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Abstract. Video request migration among servers to achieve
effective video-on-demand (VoD) services is investigated in
this work. Our study is focused on the design and analysis of
a random early migration (REM) scheme for user requests.
When a new request is dispatched to a video server, the REM-
based scheduler decides whether request migration is needed
with a certain probability, which is a function of the service
load. To analyze the request migration process, we introduce
a state matrix representation that stores the service load in-
formation of each video server and plays an important role
in the determination of migration paths. Based on this repre-
sentation, we develop two methods to calculate performance
metrics: the service failure rate and the system delay in ser-
vice migration. Simulation results show that the REM scheme
outperforms both the DASD dancing algorithm [1] and the
traditional migration scheme adopted in [2, 3] with shorter
service delay and lower failure rates. It is also confirmed that
our theoretical results match well with experimental results.

Keywords: Random early migration (REM) – State matrix –
Video server scheduling – Video-on-demand

1 Introduction

This work considers a video-on-demand (VoD) system that
consists of a centralized scheduler and a collection of video
servers. The scheduler dispatches user requests and maintains
the current service status for each video server and video ac-
cess statistics, i.e., the bookkeeping information. The video
server mainly performs I/O operations to deliver multiple
streams of different video contents simultaneously to users
based on a scheduled result. Due to the large size of video ob-
jects and limited storage capacity, each server can only store a
limited amount of video streams. Moreover, the service capac-
ity of each server is also limited by its bandwidth constraint. It
is therefore a great challenge to solve the video server schedul-
ing problem, which involves balancing the load among video
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servers to improve aggregate resource utilization and the over-
all system performance.

InVoD systems, the video server configuration mainly falls
into three categories: flat striping, replication, and grouped
striping. The flat striping scheme uses the RAID-type disks
and stripes a video file evenly over all servers [4–6]. The
VoD system under this configuration is called parallel video
servers [7]. Striping can transparently distribute data over mul-
tiple disks and give users the appearance of a single large and
fast disk [8]. However, due to delay variations in process-
ing, networking, and scheduling, it is difficult to synchronize
video delivery among striping servers. The replication scheme
puts one whole video file in one video server and makes sev-
eral extra copies of hot movies. Little et al. [9] explored the
probability-based data replication policy. Serpanos et al. [10]
proposed a data replication scheme called “Mmpacking” in
distributed video servers. Other replication algorithms were
proposed to reduce the storage overhead and balance the load
among replicated servers [11,12].

Replication is often used in geographically distributed
VoD systems where video servers are far from each other so
that it is difficult to implement server striping. The grouped
striping scheme combines the pure striping scheme and the
replication scheme to achieve a certain degree of load bal-
ancing and high throughput for hot video files. Each video
server has a fixed striped-disk configuration, and hot video ti-
tles are replicated based on the forecast access probability.This
scheme is used in the SCAMS (SCAlable Multimedia Servers)
system of Lancaster University [13]. Some video content al-
location algorithms have been proposed under this configura-
tion to achieve static load balance among video servers and
increase server connectivity for possible request migration in
one service period [1,2,14].

Request migration is an important issue in video server
scheduling. Due to the highly skewed access probabilities of
video content, video servers with hot video copies receive
many more client requests than other servers and are more
likely to be overloaded. Request migration redistributes sys-
tem load among servers to achieve a certain degree of load bal-
ancing, which in turn reduces the service failure rate, defined
as the number of requests rejected by the VoD system divided
by the number of requests received during the service period.
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Here, we propose a random early migration (REM) algorithm
to reduce the service failure rate, balance the load of video
servers, and further reduce the service delay measured by the
number of migration steps involved in the migration process.
When a new request is dispatched to a video server, REM
decides whether request migration is needed with a certain
probability using preset migration thresholds and the current
server load status. A detailed description of REM algorithm
will be given in Sect. 3.1.

A state matrix structure (SMS) is proposed in this study to
analyze the performance of VoD systems in terms of the ser-
vice failure rate and service delay. The state matrix stores the
service load information of each video server at certain times
and plays an important role in the determination of migration
paths. Based on the SMS, we develop methods to calculate
performance metrics for the traditional migration scheme and
the proposed REM scheme. The derived results match well
with those obtained by numerical experiments. The proposed
REM algorithm outperforms the traditional migration scheme
with lower failure rate and shorter service delay.

The rest of this paper is organized as follows. We briefly
review previous work in video server scheduling and highlight
our contributions in Sect. 2. We focus on the request migration
strategies proposed for video servers in Sect. 2.1 and previous
performance analysis work on VoD systems in Sect. 2.2. The
REM algorithm for request migration is presented in detail
in Sect. 3.1, followed by experimental results and analysis in
Sect. 3.2. The mathematical model for aVoD system is given in
Sect. 4. The performance analysis of the traditional migration
and the proposed REM algorithms is conducted in Sect. 5,
where we propose two approaches for analysis, namely, the
topology calculation in the state matrix space (SMS) and the
state transition method. Finally, concluding remarks and future
work are given in Sect. 6.

2 Related work and our contributions

2.1 Request migration among video servers

Video file replication between video servers (which are called
peers) enables real-time service migration between them to
balance the service load. The traditional migration algorithm
considers request migration until a new request gets blocked
at the server. This scheme is called the last-minute request
migration. There are two main problems in the traditional mi-
gration algorithm. First, the real-time service load distribution
is highly skewed when migration happens, and such imbal-
ance will degrade the VoD system performance. Second, with
a highly skewed video access probability, some video server
could already reach its service capacity and not accept client
requests from its peer servers without any further migration,
which could lead to additional delay in the VoD system. The
first case can cause the request being rejected so that the service
failure rate of the VoD system will increase. For the second
case, the request will be held at the server so that the system
response time will increase. None of them are desirable for
real-time video service.

Wolf et al. [1] proposed the DASD dancing algorithm
to balance the service load through request migration. The
VoD system consists of a central processor and a collection of

shared disks known as direct access storage devices (DASDs).
In real-time scheduling, there is a penalty function associated
with each video server to measure the load status. New re-
quests are accepted by the system based on the least load first
(LLF) rule most of the time. After a new request is accepted,
the dancing algorithm calculates the optimal load distribu-
tion that minimizes the sum of all penalty functions. If the
difference between the optimal distribution and the current
load distribution exceeds a preset threshold (referred to as the
bad threshold), it greedily migrates requests from overloaded
servers to underloaded servers until the difference is below the
threshold. The DASD dancing algorithm maintains disk load
balance via request migration among video servers. However,
when the system is lightly loaded, servers have enough service
space to accommodate incoming requests and load balance
contributes little to the improvement of the failure rate.

Tsao et al. [2] proposed a connectivity optimization (CO)
algorithm for dynamic load balancing among distributed video
servers. Their method attempted to maximize the product of
access probabilities of servers, thus making all servers equally
accessed. Guo et al. [14] proposed the combination load bal-
ancing (CLB) algorithm for video replica allocation to reduce
the blocking rate of user requests. CLB divides video objects
into different types according to the number of their replicas.
For all type c (c = 1, 2, . . .) video objects, the replica alloca-
tion is processed in such a way as to make the traffic load as
evenly distributed as possible on each server combination that
contains exactly c servers. This allocation procedure is then
repeated for all values of c. The request migration/redirection
mechanism used in their systems is the traditional migration
scheme that happens only when the server is fully loaded and
has no service space for incoming requests.

We propose a random early migration (REM) algorithm in
this work to reduce the service failure rate, balance the load of
video servers, and reduce service delay. When a new request
is dispatched to a video server, REM compares the current ser-
vice load with preset thresholds and decides whether request
migration is needed with a certain probability, which is a func-
tion of the service load. The details of the REM algorithm will
be given in Sect. 3. Simulation results demonstrate that REM
can achieve enhanced system performance.

