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ABSTRACT
Motivation: Missing data in genotyping single nucleotide polymorph-
ism (SNP) spots are common. High-throughput genotyping methods
usually have a high rate of missing data. For example, the published
human chromosome 21 data by Patil et al. contains about 20% missing
SNPs. Inferring missing SNPs using the haplotype block structure is
promising but difficult because the haplotype block boundaries are
not well defined. Here we propose a global algorithm to overcome this
difficulty.
Results: First, we propose to use entropy as a measure of haplo-
type diversity. We show that the entropy measure combined with a
dynamic programming algorithm produces better haplotype block par-
titions than other measures. Second, based on the entropy measure,
we propose a two-step iterative partition-inference algorithm for the
inference of missing SNPs. At the first step, we apply the dynamic
programming algorithm to partition haplotypes into blocks. At the
second step, we use an iterative process similar to the expectation-
maximization algorithm to infer missing SNPs in each haplotype block
so as to minimize the block entropy. The algorithm iterates these two
steps until the total block entropy is minimized. We test our algorithm
in several experimental data sets. The results show that the global
approach significantly improves the accuracy of the inference.
Availability: Upon request.
Contact: tingchen@usc.edu

1 INTRODUCTION
The study based on the single nucleotide polymorphism (SNP) has
drawn wide attraction from the public. An SNP is considered to be a
mutation at a single nucleotide position, and it keeps record through
heredity thereafter. Human SNP data are very useful for the study
of various subjects in human genetics and diseases. Moreover, it
is known that SNPs are highly abundant across the entire human
genome.

Human chromosomes appear in pairs. A haplotype is an observed
sequence of SNPs in one chromosome, and a pair of haplotypes
are called a genotype. It has been observed that human haplotypes
have a block structure (Dalyet al., 2001). Within a block, haplo-
types have low diversity. Recombination hotspots are considered to
be a source of perturbation of the block patterns—which can also
be caused by the population structure. However, these boundaries

∗To whom correspondence should be addressed.

are not well defined and finding them is itself a challenging task.
The study of haplotype block partitioning was pioneered by Daly
et al. (2001) and Patilet al. (2001), each offering a human haplotype
data set. Systematic partitioning using a dynamic programming (DP)
algorithm was first proposed by Zhanget al. (2002). Later, the object-
ive function in the algorithm was replaced with minimum description
length (MDL) measurements (Koivistoet al., 2003; Anderson and
Novembre, 2003). These two methods produce different results,
depending upon how the MDL describes the data set and how it
treats missing data.

Missing data are common in haplotype data sets. The data set in
Daly et al. (2001) has around 10% missing SNPs, and the data set in
Patilet al. (2001) has around 20% missing SNPs. The missing SNPs
will cause ambiguities in haplotypes and thus seriously affect many
SNP-based applications such as disease mapping. In previous works,
missing SNPs were either inferred with some simple methods or just
ignored.

The problem of the inference of missing SNPs is associated with
the problem of haplotype inference, where given a set of observed
genotypes, we are asked to estimate the frequencies of all haplotypes.
Statistical solutions for the problem of haplotype inference include
those by Excoffier and Slatkin (1995), Niuet al. (2002), Qinet al.
(2002), Linet al. (2002), Stephenset al. (2001) and Stephens and
Donnelly (2003). In general, there are two approaches: expectation-
maximization (EM) algorithms and Gibbs sampling algorithms. Two
kinds of priors were used: Dirichlet prior and approximate coales-
cent prior. Based on the estimated frequencies of haplotypes, we
can assign values to missing SNPs. The challenge of applying
these methods directly to infer missing SNPs is the identification
of haplotype block boundaries, which is a difficult task.

In this study, we propose to measure haplotype diversity within
a block using an information quantity measure called entropy. We
develop a dynamic programming algorithm to partition the SNP data
into haplotype blocks so as to minimize the total block entropy. Also,
we show that the haplotype block structure produced by this meas-
ure is closer to the manually generated block structure suggested in
Daly et al. (2001) than other measures. Given this haplotype block
partition, we develop an EM-like iterative process to infer values
of missing SNPs within each block. Combining these two steps,
we propose a new algorithm, called the iterative partition-inference
(IPI), to infer missing SNPs jointly with haplotype block partition-
ing. In the first step, we apply a dynamic programming algorithm
to partition haplotypes into blocks. In the second step, we use the
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Fig. 1. Entropy map of the data set in Dalyet al. (2001). Each point(i, j)

indicates the entropy of the block from theith SNP to thej th SNP. The
contours connect points having the same entropy.

iterative process to infer missing SNPs in each haplotype block so
as to minimize the block entropy. The algorithm iterates these two
steps until the total block entropy is minimized. We test our algorithm
in several experimental data sets. The results show that the global
approach significantly improves the accuracy of the inference.

