Modeling for Scientific
Visualization, Springer-Verlag, Germany, 2002.

[75] I. Guskov, K. Vidimce, W. Sweldens, P. Schröder, Normal meshes, in: ACM SIGGRAPH, July
2000, pp. 95–102.

[76] X. Gu, S.J. Gortler, H. Hoppe, Geometry images, in: ACM SIGGRAPH, 2002, pp. 355–
361.

[77] P. Sander, S. Gortler, J. Snyder, H. Hoppe, Signal-specialized parametrization. Technical Report
MSR-TR-2002-27, Microsoft Research, January 2002.

[78] E. Praun, H. Hoppe, Spherical parametrization and remeshing, ACM Trans. Graph. 22 (3) (2003)
340–349.

[79] H. Hoppe, E. Praun, Shape compression using spherical geometry images, in: N. Dodgson, M.
Floater, M. Sabin (Eds.), Advances in Multiresolution for Geometric Modelling, Springer-Verlag,
2005, pp. 27–46.

[80] D. King, J. Rossignac, A. Szymczak, Connectivity compression for irregular quadrilateral meshes.
Technical Report TR-99-36, GVU, Georgia Tech, 1999.

[81]/ce:label>M. Isenburg, J. Snoeyink, Face fixer: compressing polygon meshes with properties, in:
ACM SIGGRAPH, 2000, pp. 263–270.

[82] H. Lee, P. Alliez, M. Desbrun, Angle-analyzer: a triangle-quad mesh codec, in: EUROGRAPHICS,
2002, pp. 383–392.

[83] M. Isenburg, Compressing polygon mesh connectivity with degree duality prediction, in:
Proceedings of the Graphics Interface, May 2002, pp. 161–170.

[84] A. Khodakovsky, P. Alliez, M. Desbrun, P. Schröder, Near-optimal connectivity encoding of 2-
manifold polygon meshes, Graphical Models 64 (3) (2002) 147–168.

[85] M. Isenburg, P. Alliez, Compressing polygon mesh geometry with parallelogram prediction, in:
IEEE Visualization, 2002.

[86] A. Szymczak, J. Rossignac, Grow & fold: compression of tetrahedral meshes, in: Proceedings of the
5th Symposium on Solid Modeling and Applications, ACM Press, 1999, pp. 54–64.

[87] S. Gumhold, S. Guthe, W. Straßer, Tetrahedral mesh compression with the cut-border machine, in:
IEEE Visualization, 1999, pp. 51–58.

[88] R.B. Pajarola, J. Rossignac, A. Szymczak. Implant sprays: compression of progressive tetrahedral
mesh connectivity, in: IEEE Visualization, San Francisco, 1999, pp. 299–306.

[89] M. Isenburg, P. Alliez, Compressing hexahedral volume meshes, in: Pacific Graphics, 2002, pp. 284–
293.

[90] D. Saupe, J.-P. Kuska, Compression of isosurfaces for structured volumes, in: Proceedings of Vision,
Modeling and Visualization, 2001, pp. 333–340.

[91] W. Lorensen, H. Cline, Marching cubes: a high resolution 3d surface construction algorithm,
Comput. Graph. 21 (4) (1987) 163–169.



732 J. Peng et al. / J. Vis. Commun. Image R. 16 (2005) 688–733
[92] D. Saupe, J.-P. Kuska, Compression of isosurfaces for structured volumes with context modelling,
in: Proc. the First International Symposium on 3D Data Processing, Visualization, and Transmis-
sion, 2002, pp. 384–390.

[93] X. Zhang, C. Bajaj, W. Blanke, D. Fussell, Scalable isosurface visualization of massive datasets on
cots clusters, in: Proceedings of IEEE Symposium on Parallel and Large Data Visualization and
Graphics, 2001, pp. 51–58.

[94] S.-N. Yang, T.-S. Wu, Compressing isosurfaces generated with marching cubes, Vis. Comput. 18 (1)
(2002) 54–67.

[95] G. Taubin, Blic: bi-level isosurface compression, in: IEEE Visualization, 2002, pp. 451–458.
[96] D. Laney, M. Bertram, M. Duchaineau, N. Max, Multiresolution distance volumes for progressive

surface compression, in: Proc. the First International Symposium on 3D Data Processing,
Visualization, and Transmission, 2002, pp. 470–479.

[97] D.E. Breen, S. Mauch, R.T. Whitaker, 3d scan conversion of csg models into distance volumes, in:
IEEE Symposium on Volume Visualization, 1998, pp. 7–14.

[98] S. Mallat, A theory for multiresolution signal decomposition: the wavelet representation, IEEE
Trans. Pattern Anal. Mach. Intell. 11 (7) (1989) 674–693.

[99] H. Lee, M. Desbrun, P. Schröder, Progressive encoding of complex isosurfaces, in: ACM
SIGGRAPH, 2003.

[100] J. Lengyel, Compression of time dependent geometry, in: ACM 1999 Symposium on Interactive 3D
Graphics, 1999.

[101] J.-H. Ahn, C.-S. Kim, C.-C.J. Kuo, Y.-S. Ho, Motion compensated compression of 3D animation
models, IEE Electron. Lett. 37 (24) (2001) 1445–1446.

[102] J. Zhang, C.B. Owen, Octree-based animated geometry compression, in: Proceedings of IEEE Data
Compression Conference, 2004, pp. 508–517.

[103] J. Zhang, C.B. Owen, Hybrid coding for animated polygonal meshes: combining delta and octree, in:
Proceedings of IEEE International Conference on Information Technology, 2005.