2.2 Performance analysis of VoD systems

Most work on the performance study of VoD systems is con-
cerned with the network server I/O bandwidth (i.e., the number
of video streams assigned) and the storage cost. Doganata et
al. [15] presented the characteristics of different storage me-
dia and provided an analytical model to obtain the system
storage cost. Schaffa et al. [16] studied the tradeoff between
the bandwidth requirement of video stream delivery and the
storage capability of the overall deployment. Barnett et al. [17]
compared the “setup” cost of a centralized video system with a
distributed one in terms of cost on storage and streaming. Chan
et al. [18] explored the total system cost in terms of local stor-
age and network channels for different caching schemes and
service-scheduling mechanisms. Li et al. [19] used the queue-
ing model to integrate both user activities and server batching
models to analyze the tradeoff in communication and storage
costs in different VoD systems.
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Recently, there have been research efforts focusing on the
performance of the whole VoD system including the server
system, the client population, and the network between them.
Mundur et al. [3] studied the server admission control and net-
work transmission mechanism to meet the quality-of-service
(QoS) requirement such as data rate and delay constraint of
the end-to-end VoD service. The simple redirection (migra-
tion) scheme implemented in their system is still a last-minute
migration in the sense that redirection happens only for those
blocked requests. Shu et al. [20] analyzed the resource re-
quirement for video delivery using batching, patching, and
scheduled video delivery (SVD). The resource was defined as
the virtual channel used to deliver video streams to one or mul-
tiple user requests. None of the above work considers server
scheduling and interactivities between video servers.

In this study, we focus on two performance metrics of re-
quest migration among servers, i.e., the service delay time and
the service failure rate. The difference between our work and
all previous work lies in the fact that we model the service
activity and try to reveal the scheduling mechanism of video
servers. We present the state matrix structure as a description
of the VoD system state. It stores the service load information
of each video server and plays an important role in the determi-
nation of migration paths. Based on this structure, we develop
two analytical methods for the request migration process. The
first method defines the state matrix space (SMS) consisting
of all valid state matrices and studies the relationship between
the state matrix and the migration path decision. Both migra-
tion delay and service failure rates can be obtained from the
topology calculation of SMS. For the second method, we use
the state matrix transition to simulate the request migration
process. The performance metrics can be obtained through
the calculation in each transition step. The derived results are
verified by numerical experiments. It is shown in Sect. 5.3 that
theoretical and simulation results match well.

For the reader’s convenience, key variables used in this
paper are summarized in Table 1.

3 Random early migration algorithm

3.1 Algorithm

In a VoD system, it sometimes occurs that, when a new request
for a particular video arrives, all video servers with this video
cached on have reached their maximum service capacity. Thus,
the request is blocked. However, we may still be able to serve
this request by migrating an in-service request on one of these
servers to another server in the system. The migrated request
may be accommodated by another server immediately, or it
may demand a sequence of migration operations before the
request can be migrated successfully.

Figure 1 illustrates one example of request migration.
There are three video servers in the VoD system. Each server
can store two video copies and serve up to six requests simul-
taneously. Assume that a new request for video A arrives at
some time. Since only server 1 has the copy of video A and it
has already reached the service capacity, we need to migrate
one in-service request of video B to server 2. The migrated
request cannot be served immediately at server 2 since it also
reached the service capacity. Then, server 2 migrates a request

Table 1. Summary of key variables

Symbols Meaning

M number of video titles stored on a VoD system
N number of video servers
L service capacity of a video server in terms

of concurrent video streams
K storage capacity of a video server
Kj number of copies of video j
Λ video copy allocation matrix
G connectivity matrix of video servers
H state matrix of a VoD system
τ state transform through request migration
δ state transform through request accepted locally
D(H(2), H(1)) distance between state matrices H(2) and H(1)

ST video bookkeeping information
DIST distance matrix used in video content allocation
MP request migration path
Γ (MP) number of state matrices corresponding

to migration path MP
µ request coming rate per minute
∆(µ) service delay at µ requests/min
F (µ) service failure rate at µ requests/min
li real-time service load on server i
Ts service time of video file
ψi access probability of server i
φj access probability of video j
φuj unit access probability of video j
r(i, j) request dispatched to server i for video Vj

e(i, j) service end at server i for video Vj

Min th minimum threshold in the REM algorithm
Max th maximum threshold in the REM algorithm
pmax maximum migration probability
pi request migration probability for server i

of video C to server 3, which is under its service capacity at
that time. Note that, after the migration, the service load on
all servers along the migration path except the last one re-
mains unchanged. The last server on the migration path has
its service load increased by one.

Here, we propose a random early migration (REM) al-
gorithm that migrates in-service requests between servers to
achieve a more balanced service load distribution with a cer-
tain probability. The idea of REM is motivated by the random
early detection (RED) gateway used in congestion avoidance
in packet-switched networks [21]. The RED gateway detects
incipient congestion by computing the average queue size and
drops or marks the arriving packet with a certain probabil-
ity when the average queue size exceeds a preset probabil-
ity. Similarly, REM monitors the current service load of each
server to decide whether a request migration is necessary. Let
L denote the service capacity of each video server (here we
assume that each server has an identical service capacity)
and li the current load on server i in terms of the number
of in-service requests. REM uses two thresholds Min th and
Max th (Min th < Max th) to measure the load status on
each server. When the load is less than Min th, there is no
need to do request migration since only part of the service
capacity is used and the server can still accommodate new re-
quests without the risk of reaching its service capacity. When
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Fig. 1. Example of request migration. a Server status when a new
request for video A arrives. b Server status after request migration
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Fig. 2. Relationship between migration probability and current load.
a Traditional migration algorithm. b Random early migration algo-
rithm

the load is between Min th and Max th, there is a potential
that the load will increase to the service capacity and request
migration is performed with a certain probability pi based on
the current load on server i.

Figure 2 illustrates the relationship between migration
probability pi and current service load li for the traditional mi-
gration algorithm and REM. When the load is above Max th,
the server is heavily loaded and request migration is performed
with probability 1. In the REM algorithm, the probability of
request migration increases as the service load increases. As
shown in Fig. 2, as load li varies from Min th to Max th, the
migration probability pi varies linearly from 0 to pmax, i.e.,

pi = pmax
(li − Min th)

(Max th − Min th)
. (1)

We deploy the REM algorithm on the centralized scheduler
of the VoD system. Upon receiving a client request for video
Vj on server Si, the following operations are performed.

Step 1 The scheduler calculates the migration probability pi

based on the current load of Si and preset REM parameters
as follows.
1. If li < Min th, then pi = 0. Go to step 5;
2. If Min th ≤ li < Max th, then calculate pi using (1);
3. If Max th ≤ li, then pi = 1. Go to step 3.

Step 2 The scheduler generates a random number p, p ∈
[0, 1]. If p ≤ pi, then go to step 3; otherwise, go to step 5.

Step 3 The scheduler calculates the migration path starting
from Si.
1. If a migration path exists, then go to step 4;
2. If no migration path exists but li < L, then go to step 5;

otherwise, go to step 6.
Step 4 The scheduler sends messages to servers involved in

the migration path. The request migration is processed
along the path. In the meantime, the incoming request is
held at Si.

Step 5 Si starts to serve the incoming request. The scheduler
updates the state matrix (discussed in detail in Sect. 4.1)
of the VoD system. Go to step 7.

Step 6 The incoming request is rejected.
Step 7 The scheduler waits for the next request.