2 METHODS

2.1 Entropy map
Conventionally, the linkage disequilibrium (LD) can be measured in a pair-
wise manner. The widely used Lewontin’sD′ is simple and powerful in
measuring the LD (Hedrick, 1987). However, the LD measurements are
usually too noisy for measuring haplotype blocks.

Low diversity is a common feature of haplotype blocks. Here we use
entropy as a measure of haplotype diversity within a block: low entropy
indicates low diversity. We define the haplotype block entropy as follows.
Let (i, j) denote the SNPs from theith SNP to thej th SNP. Let�(i, j)

denote the set of haplotypes collected. The block entropy is then defined as

E(i, j) =
∑

φ∈�(i,j)

Pφ log
1

Pφ

. (1)

This block entropy measurement has an important property of consistency:
E(k,m) ≥ E(i, j) if k ≤ i ≤ j ≤ m. In a region of interest, we can draw
entropy contours for better visualization. Figure 1 shows an entropy contour
plot for Daly’s data. In the plot, a contour connects all of the(i, j) pairs with
sameE(i, j). We call this contour plot anentropy map. Since the entropy
map is symmetric, we only show the lower triangle of the map.

Entropy has been used as a measure to enhanced the conventional LD.
Nothnagelet al. (2003) used a sliding window of pre-selected sizes to cumu-
late entropy-based statistics. In this study, we use information quantities to
measure the whole haplotype data through block partitioning.

The information quantity measurement has some advantages over the con-
ventional LD measurement in that it can measure not only the diversity within
a block, but also the pairwise relationship between two blocks. For example,
the mutual information between two blocks,(i, j) and(k,m), is defined as

I [(i, j), (k,m)] = E(i, j) + E(k,m) − E[(i, j), (k,m)],
whereE((i, j), (k,m)) is calculated over all combinations of haplotypes
across two blocks(i, j) and(k,m). The mutual information increases as LD
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Fig. 2. α map of the data set in Dalyet al. (2001). Each point(i, j) indicates
theα value of the block(i, j), whereα is the percentage of the unambiguous
haplotypes in the block.

increases. When there is no linkage between the two blocks, which means that
the two blocks are independent,D′ = 0, and the mutual information is zero
as well. On the other side, when there is full linkage between the two blocks,
D′ = 1, and the mutual information is maximum. The mutual information is
an un-normalized measurement, so the maximum value varies.

The α-value proposed in Zhanget al. (2002), defined as the percentage
of the unambiguous haplotypes in the block that appear more than once, is
another normalized measurement of block diversity. Higherα-values indicate
lower diversity. Figure 2 shows the plot of theα map. By definition, the
α value bears the consistency property mentioned above. Therefore, theα map
has contours similar to those of the entropy map. However, theα-value is
not a precise measurement of diversity; it measures the portion of singleton
haplotypes in a block.

In conclusion, the information quantities have good properties and yield
better measurements of diversity and linkage. We will apply them to the
haplotype block partitioning problem.

2.2 Haplotype block partitioning
In general, the haplotype block structure has the following properties that can
be measured by information quantities:

(1) Low intra-block diversity, which can be measured by entropy;

(2) High inter-block diversity, which can be measured by joint entropy;

(3) Low inter-block dependency, which can be measured by mutual
information.

We use an entropy thresholdT to define a block (≤T). A properT -value
can be selected with the help of the entropy map. We assume the haplotype
blocks are consecutive along chromosomes. Based on the three properties
of the haplotype block structure, we employ three different cost functions to
partition haplotypes into blocks.