[104] J.-H. Yang, C.-S. Kim, S.-U. Lee, Compression of 3D triangle mesh sequences based on vertex-wise
motion vector prediction, IEEE Trans. Circuits Syst. Video Technol. 12 (12) (2002) 1178–1184.

[105] L. Ibarria, J. Rossignac, Dynapack: space-time compression of the 3D animations of triangle meshes
with fixed connectivity, in: SCA �03: Proceedings of the 2003 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, 2003, pp. 126–135.

[106] M. Alexa, W. Müller, Representing animations by principal components, Comput. Graph. Forum
19 (3) (2000) 411–418.

[107] Z. Karni, C. Gotsman, Compression of soft-body animation sequences, Comput. Graph., Special
Issue on Compression 28 (1) (2004) 25–34.

[108] H.M. Briceño, P.V. Sander, L. McMillan, S. Gortler, H. Hoppe, Geometry videos: a new
representation for 3D animations, in: SCA �03: Proceedings of the 2003 ACM SIGGRAPH/
Eurographics Symposium on Computer animation, 2003, pp. 136–146.

[109] I. Guskov, A. Khodakovsky, Wavelet compression of parametrically coherent mesh sequences, in:
SCA �04: Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, 2004, pp. 183–192.

[110] J.-H. Yang, C.-S. Kim, S.-U. Lee, Progressive compression of 3D dynamic sequences, in: Proc. ICIP,
October 2004.

[111] J.-H. Yang, C.-S. Kim, S.-U. Lee, Semi-regular representation and progressive compression of 3D
dynamic mesh sequences, submitted to IEEE Trans. Image Processing, Nov. 2004 (in revision).

[112] MPEG-4 animation framework extension (AFX). ISO/IEC JTC1/SC29/WG11, 2001.

Jingliang Peng. Jingliang Peng received the B.S. and M.S. degrees from Department of Computer Science
and Technology, Peking University, China in 1997 and 2000, respectively. He is currently a Ph.D. can-
didate in Department of Electrical Engineering, University of Southern California. He is a Research
Assistant of Integrated Media Systems Center and a member of the Interactive Media subgroup in Prof.
C.-C. Jay Kuo�s Multimedia Research Group. His research interests include 3D graphics data compres-
sion, point-based rendering, and image-based modelling.



J. Peng et al. / J. Vis. Commun. Image R. 16 (2005) 688–733 733
Chang-Su Kim. Chang-Su Kim received the B.S. and M.S. degrees in Control and Instrumentation
Engineering in 1994 and 1996, respectively, and the Ph.D. degree in Electrical Engineering in 2000, all
from Seoul National University (SNU), Seoul, Korea. From 2000 to 2001, he was a Visiting Scholar with
the Signal and Image Processing Institute, University of Southern California, Los Angeles, and a Con-
sultant for InterVideo Inc., Los Angeles. From 2001 to 2003, he was a Postdoctoral Researcher with the
School of Electrical Engineering, SNU. In August 2003, he joined the Department of Information
Engineering, the Chinese University of Hong Kong as an Assistant Professor. His research topics include
video and 3D graphics processing and multimedia communications. Dr. Kim has published more than 70
technical papers in international conferences and journals.

C.-C. Jay Kuo. Dr. C.-C. Jay Kuo received the B.S. degree from the National Taiwan University, Taipei,
in 1980 and the M.S. and Ph.D. degrees from the Massachusetts Institute of Technology, Cambridge, in
1985 and 1987, respectively, all in Electrical Engineering. He is with the Department of Electrical Engi-
neering, the Signal and Image Processing Institute (SIPI) and the Integrated Media Systems Center
(IMSC) at the University of Southern California (USC) as Professor of Electrical Engineering and
Mathematics. His research interests are in the areas of digital media processing, multimedia compression,
communication and networking technologies, and embedded multimedia system design. Dr. Kuo is a
fellow of IEEE and SPIE. He received the National Science Foundation Young Investigator Award (NYI)
and Presidential Faculty Fellow (PFF) Award in 1992 and 1993, respectively. Dr. Kuo has guided about
60 students to their Ph.D. degrees and supervised 15 postdoctoral research fellows. Currently, his research
group at USC consists around 40 Ph.D. students and 5 postdoctors (please visit website http://vio-
la.usc.edu), which is one of the largest academic research groups in multimedia technologies. He is a co-
author of about 100 journal papers, 600 conference papers, and 7 books. Dr. Kuo is Editor-in-Chief for
the Journal of Visual Communication and Image Representation, and Editor for the Journal of Information

Science and Engineering and the EURASIP Journal of Applied Signal Processing. He was on the Editorial
Board of the IEEE Signal Processing Magazine in 2003–2004. He served as Associate Editor for IEEE

Transactions on Image Processing in 1995–1998, IEEE Transactions on Circuits and Systems for Video

Technology in 1995–1997, and IEEE Transactions on Speech and Audio Processing in 2001–2003.

http://viola.usc.edu
http://viola.usc.edu

	Technologies for 3D mesh compression: A survey
	Introduction
	Background and basic concepts
	Single-rate compression
	Connectivity coding
	Indexed face set
	Triangle strip
	Spanning tree
	Layered decomposition
	Valence-driven approach
	Triangle conquest
	Summary

	Geometry coding
	Scalar quantization
	Prediction
	Vector quantization


	Progressive compression
	Connectivity-driven compression
	Progressive meshes
	Patch coloring
	Valence-driven conquest
	Embedded coding
	Layered decomposition

	Geometry-driven compression
	Kd-tree decomposition
	Octree decomposition
	Spectral coding
	Wavelet coding
	Geometry image coding

	Summary

	Trends
	Polygonal mesh compression
	Volume mesh compression
	Isosurface compression
	Animated-mesh coding

	Conclusion
	Acknowledgment
	References