In REM, for each request migration starting at server Si,
we have to find a feasible path. Since the incoming request is
held at Si in the migration process, we want to find the shortest
migration path to reduce service delay. When there is more
than one shortest path, we choose the path based on the load
balance criterion. That is, let us define the load balance degree
as λ =

∏N
i=1(li/L). The migration path with the maximum

λ value is selected. Note that, given the total number of in-
service requests in aVoD system,λ is maximized when l1/L ≈
l2/L ≈ · · · ≈ lN/L.

Let us discuss the complexity of the REM algorithm. Ac-
cording to the above step-by-step description, we can see that
the migration decision, migration path calculation, and book-
keeping information update are all made at the scheduler.
Thus, the scheduler has the whole view of the system. Upon
an incoming request, the scheduler calculates the migration
probability and finds the migration path if the migration hap-
pens. Then, it updates the bookkeeping information accord-
ingly to keep a consistent view of the system. It can schedule
the next request instead of waiting for the migration among
media servers. The decision making at the scheduler and the
step-by-step migration can be done in parallel. In such a sce-
nario, the complexity of the REM algorithm depends on the
migration path calculation, which is the most time-consuming
task. Since the destination server is not known a priori, the mi-
gration path calculation is a single-source shortest path prob-
lem and can be solved using Dijkstra’s algorithm [22]. The
time complexity is O(N2), where N is the number of servers
in the system.

The REM algorithm can be easily extended to the VoD
system composed of heterogeneous servers, where each server
may have a different storage capacity and/or service capacity.
REM puts no restriction on server storage capacity. The only
change is the bookkeeping information at the scheduler. For
servers cached more video replicas, there may be more service
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status entries. To deal with servers with different service ca-
pacities, we define Rmin and Rmax (0 < Rmin < Rmax < 1)
as the normalized thresholds such that Min thi = LiRmin

and Max thi = LiRmax, where Li is the service capacity
of server Si. We can configure Rmin and Rmax instead of
Min th and Max th and use a previous implementation at the
scheduler.

The difference between Wolf’s DASD dancing algorithm
[1], which is reviewed in Sect. 2.1, and REM can be summa-
rized as follows. In the DASD dancing algorithm, the optimal
value of the cost function is obtained when the service load
is balanced among video servers. The DASD dancing algo-
rithm attempts to maintain load balancing without consider-
ing the server load status. However, when the server is lightly
loaded, it has enough service space to accommodate new re-
quests locally without the need for migration. In this stage, the
system can tolerate certain imbalance without the risk of in-
creasing the failure rate. Furthermore, achieving load balance
through request migration will increase the system cost. In
contrast, REM applies a different migration strategy by taking
the server load into consideration. When the server is lightly
loaded, new requests are accepted locally, which reduces the
migration cost. As the service load increases, the migration
probability also increases and REM migrates requests more
aggressively. REM achieves a more balanced load distribution
than the traditional migration algorithm via earlier migration.
Finally, load balancing becomes important and affects the fail-
ure rate and the migration cost in a heavily loaded system in
REM.

Let us briefly discuss the choice of parameters pmax,
Max th, and Min th based on the intuitive arguments be-
low. More detailed discussion is presented in Sect. 5.3. In
RED, the gateway detects the average queue size when a new
packet arrives and randomly drops packets in the queue. Packet
dropping is a kind of feedback to let TCP decrease the con-
gestion window and retransmit the dropped packet. Parameter
pmax is typically set to a small value to reduce oscillations
in the average queue size at the gateway and in the packet-
dropping probability [21]. In a VoD system, the situation is
somewhat different. The in-service request cannot be dropped
but must be migrated. Besides directly dispatched requests,
each server may need to serve some migrated requests from
its peer servers. When the whole VoD system is under heavy
load, request migration happens frequently and the number of
in-service requests on a video server increases very fast. Thus,
we would like to set pmax to a larger value to more aggres-
sively migrate out in-service requests when the service load is
near Max th.

There are also considerations in the setting of thresholds
Min th and Max th. First, when the server is lightly loaded,
it still has a lot of room to accommodate new requests so that
there is little chance that the request will be blocked or re-
jected. Moreover, each request migration involves the cost of
control message passing, admission control exercising, and
job rescheduling. For simulations in this work, we set Min th
to 60–70% of the full service capacity to avoid unnecessary
migration. Second, when service load is between two thresh-
olds, request migration starts.Among all in-service requests on
a server, some are migrated from its peer servers. The server
must have enough service space to accommodate those mi-
grated requests. Therefore, Max th − Min th cannot be too

small. When the service load is near Max th, request migra-
tion happens frequently and we still need to leave some service
space for the request migrated from peer servers. The last point
is to set Max th near the service capacity but not equal to it.

3.2 Experimental results and analysis

We evaluate the performance of three request migration algo-
rithms: the traditional request migration, DASD, and REM. In
the traditional algorithm, request migration occurs when the
server is at its full service capacity and a new request is blocked
at this server, which is referred to as the last-minute request
migration. The following parameters are adopted for the VoD
system. There are a total of 140 video programs and 24 video
servers. Each server has 4 physical disks, and 4-way striping
is implemented. Thus, the total number of physical disks is
96. Each physical disk has a storage capacity of 3 video files.
It is assumed that all physical disks are identical in perfor-
mance to a service capacity of 30 concurrent video requests
per disk. Consequently, the storage capacity of a video server
is 12 video files while the service capacity is 120 concurrent
requests.

The access patterns adopted by the simulation are de-
scribed below. The user request is modeled as a Poisson pro-
cess with an arrival rate of µ requests/minute, where µ varies
from 26 to 34. The access probability of each of 140 video
programs is modeled by the Zipf-like distribution [23] with
θ = 0.27. All video files are assumed to have the same length
in terms of playback time, which is set to 90 min. The VoD
system is initially idle. Then, it can serve up to 2880 concur-
rent user requests in a 90-min period. This implies an average
arrival rate of 32 requests/minute. In the simulation, we use
arrival rate (µ) to represent the system load. Our simulation
work was conducted over a consecutive period of 7 days. Rel-
evant data were recorded every 5 min. As for the parameters
of the REM algorithm, the lower and upper thresholds were
set to 80 and 105, respectively, and pmax was set to 0.8. We
set the badness threshold of the DASD dancing algorithm to
10, which is the same as in Wolf’s simulation [1].

First, let us evaluate service failure rate. Figure 3 shows
the service failure rate versus the system service load in terms
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Fig. 3. Service failure rate as a function of system load
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of the user request rate. We see from the figure that the ser-
vice failure rate increases as the average request arrival rate
µ increases, which is an indicator of the increase of the ser-
vice load. When the system is lightly loaded (µ < 30), all three
schemes can achieve good performance.When the system load
is around its service capacity (30 ≤ µ ≤ 34), REM alone can
reduce the service failure rate by 1015% from the traditional
request migration algorithm. DASD performs slightly worse
than REM. Both algorithms attempt to balance the load and
redistribute load among servers, which can reduce the chance
that a server will reach its service capacity too early to directly
accept future requests without further migration.

We use load variance LV
def= 1

N

∑N
i=1(li − 1

N

∑N
ı=1 lı)2

as a measurement of the degree of load balance in the sim-
ulation. Figure 4 illustrates the average load variance value
in the simulation period under a different user request rate
(or, equivalently, the service load). When the system is lightly
loaded, most requests are served locally. Some servers with a
popular video get accessed more frequently than others.As the
service load increases, frequent migration is observed and the
service load is gradually balanced among servers. Thus, the
load variance decreases as the service load increases. Again,
REM has a much smaller load variance value than the tradi-
tional request migration scheme all the time in our simulation.
The DASD dancing algorithm achieves a more balanced load
than REM. However, there is little difference between REM
and DASD, and their values almost overlap when the system
load increases to near system capacity.