The minimum entropy (ME) method. The ME method is to minimize the total
block entropy. DenoteB(j) as the minimum total block entropy from the first
SNP to thej th SNP. Lete(j) be the beginning SNP of the last block of the
partition that yieldsB(j). Then we have the DP structure as

B(j) = min
1≤i≤j

{B(i − 1)+ E(i, j); for E(i, j) ≤ T }. (2)

The conditionE(i, j) ≤ T in Equation (2) defines a block.
The maximum joint entropy (MJE) method. Given a haplotype block partition,
the total joint entropy is the sum of the joint entropies of adjacent blocks. Let
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C(j ,k) denote the maximum total joint entropy from the first SNP to thekth
SNP, with the last block beginning at thej th SNP. Then, the maximum total
joint entropy can be computed by a two-dimensional DP algorithm using the
following recursion:

C(j ,k) = max
1≤i<j≤k

{C(i, j) + E(i, j − 1)+ E(j ,k);

for E(j ,k) ≤ T and E(i,k) ≥ T }. (3)

The minimum mutual information (MMI) method. Given a haplotype block
partition, the total mutual information is the sum of the mutual informations
of adjacent blocks. LetD(j ,k) denote the minimum total mutual information
from the first SNP to thekth SNP, with the last block beginning at thej th
SNP. Then, the minimum total mutual information can be computed by a
two-dimensional DP algorithm using the following recursion:

D(j ,k) = min
1≤i<j≤k

{D(i, j) + I ((i, j − 1),(j ,k));

for E(j ,k) ≤ T and E(i, j − 1) ≤ T }. (4)

Information quantities serve as criteria in all of our three methods. The DP
algorithms proposed above can produce partitions which yield the optimal
information quantities. However, the resulting partitions are sensitive to the
thresholdT . In Section 4, we will discuss how to chooseT .

2.3 Inference of missing SNPs
In this study, we use entropy as the measure for haplotype blocks. Since
haplotype blocks lack diversity, the value of a missing SNP can be inferred
so as to lower the block entropy. However, there may be multiple missing
SNPs within a block, so they have to be assigned jointly to yield the lowest
block entropy of that block. Assuming that there arem missing SNPs within
a block, letX = x1, . . . ,xm be the random variables of these missing SNPs,
each of which can be assigned 0 or 1 representing the wild type or the mutant
type, respectively. Our goal is to find

X = argX minE(X),

whereE(·) is the entropy of this block. Note that the number of possible
assignments forX can be as large as 2m−1. A brute force search would
be impractical becausem is generally large. Thus, we develop an EM-like
iterative process as follows. In each run of the iterative process, we fixm − 1
missing SNPs, and update the value of the remaining missing SNP according
to the frequencies of the current haplotypes within the block. Gradually, the
updating process organizes the haplotype content within a block into lower
diversity.

We start with theith missing SNPxi . Leth(xi) be the haplotype containing
xi . DefineH−i to be the set of haplotypes excludingh(xi). Similarly, define
X−i as the set of missing SNPs excludingxi . The conditional probability for
xi being the majority (xi = 0) is P(xi = 0|X−i ). Let D be the non-missing
SNPs in this block. Then, in the first step (similar to the E-step in EM) of the
iterative process, we estimate the frequency of haplotypeh(xi) for xi = 0,

f0 = P(h(xi = 0)|H−i ,D), (5)

and the frequency of haplotypeh for xi = 1,

f1 = P(h(xi = 1)|H−i ,D). (6)

In the second step (similar to the M-step in EM), we assignxi = 0 if the new
conditional majority probability

P(xi = 0|X−i ) = f0

f0 + f1
≥ 0.5, (7)

andxi = 1 otherwise.
The haplotypes within a block can be organized into clusters within which

haplotypes are identical. The block entropy is measured by the size of each
cluster and the number of clusters. Thus, each run of the iterative process
incurs a cluster movement of the following:

• Death: current haplotypeh(xi), itself a cluster, merges into another
haplotype cluster, or

Partition:
Minimize total
block entropy

Inference:
Minimize the block

entropy of every block

Fig. 3. The IPI algorithm for the inference of missing SNPs.

• Migration: current haplotypeh(xi) moves from a smaller-sized cluster
to a larger-sized cluster, or

• Keep: current haplotype does not move anywhere.

There are two impossible movements:Birth andMigration from larger cluster
to smaller cluster. For all of the possible movements, we show the incre-
ment of block entropy�E ≤ 0. The proof is shown in supplementary data.
Whenever there is a cluster movement, the block entropy will decrease.
The movement will eventually stop as the block entropy reaches its local
minimum.

2.4 Iterative partition and inference
The aforementioned haplotype block partitioning and inference of missing
SNPs can be combined together to reduce the diversity in all blocks. Thus,
we propose the IPI scheme shown in Figure 3. In the haplotype partitioning
module, we choose theME method, which computes the partition to minimize
the total block entropy. In the inference module, we employ the iterative
process to minimize the entropy locally within a block. The whole system
will converge to a locally minimal block entropy and a locally minimal error
rate of the inference, given the current parameters in the partitioning step. We
can further feed the inference performance back to the partitioning step. Thus
the parameters can be adjusted dynamically so that the total block entropy
reduces.

3 RESULTS

3.1 Data sources
We use two data sets for testing, one from Dalyet al. (2001), and
the other from Patilet al. (2001). Here we use 0 and 1 to denote the
majority value (wild type) and the minority value (mutant) of an SNP,
and we introduce 2 for the missing SNP. The data set in Dalyet al.
(2001) contains 387 samples of 103 SNPs in genotype format. To
create a ground truth haplotype data set for testing, we pre-process
the data set in Dalyet al. (2001) as follows. Every heterozygous
allele is inferred through trios (father, mother and child). If it cannot
be determined, we assume it as missing. These originally missing
SNPs are assigned to the majority value at their loci. This haplotype
data set will serve as the ground truth for the test of the inference
error rate. The data set in Patilet al. (2001) contains 20 samples
of 24,047 SNPs in haplotype format. Thus, no reduction needs to be
made on it. However, the quality varies across its 24,047 SNPs. We
select a high-quality region (8461–8720) in our test. This data set
contains 683 missing SNPs (13%) among the total of 5200 SNPs.
Similarly, these missing SNPs are assigned to the majority value at
their loci. Both data sets are used in the following experiments.

3.2 Haplotype block partitioning
We compare the three information quantity-based measures with
those proposed by Dalyet al. (2001), Koivistoet al. (2003), Anderson
and Novembre (2003) and Zhanget al. (2002), using the data set
offered by Dalyet al. (2001). All except Dalyet al. (2001) used
dynamic programming techniques to optimize different objective
functions. The dynamic programming methods assume blocks to
be consecutive, while the partition proposed by Dalyet al. (2001)
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Table 1. Information measurements of different partitioning methods

Daly-RPa Daly-LPa Anderson IQB (method,T c) Daly-Oa Koivisto Zhangd

Number of blocks 11 11 11 11 11 6 5
Total block entropy 31.7722 32.1279 33.2721 31.1801 (ME, 3.8) 30.0693 23.3165 25.6301
Average block entropy 2.8884 2.9207 3.0247 2.8346 (ME, 3.8) 2.7360 3.8861 5.1260
Total joint entropy 48.4251 48.6917 49.4006 52.8365 (MJE, 4.8) —b 32.1616 28.3691
Average joint entropy 4.8425 4.8692 4.9401 5.2836 (MJE, 4.8) —b 6.4323 7.0923
Total mutual information 11.3103 11.4455 13.3346 1.4183 (MMI, 5.1) —b 9.7992 11.7832
Average mutual information 1.1310 1.1455 1.3335 0.1418 (MMI, 5.1) —b 1.9598 2.9458

aRP: right-passed; LP: left-passed; O: original.
bDaly’s original partition contains gaps; thus we omit all these information quantities.
cThe threshold that defines a block.
dThe partition was performed in Anderson and Novembre (2003).
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Fig. 4. The block entropy points in the partition of Daly-RP, Koivisto and
ME with T = 3.8.

contains gaps. There are a total of four gaps in Dalyet al. (2001),
each with one SNP. To make it compatible with others, we merge
the gaps to the right blocks in the right-passed (RP) partition of Daly
et al. (2001), and to the left blocks in the left-passed (LP) partition.
We calculate the information measurements on each of the parti-
tioning methods, as shown in Table 1, which compares the methods
of Daly-RP, Daly-LP, Anderson, and the information quantity-based
(IQB) methods.

Since our methods optimize the haplotype block partitions by
three information measurements, it is no surprise that our algorithms
out-perform others in each of the three measurement categories.
However, if we consider the result of Dalyet al. (2001) as the human
expert ground truth, our ME method yields a closer partition to it.
This suggests that ‘low intra-block diversity’ is likely to be a more
important property than the other two.

In Figure 4, we visualize the block partitions on the entropy map
(Daly’s data) obtained by Daly-Rp, the method in Koivistoet al.
(2003), and the ME method. The entropy map suggests a low-
diversity region from SNP 46 to SNP 76, which clearly forms a
large block as indicated by Dalyet al. (2001). The partition obtained

by the ME method is closer to that by Daly than that by Koivisto
et al. (2003). The low-diversity intra-block entropy optimization will
further help to infer missing SNPs in the next step.