In the request migration process, if a server along the mi-
gration path has already reached its service capacity, it has first
to migrate one of the in-service requests out to make room for
the incoming request. In the mean time, the new request is held
at the starting server waiting to be served, which results in ser-
vice delay. For example, in Fig. 1, server 2 needs to migrate
one request for video C to server 3 before it can accommodate
the incoming request from server 1. At the same time, a new
request for video A is held on server 1. Let us assume that each
migration step takes the same amount of cost and the service
delay can be measured by the number of intermediate servers
along the migration path that have reached their service ca-
pacity. In this study, we use the service delay as the system
cost to measure server request migration.

Figure 5 shows the migration cost in the simulation period
for traditional migration, REM, and DASD dancing. As the
system load increases, more and more servers reach their ser-
vice capacity. Therefore, service delay increases. The DASD
dancing algorithm migrates requests from overloaded servers
to underloaded servers. It requires all servers, except the start-
ing server, along a migration path not to reach their service
capacity. Thus, the whole migration process can finish in one
step. REM and the traditional scheme attempt to find the short-
est migration path. Request migration is processed step by step
from the end server to the starting server. We count the number
of migration steps as the cost for that migration process. REM
achieves the lowest cost among the three since it considers the
server load status in the migration decision and avoids excess
request migration in a lightly loaded system environment. The
DASD dancing algorithm, on the other hand, only considers
the load balance effect. It has a much higher cost than REM,
especially when the system is lightly loaded.
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Fig. 4. Average load balance as a function of system load
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Finally, let us examine the performance of REM in VoD
systems of different service capacity. Figures 6 and 7 show
the failure rate and service delay of the system, in which each
server can handle 40 concurrent user requests. Figures 8 and 9
show the metrics when each server can handle 240 requests
at the same time. We see that REM can achieve the best per-
formance in both cases. We can draw the conclusion that the
performance of REM scales well under different system ser-
vice capacities.

4 Mathematical modeling of VoD systems

We use a state matrix structure to describe a VoD system in
this section. A state matrix stores the load status of each video
server at a certain time instance. When a request migration
process happens, the state matrix together with the connectiv-
ity graph, which describes the physical connection topology
of video servers, is used to determine the shortest migration
path. The length of the migration path can be obtained by cal-
culating the “distance” (whose formal definition will be given



308 Y. Zhao, C.-C. Jay Kuo: Video server scheduling using random early request migration

8 8.5 9 9.5 10 10.5 11
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Traditional
REM
DASD dancing

fa
ilu

re
 r

at
e

Fig. 6. Service failure rate as a function of system load (server ca-
pacity: 40 requests)

8 8.5 9 9.5 10 10.5 11
0

2

4

6

8

10

12

14

16

18

Traditional migration
REM
DASD dancing

m
ig

ra
tio

n 
co

st

Fig. 7. Average service request delay as a function of system load
(server capacity: 40 requests)

below) of the two state matrices before and after the migration
process.

4.1 State matrix and migration path

When a new request is dispatched to a server (henceforth re-
ferred to as the starting server), it decides whether to accept the
request locally or migrate it out based on the server’s current
load status. For the traditional migration algorithm, when the
current load of a server reaches its capacity, request migration
happens. For REM, request migration happens with a certain
probability when the load is between Min th and Max th and
surely happens when the load is above Max th. If request mi-
gration should happen, the migration path is determined based
on the connectivity graph of the VoD system and the service
state of each server. The connectivity graph decides whether
there is a path between two servers, while the service state
decides if the server can really adopt that path. Therefore, the
service state plays an important role in the migration path se-
lection.
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We use the following structure H = (Hi,j)N×M to repre-
sent the current load on servers, where Hi,j ≥ 0 denotes the
number of current in-service requests for video j on server i.
We can interpret H as the state information of the VoD system.
Before the VoD service starts, there is no in-service request on
servers so that the initial state matrix is a zero matrix. Here,
we use ON×M to represent the initial state. A change of the
state matrix occurs when a new request is accepted by a server.
This request is either accepted locally or through a sequence
of request migration steps. We use δ and τ to represent these
two transforms, respectively. Next, we provide the definition
of a valid state matrix.

Definition 4.1. The valid state matrix must satisfy the follow-
ing constraints: (1) If Λi,j = 0, then Hi,j = 0 for all time; (2)∑M

j=1 Hi,j ≤ L,∀i = 1, ..., N .

The first constraint implies that, in order for a server to
serve the requested video title, the video title must have one
copy cached on the server. The second one restricts the to-
tal number of in-service requests on a server not to exceed
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its service capacity L. Every valid state matrix is reachable
from the initial zero state through a sequence of δ and/or τ
transforms. Two state matrices H(1) and H(2) are said to be
consecutive states if one state can be directly reached from the
other through a one-step δ or τ transform. From the system
state viewpoint, when a new request is accepted by a server,
there is a state transition between two consecutive state matri-
ces, and the “difference” between them reflects the effect of
the applied transform. To study the relation between the state
matrix transform and the migration cost, we define the dis-
tance between two consecutive state matrices H(1) and H(2)

as follows.

Definition 4.2. The distance between two con-
secutive state matrices H(1) and H(2) is
D(H(2), H(1)) def=

∑
i,j |H(2)

i,j − H
(1)
i,j |.

Now we can calculate the distance of consecutive state
matrices under the δ or τ transform. Assume that the new re-
quest is dispatched to starting server Si1 . As defined earlier,
the δ transform means the new request is accepted locally on
the starting server and no migration happens. Under this sit-
uation, the load of the starting server is increased by one and
the load on all other servers remains unchanged. Thus, the
distance is 1. When there is a request migration process, the
relation between the migration path length |MP | and the dis-
tance defined above can be expressed by the following lemma.

Lemma 4.3. The migration path length can be calculated as

|MP | =
D(H(2), H(1)) − 1

2
, (2)

where H(1) and H(2) are two consecutive state matrices.

Proof. We prove Lemma 4.3 by considering a general migra-
tion example as shown in Fig. 10. The migration path can

be represented as Si1

Vj1−→ Si4

Vj2−→ Si2

Vj3−→ Si3 . After the
migration, the load on server Si3 is increased by 1, which
comes from one request for migrate-in video Vj3 . For all other
servers in the migration path, their requests for the migrate-in
video title are increased by 1 each, while their requests for the
migrate-out video title are decreased by 1 each. The service
load of these intermediate servers does not change after mi-
gration. Thus, the distance in this case is (2×|MP |+1). This
completes the proof. ��

The above property establishes the relation between the
state matrix distance and the migration path length. If we con-
sider that each step in a migration process takes the same delay,
the service delay is proportional to the path length. Therefore,
we can obtain the service delay through the calculation of the
“difference” between consecutive state matrices.

4.2 State matrix space (SMS)

According to Lemma 4.3, we can calculate the length of a
migration path through the distance between two consecutive
state matrices before and after the migration.When a migration
is needed, the scheduler constructs a dynamic migration tree
with its root at the starting server. The topology of the tree is

video title (V)          1  …  j1  …  j2      …       j3   …   M 

media server (S) 
1

i1

i2

  i3

i4

N

.

.

.

Vj1 

…

…

Hi3,j3= Hi3,j3+1 

one step of migration 

…

Vj2 

Vj3

Fig. 10. Request migration with state matrix representation

based on the static connectivity graph among servers as well as
the current state matrix of the VoD system. Servers at the same
level of the tree are sorted in increasing order of their service
load. The shortest migration path is obtained by a breadth-first
search on the migration tree. The first available server under
its service capacity is chosen as the end server in the migration
path.

In the following performance analysis, it is assumed that
the system is stable. That means that the performance metrics
(i.e., failure rate and service delay) will converge to some dis-
tributions as long as the experiments are carried out enough
times. Under this assumption, the goal of our analysis is to
determine the statistical mean of these metrics. We propose a
state matrix space (SMS) model to serve as the basic frame-
work of our analysis. It is defined as follows.

Definition 4.4. The state matrix space (SMS) is a mapping
from all valid state matrices H to a directed graph GSMS =
(VH , EH) such that
(1) VH = {H|H is valid};

(2) EH = {(H(1), H(2))|H(1) δ−→ H(2) or H(1) τ−→ H(2)}.

Figure 11 illustrates the SMS model. Note that SMS is
a function of basic system parameters such as the number of
servers, the number of video titles, and the video allocation ma-
trix. Once these parameters are determined, SMS is uniquely
specified. Each valid state matrix is mapped to a node in SMS.
There is a root node in the space, which is the initial zero state

Initial State Matrix
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δRequest Migration
(State Change) 

Accept Locally 
(State Change) 

Full Service Load 

Contract Node 

Fig. 11. Illustration of state matrix space (SMS)
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matrix. Every other state can be reached from the initial state
by a sequence of δ and/or τ transforms. The difference be-
tween SMS and a typical tree structure is that one state matrix
can be directly reached from multiple state matrices. Thus the
in-degree can be greater than 1, while the in-degree of a typical
tree is equal to 1.

Consider two directly connected state matrices H(1) and
H(2) in SMS, where H(2) is obtained from H(1) by either
the δ or the τ transform. The system load is defined as the
total number of in-service requests in the system. Then, the
transform fromH(1) toH(2) causes the system load to increase
by 1. If two state matrices are reachable from the root through
the same number of transform steps (i.e., they are at the same
level), these two states have the same system load.

The relation between state matrices in SMS and the migra-
tion path selection is examined below. Upon receiving a new
request, both the traditional migration and REM make the ad-
mission decision based on the current load status. If there is a
need to do request migration, the migration path is determined
based on the current state matrix and the connectivity matrix
of the VoD system. It is proper to let the starting server choose
the migration path. For the migration path illustrated in Fig. 1,

consider the one-step migration server 1
V ideoB−→ server 2. This

migration is valid if and only if there is a connection between
server 1 and server 2 and server 1 has an in-service request
for video B as well. In general, the whole migration path is
decided by the tuple (Sstart, H, G).

Since the VoD system is stable, we can calculate the av-
erage delay and use it as the performance measurement. As
mentioned earlier, we can use the migration path length to
measure delay. We need to find out the average migration path
length. There are two kinds of transforms from one state to
another. Accordingly, there are two kinds of edges in SMS:
the δ-edge and the τ -edge. For the δ-edge, which means the
request is accepted locally without migration, the length of
migration path is 0. For the τ -edge, which means certain re-
quest migration, we assign the cost to be the migration path
length. Then, the average migration length is the average cost.
We have the following property for the average path length.

Lemma 4.5. Let |τ | denote the cost of a τ transform and
|Eτ | the total number of τ -edges. The average path length

is
∑

τ∈Eτ
|τ |

|Eτ | .

4.3 Request processing and state transition

The relationship between the request processing (including
acceptance, rejection, and migration) and system parameters
is examined in this section. Here we do not consider dynamic
content update but assume the video content on each server
will not change during the service period. Consider a video
server system under a certain state determined by the video
copy distribution (Λ), the current state matrix (H), and the
video bookkeeping information (ST ). The video bookkeeping
information ST is an array of M elements. The jth element
ST j is a list of two tuples (Server, Starting time) contain-
ing the information of current in-service requests on video Vj .
Let r(i, j) be the request dispatched to server i for video Vj .
We can treat the video service as the state matrix transition

process. Upon receiving r(i, j), the request migration deci-
sion is made based on different scheduling algorithms. If the
request is rejected by the system, there is an identical transition
between the current state matrix and the next state matrix. If
the request is accepted, either at the starting server or at some
other server through migration, the current state matrix will
change and the transition will depend on the migration path.
When there is an end at server i for video Vj (denoted by
e(i, j)), the state matrix will also change. We can summarize
our discussion above into the following two lemmas about the
video system modeling.

Lemma 4.6. The video server system is defined by the tuple
(Λ, H , ST , Scheduling), where Λ is the video copy allocation
matrix, H is the current state matrix, ST is video bookkeep-
ing array, and Scheduling is the scheduling algorithm used,
which can be either “traditional” or “REM.”

Lemma 4.7. The video service is defined as a function f :
H 	→ H, where H def= {H|H is valid} is the set of all valid
state matrices. Let H(1) denote the original state matrix and
H(2) the mapping of H(1) under f . The mapping satisfies the
following properties:
1. If request r(i∗, j∗) is rejected, thenf is an identical mapping

and H
(2)
i,j = H

(1)
i,j for ∀ i ,j.

2. If request r(i∗, j∗) is accepted directly on server i∗, then

H
(2)
i,j =

{
H

(1)
i,j + r(i∗, j∗) if i = i∗, j = j∗

H
(1)
i,j otherwise

.

3. If request r(i∗, j∗) causes migration along the path
Vj∗−→

i∗
Vj1−→ i1 −→ · · · −→ ik−1

Vjk−→ ik, then

H
(2)
i,j =




H
(1)
i,j + r(i∗, j∗) if i = i∗, j = j∗; i = i1,

j = j1; . . . ; i = ik, j = jk

H
(1)
i,j − r(i∗, j∗) if i = i∗, j = j1; i = i1,

j = j2; . . . ; i = ik−1, j = jk

H
(1)
i,j otherwise

.

4. If service end e(i∗, j∗) is on server i∗ for video Vj∗ , then

H
(2)
i,j =

{
H

(1)
i,j − e(i∗, j∗) if i = i∗, j = j∗

H
(1)
i,j otherwise

.

5 Performance analysis for request migration

To facilitate the analysis of the request migration process and
the computation of system metrics under different schedul-
ing algorithms, in the previous section we presented the state
matrix structure to characterize the server system state at a
certain time. Based on the proposed model, we developed two
approaches to calculate the failure rate and service delay. The
first approach was derived based on the topology calculation
in the state matrix space (SMS). In the second approach, the
video service was modeled as the state transition between two
state matrices. We studied the transition rules under the events
of request rejection, acceptance, and ending. An event-driven
transition model was built to simulate the real video service.
Both approaches were verified by numerical experiments.
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5.1 Approach I: Analysis using topology calculation in SMS

According to the video service model, the state matrix transi-
tion depends on the migration path when a request migration
happens. Under the assumption that a request migration hap-
pens with an incoming request, we consider the migration path.
Recall that the state matrix stores the load status of each video
server at a certain time instance. When a request migration
process happens, the state matrix together with the connectiv-
ity graph, which describes the physical connection topology
of video servers, is used to determine the shortest migration
path.

We first identify the property of a valid migration
path. Based on the property, we present a way to cal-
culate the failure rate and service delay for the tra-
ditional migration algorithm and REM. We denote by
MP{Si1 , Vj1 , · · · , Sik

, Vjk
, Sik+1 ; k} the following migra-

tion path obtained from the connectivity matrix: Si1

Vj1−→
Si2 −→ · · · −→ Sik

Vjk−→ Sik+1 .

Definition 5.1. The migration path MP is valid if and only
if there exists a tuple (Sstart, H, G) such that there exists a
request migration and MP is chosen as the shortest path.