3.3 Inference of missing SNPs
First we randomly generate missing SNPs on the preprocessed haplo-
type data set. We partition the haplotypes into blocks and infer every
missing SNP locally within the block. We run the EM-like iterative
process on the entire data set. At each run, we choose a missing SNP,
identify the block it is located in, calculate its probability of being
a majority, and update its value. Then the error rate is computed
according to the original data set.

With 1% missing rate on Daly’s data and given partitions, the error
rate is 9.98% for Dalyet al. (2001), 9.60% for Koivistoet al. (2003)
and 6.03% for the ME method. It should be noted that the error rate
for Anderson’s partition is 5.65%, lower than the three methods. It
is because the MDL method contains a step to infer missing SNPs
jointly with the block partition. The results show that the block parti-
tion obtained by the ME method yields the lowest overall error rate.
In conclusion, we show that (1) the lower the diversity is within a
block, the more powerful the inference can be, and (2) the intra-block
entropy measure is a better measure than others in terms of defining
the block structure. In addition, the inferred missing SNP then can
be used to generate better haplotype block partition, and this process
can iterate. Among all measurements, only the ME method fits into
this iterative scheme due to its focus on minimizing block entropy,
which matches the goal of the inference of missing SNPs.

3.4 Iterative partition and inference
We use the data sets in both Dalyet al. (2001) and Patilet al. (2001)
to test the IPI system. The iteration begins as we assume every
missing SNP to be the majority at its location. This assignment is
called ‘majority assignment’. The majority assignment uses only the
single location to compute the likelihood, without using information
from its neighborhood. The error rate of the majority assignment is
shown for comparison. Then we partition the data set into haplotype
blocks using current assignment. After partitioning, the assignment
is updated for every missing SNP. The step of the inference of miss-
ing SNPs will converge. In the next round of iteration, the updated
assignment is again employed for partitioning. We compare the per-
formance of the iterative system in Tables 2 and 3, each with 1%
missing rate and five rounds of iteration.
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Table 2. IPI for Daly’s data, with 1% missing rate (majority assignment error
rate: 16.95%)

Round Error rate (%) Number of blocks Total block entropy

1 6.02 11 33.05
2 5.08 11 32.37
3 5.08 11 32.12
4 5.08 11 32.12
5 5.08 11 32.12

Table 3. IPI for the selected region (8461–8720) in Patil’s data, with 1%
missing rate (majority assignment error rate: 19.23%)

Round Error rate (%) Number of blocks Total block entropy

1 9.61 42 68.49
2 7.69 41 66.71
3 7.69 40 66.25
4 7.69 40 66.25
5 7.69 40 66.25

Table 4. Error rates for the inference of missing SNPs according to different
missing rates, using full data in Dalyet al. (2001)

Missing rates 1% 5% 10%

Majority assignment error rates 16.95% 19.01% 19.35%
1st round 6.02% 8.51% 8.73%
2nd round 5.08% 7.75% 8.02%
3rd round 5.08% 7.38% 8.02%
4th round 5.08% 7.34% 7.98%
5th round 5.08% 7.34% 7.98%

Table 5. Error rates for the inference of missing SNPs according to different
missing rates, using region 8461–8720 in Patilet al. (2001)

Missing rates 1% 5% 10%

Majority assignment error rates 19.23% 20.38% 23.08%
1st round 9.61% 10.38% 9.81%
2nd round 7.69% 9.62% 9.62%
3rd round 7.69% 9.23% 9.42%
4th round 7.69% 9.23% 9.42%

Both results show a significant improvement due to the iteration.
Since the data set in Patilet al. (2001) has a much smaller number of
samples (20), its error rate is notably higher than that in Dalyet al.
(2001). It should also be noted that 5.08% error rate for Daly’s data
is lower than the 5.85% error rate obtained through the partition by
Anderson and Novembre (2003). In addition, we test our algorithm
for different missing rates, 1, 5, and 10%, on the data sets in Daly
et al. (2001) and Patilet al. (2001). The results are shown in Tables 4
and 5. It is obvious that the inference becomes more difficult as there
are more missing SNPs.