The following lemma illustrates the characteristics of a
valid migration path.

Lemma 5.2. If a migration path MP satisfies the following
constraints, it is a valid path.
1. Sim and Sim+1 must have a copy of Vjm , m = 1, 2, . . . , k.
2. Si1 , Si2 ,. . . , Sik+1 are different from each other.
3. Vj1 , Vj2 ,. . . , Vjk

are different from each other.
4. Sim cannot have a copy of Vj1 , Vj2 ,· · · , Vjm−2 , m =
3, 4, . . . , k + 1.

Proof. The first constraint is obvious.The two adjacent servers
along a path must have the same copy of a video for request mi-
gration. Otherwise, the migration process cannot happen. The
second and third rules ensure the migration path is cycle free.
Suppose that we have a path in which server Su appears twice,
like · · · → Sil

→ Su → · · · → Su → Sim → · · · . Then, we
can replace this path with · · · → Sil

→ Su → Sim → · · · ,
which is shorter than the original one. It is similar when ap-
plied to video duplication on the migration path. The fourth
rule eliminates the probability that there exists a “shortcut”
on the path. Suppose we have the following migration path:

Si1

Vj1−→ Si2

Vj2−→ Si3 . If server Si3 also has a copy of Vj1 , then
we can skip Si2 and make a direct migration from Si1 to Si3 :

Si1

Vj1−→ Si3 . This new path is shorter than the original one.
Now, we prove if a migration path satisfies all the above

constraints, there exists a tuple (Sstart, H, G) such that
this path is chosen as the shortest path. We construct the
state matrix H and the starting server to satisfy the fol-
lowing conditions: (1) him,jm = L, m = 1, 2, ..., k; (2)∑M

j=1 hik+1,j < L; (3) hi,j = 0, for all other items; (4)
Sstart = Si1 . Under these conditions, when a new request
is dispatched to Si1 , which has reached its service capacity,
request migration happens in the traditional migration scheme
as well as in REM. We construct H , and the migration path
MP{Si1 , Vj1 , · · · , Sik

, Vjk
, Sik+1 ; k} is the only path starting

from Si1 , which is also the shortest path to be chosen. Thus,
it is a valid migration path. Finally, we prove that H is a valid
state matrix. We can construct the request sequence that con-
tains L requests for each video title Vj1 , Vj2 , . . . , Vjk

. When
a new request for video Vjm , m = 1, 2, . . . , k arrives, it is dis-
patched to server Sik

and accepted locally. After L × k steps,
we get state matrix H . Thus, H can be reached from the initial
state matrix by a sequence of δ transforms. This completes the
proof. ��

Lemma 5.2 provides a way to enumerate all valid migra-
tion paths from connectivity matrix G. Each τ -edge in SMS
corresponds to a migration path. Since the tuple (Sstart, H, G)
determines the migration path, the total number of τ -edges is
equal to the total number of such tuples. However, given a tu-
ple (Sstart, H, G), it is difficult to find out what the migration
path is, if there exists a migration. Here, we start from each
valid migration path. Given a path, we calculate the number of
tuples corresponding to that path. This method is valid since
SMS contains all possible combinations of state matrices and
the starting server for each valid migration path. The following
lemma illustrates this feature.

Lemma 5.3. For each valid migration path
MP{Si1 , Vj1 , · · · , Sik

, Vjk
, Sik+1 ; k}, SMS contains all

state matrices H such that MP is chosen as the shortest path
under tuple (Si1 , H, G).

Proof. According to the definition of SMS, it contains all valid
state matrices. For a valid migration path, if it is chosen as the
shortest path under some tuple (Si1 , H, G), then state matrix
H must be valid. Otherwise, the system cannot reach this state
from its initial zero matrix. Thus, SMS must contain H . This
completes the proof. ��

In the request migration process, if a server along the mi-
gration path has already reached its service capacity, then it
first has to migrate one of the in-service requests out to make
room for the incoming request. In the mean time, the new re-
quest is held at the starting server waiting to be served, which
results in service delay. For example, in Fig. 1, server 2 needs
to migrate one request for video C to server 3 before it can
accommodate the incoming request from server 1.At the same
time, a new request for video A is held on server 1. Let us as-
sume that each migration step takes the same amount of time.
The service delay can then be measured by the number of in-
termediate servers along the migration path that have reached
their service capacity. Let ∆(µ) and |MP |(µ) denote the av-
erage delay and the migration path length, respectively, at a
request arrival rate µ. Under the above definition, the relation-
ship between delay and path length is given by

∆(µ) = |MP |(µ) − 1. (3)

Now let us consider the service delay and the failure
rate in the traditional migration algorithm. Assume that the
user request rate is µ. For a valid k-step migration path
MP{Si1 , Vj1 , · · · , Sik

, Vjk
, Sik+1 ; k}, we want to find the

number of state matrices H that corresponds to MP (i.e., MP
is chosen as the shortest path under tuple (Si1 , H, G)). Ac-
cording to Lemma 5.3, SMS contains all those state matrices.
Thus, we can get all the τ -edges that correspond to MP . The
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load distribution in H must satisfy the following constraints.
1. The first k servers in the path have reached service capacity,∑M

j=1 him,j = L, m = 1, 2, ..., k.
2. There must be in-service requests for migrated-out video
files, him,jm

> 0, m = 1, 2, . . . , k.
3. There is service space on the end server,

∑M
j=1 hik+1,j < L.

4. There is no migration path existing on H whose length is
less than k.
In the following derivation, we useCj

i
def= i!

(i−j)!j! (0 ≤ j ≤ i)
to denote the combinatorial calculation. Given the above con-
straints, we can calculate the number of corresponding state
matrices at request rate µ as

Γ{MP} =
{

0, µTs < kL
A − B, µTs ≥ kL

, (4)

where

A =

[
L−1∑
l=0

Cl
l+K−2

]k [
L−1∑
l=0

Cl
l+K−1

] [ ∏
i∈C1

Cli
li+K−1

]
,(5)

C1 def=


i|

∑
i/∈i1,...,ik+1

li = µTs − (kL + lik+1)


 ,

and

B =

[
L−1∑
l=0

Cl
l+K−2

]k−1

[
L∑

l=0

Cl
l+K−1

]k−1 Γ{Si1 , Vj1 , ∗; 1} + · · · (6)

+

L−1∑
l=0

Cl
l+K−2

L∑
l=0

Cl
l+K−1

Γ{Si1 , Vj1 , · · · , Sik−1, Vjk−1, ∗; k − 1}

In (6), ∗ represents any server except those on migration path
MP such that it constructs a valid migration path. In (4), A
represents constraints 1 to 3 and B represents constraint 4. For
one-step migration paths, we can rewrite Eqs. 5 and 6 as

A =

[
L−1∑
l=0

Cl
l+K−2

] [
L−1∑
l=0

Cl
l+K−1

] [ ∏
i∈C2

Cli
li+K−1

]
,(7)

C2 def=


i|

∑
i/∈i1,i2

li = µTs − (L + li2)


 ,

B = 0. (8)

We add all Γ (MP) together to get the total number of τ -edges
at request rate µ, i.e.,

|Eτ |(µ) =
∑

MP is valid

Γ (MP). (9)

With Eqs. 4–9 and Lemma 4.5, we can obtain the average mi-
gration path length under request rate µ. The average migration
delay can be obtained by Eq. 3.