0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2
(a)

(b)

0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

Th

Majority assignment
IPI assignment

Majority assignment
IPI assignment

0 0.2 0.4 0.6 0.8 1
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Assignment coverage

Majority assignment
IPI assignment

E
rr

or
 r

at
e

A
ss

ig
nm

en
t c

ov
er

ag
e

E
rr

or
 r

at
e

Fig. 5. Using thresholdTh to assign values to missing SNPs (hard decision):
(a) error rate versusTh in the upper plot, assignment coverage versusTh in
lower plot; (b) error rate versus assignment coverage.

3.5 Hard and soft decisions in iterations
As described in the previous section, the inference of each missing
SNP is stored as the probability of being the majority at its location.
This is called asoft decision, because the decision is in probability
format and not yet finalized. When we partition the haplotypes into
blocks, we have to make ahard decision for the missing SNPs,
claiming each of them to be either the majority or the minority. Upon
making the hard decision, we can define a threshold to cut-off. Let
Th denote this threshold. If the probability of being the majority for
a missing SNP is≥Th, we assign it to the majority. Similarly, if it is
<1 − Th, we assign it to the minority. In our previous tests,Th was
set to 0.5, and every missing SNP had an assignment. During the
iteration, we perform the hard decision for two purposes: partition
and inference, separately. At the partition, every missing SNP is
assigned a value: if we fail to assign a missing SNP a value using
the currentTh, we use 0.5 as the threshold instead for this particular
SNP. Finally, when we calculate the error rate, we only consider the
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Fig. 6. The error rate of the inference of missing SNPs converges after runs
of the iterative process that minimize the entropy using differentT -values on
Daly’s data set. DifferentT values result in different error rates converged.

missing SNPs with assigned values according to theTh while keeping
the un-assigned SNPs out of the assignment coverage.

In Figure 5, we compare the majority assignment and our IPI
system on Daly’s data set with 1% missing rate. In the upper plot of
Figure 5(a), we see that both the majority and the IPI assignments
improve asTh increases. The majority assignment yields a lower
error rate whenTh ≥ 0.95. However, in the lower plot we can also
observe that this low error rate has a very poor coverage,<10%,
whereas the IPI assignment has more than 95% coverage in allTh’s.
The hard decision behavior of both assignments can be concluded in
Figure 5(b). TheTh can serve as an index for the confidence level.
Our IPI assignment covers 98% of the missing SNPs to a confidence
level of 0.999, at an error rate of approximately 3%. At the same
error rate, there are only 10% of the missing SNPs covered for the
majority assignment, with a confidence level of 0.95.

4 DISCUSSION
Our three information quantity-based partitioning methods are tar-
geted to minimize the total block entropy, to maximize the total joint
entropy, or to minimize the total mutual information. Although all the
three properties reflect some dimensions of haplotype blocks, they
are not equally important. If we assume that the partition in Daly
et al. (2001) is true, the partition by the ME method is closer to it
than the two others. This suggests that the property of low intra-block
diversity is a better measure of a haplotype block. In a future study,
the two other properties of haplotype blocks can be applied to either
synthesize a new cost function, or shape the inter-block requirement
for the ME method.

TheT -value is the maximum entropy allowed within a block. The
selection of theT -values affects the resulting partitions, which in turn
affects the accuracy of the inference of missing SNPs. An example
is shown in Figure 6 using the data set in Dalyet al. (2001) with 1%
missing SNPs. We run the iterative process on the entire data set. At
each run, we choose a missing SNP, identify the block it is located
in, calculate its probability of being a majority, and update its value.

1 2 3 4 5 6 7
0

0.05

0.1

0.15

E
rr

or
 r

at
e

1 2 3 4 5 6 7
0

25

50

75

N
um

be
r 

of
 b

lo
ck

s

T

Fig. 7. The selection ofT -values. Upper plot: inference error rate versusT ;
lower plot: number of haplotype blocks versusT.

Figure 6 shows the convergence of the error rate after runs of the
iterative process, according to different entropy thresholdsT .

The preprocessed data set in Dalyet al. (2001) has an entropy of
8.71261. We test the range 1≤ T ≤ 7 on a 1% missing rate, with
five IPI iterations. The corresponding error rates and the number
of haplotype blocks are shown in Figure 7. WhenT is too small,
the data set is partitioned into many small blocks. In this case, not
enough neighboring information is employed to infer missing SNPs.
However, whenT is too large, the data set is partitioned into too
few blocks. Thus, distant neighboring information may be involved
in the inference. Normally, the properT can be selected with the
help of an entropy map. In this case, 2.2≤ T ≤ 3.8 is a suitable
range.
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