Next, we calculate the failure rate F (µ) under request
rate µ. Let us first consider the situation where the system
load is below service capacity, i.e., µTs ≤ LN . Since each
server has the same access probability, we only check whether
a server can accept a new request. Here, “accept” means the
new request is accepted either locally by that server or through
request migration. In the traditional migration scheme, if a
server reaches its capacity, it cannot serve a new request lo-
cally. Given state matrix H , the number of servers that have
not reached their service capacity is equal to the number of
δ-edges from that server. For each migration path MP , there
is a τ -edge from the corresponding servers. We can calculate
the failure rate as

F (µ) =

� µTs
L �∑

m=0

[
(N − m)Cm

N (CL
L+K−1)

m
∏

n∈C3

C
lin

lin+K−1

]

N
∏

∑N
i=1 li=µTs

Cli
li+K−1

+
|Eτ |(µ)

N
∏

∑N
i=1 li=µTs

Cli
li+K−1

(10)

C3 def=

{
n|

N−m∑
n=1

lin = (µTs − mL), lin < L

}
,

where |Eτ |(µ) denotes the number of τ -edges at request rate µ.
When the system load is above the total system capacity, the
failure rate can be represented by

F (µ) = F

(⌊
LN

Ts

⌋)
+ (1 − LN

µTs
). (11)

REM differs from the traditional migration scheme when
request migration begins. When a new request is dispatched
to a video server, REM compares the current service load with
preset thresholds Min th and Max th (Min th < Max th)
and decides whether request migration is needed. When the
service load is below Min th, migration is not needed. When
the load is between Min th and Max th, migration occurs
with a certain probability. When the load is above Max th,
migration happens with probability 1. This decision only ap-
plies to new requests from a client but not those requests shifted
among servers. Accordingly, we need to change the migration
threshold on the starting server. Here, we use a traditional mi-
gration scheme to replace REM. In this migration scheme, the
migration threshold Lalt obtained from Eq. 12 is no longer
equal to the service capacity (cf. Fig. 2 and Eq. 1). We have

Lalt = Max th − pmax(Max th − Min th)/2 . (12)

With this transform, all equations used in calculating the delay
and the failure rate in the traditional migration scheme can be
applied to REM, with the migration threshold for the starting
server set to Lalt.

Let us discuss the complexity of the SMS-based approach.
According to Eqs. 4–8, the SMS-based approach is a recursive
method in that the counting of state matrices for valid migra-
tion paths of length k (1 ≤ k ≤ N − 1) is based on the results
for valid migration paths of length from 1 to k − 1. The com-
plexity of the SMS-based approach depends on the calculation
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of valid migration paths of length k.According to constraints 2
and 3 in Lemma 5.2, for given k, we have P k+1

N P k
M candi-

dates (where P j
i denotes the permutation of j elements from

a set of i elements and M is the number of video objects). We
can see that the time complexity is exponential. However, the
SMS-based approach is not a real-time scheduling algorithm
for the VoD system. Instead, we use it as an offline algorithm
to demonstrate the performance improvement of REM com-
pared to the traditional migration. The comparison is shown
in Figs. 12 and 13. In the following section, we propose a
more efficient approach using the state transition model of the
request processing discussed in Sect. 4.3.

5.2 Approach II: Analysis using state transition

From a statistical point of view, the probability for an incoming
request for video Vj equals the popularity of that video. More-
over, the request is dispatched randomly to the server with copy
of Vj . We can model the request as r(i, j) = φujΛi,j . Accord-
ing to the analysis in Sect. 4.3, the calculation of the failure rate
and service delay depends on the state matrices before and af-
ter a one-step state transition. Since a state transition happens
when there is some incoming request or service completion
at a video server, we need to update the current state matrix
in these two events accordingly. For the four cases shown in
Lemma 4.7, it is easy to calculate the resulting state matrix
when the incoming request is directly accepted or there is a
service end. When request migration happens, we need to find
the shortest migration path and then update the server status
along that path. Another important issue in state matrix transi-
tion is the scheduling algorithm adopted by the system, which
decides when the migration should happen. In what follows,
we discuss how to find the shortest path and then study state
matrix transition under the traditional migration algorithm and
REM. The following lemma states the property of request mi-
gration.

Lemma 5.4. If a request migration happens under request
r(i∗, j∗), let H denote the current state matrix; then we have
the following: (1) Server i can migrate out video Vj if and only
if Hi,j ≥ r(i∗, j∗); (2) the last server i on the migration path
satisfies L − ∑M

j=1 Hi,j ≥ r(i∗, j∗).

The above property tells us that for server i to migrate video
Vj , it must store a copy of Vj and, at the same time, have an
in-service request for Vj . In other words, service migration
depends on the video allocation matrix (Λ) and current state
matrix (H). We further define a companion matrix Hc from
H , with Hc

i,j indicating the “ability” of server i to migrate out
video Vj .

Definition 5.5. If the incoming request is r(i∗, j∗), the com-
panion matrix Hc is derived from state matrix H as Hc

i,j ={
1, if Hi,j ≥ r(i∗, j∗)
0, otherwise .

Next, we calculate the connectivity matrix G of video
servers. Let (G(k)

i,j )N∗N denote the k-step connectivity ma-

trix, where G
(k)
i,j ∈ {0, 1} and G

(k)
i,j = 1 if the shortest

path from server i to j is of k steps. To calculate G(k),
we define a new matrix operator ⊗ that is similar to matrix
production except that it replaces the scalar multiplication
and addition with logical operations “AND” and “OR.” Then
G(k), k = 1, 2, . . . , N −1 can be calculated as G(k) = (Hc ⊗
ΛT )k − ∑k−1

i=0 G(i), where G(0) = I is the unit matrix and

G
(k)
i,j = 0 for i = j. The server connectivity matrix G can be

derived from G(k), k = 1, 2, . . . , N−1 as G =
∑N−1

k=1 kG(k).
Assume that the shortest migration path under request r(i∗, j∗)

is
Vj∗−→ i∗

Vj∗
1−→ i∗1 −→ · · · −→ i∗k−1

Vj∗
k−→ i∗k. Given that the

path is the shortest among all the viable paths, and according
to Lemma 5.4, we can find the last server on the path

i∗k = min
ik

{
Gi∗,ik

|L −
M∑

j=1

Hik,j ≥ r(i∗, j∗), Gi∗,ik
> 0,

ik �= i∗
}

. (13)

Since the path is the shortest, all the intermediate servers al-
ready reach their service capacity. Using this property, we can
find all the servers along the path

i∗k−1 = min
{
i|Gi,i∗

k
= 1, Gi∗,i = Gi∗,i∗

k
− 1

}
, . . . ,

i∗1 = min
{
i|Gi,i∗

2
= 1, Gi∗,i = 1

}
. (14)

All the migrate-in and migrate-out video files can be found
using Lemma 5.4 as

j∗
1 = min

{
j|Hc

i∗,j = 1, Λi∗
1 ,j = 1

}
, . . . ,

j∗
k = min

{
j|Gi∗

k−1,j = 1, Λi∗
k,j = 1

}
. (15)

Here we choose the server and video with the smallest index
if there are multiple options.

The request scheduling algorithm decides when request
migration should happen. We discuss state matrix transition
rules under the traditional migration algorithm and REM be-
low. The traditional migration algorithm uses “last-minute”
migration. A new request is accepted directly at the starting
server until it reaches service capacity. Then the server starts
to migrate out the request. If there is no viable path, the re-
quest is rejected. The four cases stated in Lemma 4.7 can be
directly applied to the state transition in traditional migration
schemes.

REM uses two thresholds to decide when request migra-
tion should happen. If the current load is less then the lower
threshold, the incoming request is accepted directly at the start-
ing server. If the load is between the lower and upper thresh-
olds, the request is migrated in a certain probability, which is
a linear function of server load. If the load is greater than the
upper threshold, the request is migrated out in probability 1.
Let H(21) and H(22) denote the result state matrix when the
request is accepted directly and when there is migration. We
need to change Lemma 4.7 as follows.

Lemma 5.6. The mapping f defined in Lemma 4.7 satisfies
the following properties under REM:
1. If L − r(i∗, j∗) <

∑M
j=1 H

(1)
i∗,j and there is no viable mi-

gration path, then H(2) = H(1).

2. If
∑M

j=1 H
(1)
i∗,j < Min th or Min th ≤

M∑
j=1

H
(1)
i∗,j ≤
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Fig. 12. Service failure rate as a function of system load (approach I);
solid line – numerical results, dotted line – theoretical results

L − r(i∗, j∗) but there is no viable migration path, then
H(2) = H(21).
3. If Min th ≤ ∑M

j=1 H
(1)
i∗,j < Max th and there is a viable

migration path, then H(2) = (1 − pi)H(21) + piH
(22).

4. If Max th ≤ ∑M
j=1 H

(1)
i∗,j and there is a viable migration

path, then H(2) = H(22).
5. If service end e(i∗, j∗) on server i∗ for video Vj∗ , then

H
(2)
i,j =

{
H

(1)
i,j − e(i∗, j∗) if i = i∗ and j = j∗

H
(1)
i,j otherwise

.

Let us discuss the time complexity of the state-transition-
based approach. First, we can calculate G(k) recursively as

G(k) = (Hc⊗ΛT )k−
k−1∑
i=0

G(i) = (Hc⊗ΛT )⊗G(k−1). (16)

According to Eq. 16, we only need to calculate Hc ⊗ΛT once
and save the result for later use. The calculation of G(k) in-
volves matrix operation ⊗. Since the ⊗ operation is composed
of logical “AND” and “OR” and the elements of both Hc⊗ΛT

and G(k−1) are either 0 or 1, it can be implemented very ef-
ficiently using bit operations. Second, G(k), 1 ≤ k ≤ N − 1,
contains all server pairs with the shortest distance between
each other being k-steps. If G

(k)
i,j = 1, then G

(t)
i,j = 0 for any

t such that t �= k. After we obtain G
(k)
i,j = 1, we can imme-

diately set G
(t)
i,j = 0 for all t > k, which will save a lot of

computation. Last, the time complexity of Eq. 13 is O(NM).
Equations 14 and 15 both have time complexity of O(N2).
The analysis shows that the state-transition-based approach is
more efficient than the SMS-based approach.

5.3 Verification of theoretical derived results

In this section, we apply the two analytical approaches de-
rived in Sects. 5.1 and 5.2 to traditional migration and REM
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Fig. 13. Average service delay as a function of system load (ap-
proach I); solid line – numerical results, dotted line – theoretical
results
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Fig. 14. Service failure rate as a function of system load (approach II);
solid line – numerical results, dotted line – theoretical results

and evaluate their performance in terms of the failure rate and
service delay. To compare with the numerical results given
in Sect. 3.2, we use the same system configurations here. The
server capacity is set to 120 concurrent requests. As for the pa-
rameters of the REM scheme, the lower and the upper thresh-
olds are set to 80 and 105, respectively, and pmax is set to
0.8.

First, let us compare theoretical results obtained by ap-
proach I with numerical results. Figure 12 shows the service
failure rate versus the user request rate for the traditional mi-
gration scheme and the REM scheme. We see from the figure
that the service failure rate increases as the average request
arrival rate µ increases, which is an indicator of the increase
of the service load. When the system is lightly loaded (say,
µ < 30), both schemes achieve good performance with a fail-
ure rate less than 4%. When the system load is around its
service capacity (30 ≤ µ ≤ 32), REM reduces the service
failure rate significantly in comparison with the traditional
request migration scheme. Theoretical results are plotted in
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Fig. 16. REM parameter effect on failure rate

dashed lines, which match well with experimental curves in
both cases. The error is less than 10% of experimental results.
Figure 13 shows the average service delay for the traditional
migration scheme and REM during the simulation period.
Here we vary the request rates from 26 to 32 per minute. As
the system load increases, more and more servers reach their
service capacity and, as a result, the service delay increases.
For all system loads, delay in REM is much smaller than that
in the traditional migration scheme. Theoretical results match
well with experimental ones in service delay, too.

Next, we examine results obtained by approach II. Fig-
ures 14 and 15 show the service failure rate and service delay
under different user request rates, respectively. Theoretical re-
sults are plotted in dotted lines, which also match well with
experimental curves in both cases. The error is less than 5%
with respect to experimental results.

Last, we consider the effect of REM parameters on the
service failure rate and service delay. There are three impor-
tant parameters in REM configuration: the upper threshold
(Max th), the lower threshold (Min th), and the maximum
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Fig. 17. REM parameter effect on service delay

migration probability (pmax). From a statistical viewpoint, the
impact of parameters is primarily on the setup of migration
thresholds. We use Eq. 12 to represent the “virtual” threshold
used in REM. The failure rate and service delay as a function
of Lalt are shown in Figs. 16 and 17, respectively. The request
rate ranges from 26 to 34 requests per minute, as shown by
the different styled curves.

We see from these two figures that, for small Lalt value,
there is no change in the failure rate while service delay in-
creases as Lalt decreases. This is because migration happens
more frequently when Lalt is small, which will increase the
service delay but contribute little to the failure rate. Thus, a
certain degree of migration can reduce the failure rate while
maintaining relatively low service delay. The failure rate will
become “saturated” when more migration requests are pro-
cessed. On the other hand, overmigration will result in longer
service delays. When Lalt increases to a larger value, both the
failure rate and service delay increase. When Lalt equals 120,
which is the service capacity of a single server, REM degen-
erates to the traditional “last-minute” migration algorithm. As
the threshold increases, the system becomes unbalanced and
one-step migration decreases since more and more servers
along the migration paths have already reached their full ser-
vice capacity. Consider the performance of the failure rate and
service delay. We should choose Min th, Max th, and pmax
to make Lalt around 100.

6 Conclusion and future work

The video scheduler plays an important role in video-on-
demand (VoD) systems. We proposed the random early mi-
gration (REM) scheme to reduce the service failure rate and
service delay. REM considers the relation between load bal-
ance and system metrics under different service load situa-
tions. When the system is lightly loaded, servers have enough
service space to accommodate incoming requests and load
balance contributes little to the improvement of the failure
rate. Moreover, excess request migration increases the system
cost. Compared to the DASD algorithm, which only consid-
ers the load balance issue, REM reduces the migration cost by
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accepting requests locally when the system is lightly loaded.
REM migrates requests progressively as the system load in-
creases. Compared with the traditional “last-minute” migra-
tion scheme, REM redistributes the service load among servers
through request migration at a much earlier stage. As a re-
sult, REM achieves a more balanced load distribution and a
lower failure rate than the traditional migration scheme. To
facilitate the analysis of the request migration process and
the computation of system metrics under different scheduling
algorithms, we presented the state matrix structure to charac-
terize the server system state at certain times and developed
two approaches to calculate the failure rate and service delay.
Both approaches were verified by numerical experiments, and
it was shown that REM outperforms traditional migration in
both the failure rate and service delay.

In this paper, we consider server scheduling under a nor-
mal playback environment, which is the most frequently used
function in VoD service. In a full-fledged VoD system, clients
may issue interactive operations such as pause, fast forward
and rewind with the video server. Those interactive operations
usually have different bandwidth requirements compared to
normal playback. Moreover, the duration of those operations
is not known a priori. In the future, we would like to study the
server scheduling problem in such a complicated context and
try to integrate REM with interactive VoD service. The de-
ployment of REM in a distributed video server environment
is another area of our interest.
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