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Abstract—A unified approach to rate-distortion (R-D) optimized
compression and view-dependent transmission of three-dimen-
sional (3-D) normal meshes is investigated in this work. A normal
mesh is partitioned into several segments, which are then encoded
independently. The bitstream of each segment is truncated opti-
mally using a geometry distortion model based on the subdivision
hierarchy. It is shown that the proposed compression algorithm
yields a higher coding gain than the conventional algorithm. More-
over, to facilitate interactive transmission of 3-D data according
to a client’s viewing position, the server can allocate an adaptive
bitrate to each segment based on its visibility priority. Simulation
results demonstrate that the view-dependent transmission tech-
nique can reduce the bandwidth requirement considerably, while
maintaining a good visual quality.

Index Terms—Independent partitioning, normal meshes, rate-
distortion optimization, view-dependent transmission, 3–D mesh
compression.

I. INTRODUCTION

THREE-dimensional (3-D) data compression is an essential
technology to facilitate the transmission of 3-D models

over the wired or wireless Internet. Especially, progressive
compression techniques are useful when transmitting a huge
amount of 3-D data interactively, since they enable successive
reconstruction of the data from low to high resolutions. There
has been a large amount of work on the progressive coding
of triangular meshes [1]–[4], since this mesh representation is
prevalent as a modeling tool for 3-D objects. A triangular mesh
consists of topology as well as geometry data. The topology
data characterize the connectivity information among vertices,
while the geometry data describe vertex positions. In progres-
sive mesh coding [2]–[4], a triangular mesh is converted to a
set of simplified meshes with various level-of-details (LODs).
Then, topology and geometry data are compressed in the
increasing order of LODs.
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A triangular mesh generally has an irregular topology struc-
ture, which demands a higher bitrate for coding. To overcome
this drawback, efficient progressive mesh compression algo-
rithms have been proposed in [5]–[7] based on remeshing
techniques. Remeshing is a process of converting an irregular
mesh into a semiregular one, in which the valence of most ver-
tices is equal to six. In other words, most vertices are connected
to six adjacent vertices. The topology data of the resulting
semiregular mesh can be described very compactly. The geom-
etry data can also be effectively compressed by exploiting the
regular structure of vertices. Specifically, the geometry data can
be regarded as wavelet coefficients, which can be compressed
with a zerotree coding algorithm [8].

Although wavelet-based algorithms [5]–[7] achieve a high
coding gain, the local characteristics of wavelet coefficients can
be exploited to improve the coding gain further. In this paper,
we propose an algorithm that first divides an input mesh into
several segments and then encodes each segment independently
according to its local characteristics. An optimal rate is assigned
to each segment to minimize the geometry distortion subject
to the constraint on a total rate with the Lagrangian multiplier
method. Simulation results demonstrate that the proposed algo-
rithm yields a higher coding gain than the conventional wavelet
algorithm described in [7].

Furthermore, since many Internet-based 3-D applications re-
quire interactive communications between a server and multiple
clients, we propose a view-dependent streaming algorithm to
facilitate the server-client interactions. The proposed algorithm
encodes each segment independently so that the compressed bit-
stream for each segment can be truncated at an arbitrary point.
We employ a segment visibility measure to find the optimal
set of truncation points, which maximizes the quality of recon-
structed 3-D mesh from a client’s viewing position. It is shown
that the transmission bandwidth can be reduced significantly by
allocating a major portion of bitrates to visible segments.

This paper is organized as follows. Related previous work is
reviewed in Section II. The remeshing algorithm, which con-
verts an irregular mesh into a normal one, is described in Sec-
tion III. The rate-distortion (R-D) optimized compression algo-
rithm and the view-dependent transmission algorithm are de-
tailed in Sections IV and V, respectively. Simulation results are
presented in Section VI. Finally, concluding remarks are given
in Section VII.
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Fig. 1. Remeshing example, where the triangles of the semiregular mesh are illustrated with a normal flipping pattern to show the semiregular connectivity. (a)
Irregular mesh. (b) Base mesh. (c) Semiregular mesh.

II. REVIEW OF PREVIOUS WORK

A. Remeshing and Wavelets

Remeshing is a technique of converting an irregular mesh
into a semiregular one [9]–[11]. A remeshing example is given
in Fig. 1. An irregular mesh is simplified to a base mesh, and
then the base mesh is refined to a semiregular mesh by adding
new vertices systematically. Note that vertices in the semireg-
ular mesh are positioned more regularly than those in the irreg-
ular mesh, and most vertices in the semiregular mesh have a
valence 6.

The remeshing process consists of two phases: parameteriza-
tion and refinement. In the parameterization phase, a mapping
from a two-dimensional (2-D) domain, which is homomorphic
to a topological disk, to a 3-D surface is defined. Parameteriza-
tion is usually performed in the mesh simplification step, where
each base triangle is employed as the desired 2-D domain. To
explain this idea clearly, let us consider an example depicted in
Fig. 1. In this figure, vertices within the region bounded by white
curves in Fig. 1(a) are projected onto the corresponding base
triangle. These projected vertices are depicted by black dots in
Fig. 1(b). Each projected vertex onto the base triangle contains
the information of the original vertex position. By interpolating
these original vertex positions, any point on the base triangle can
be mapped approximately to a point (not necessarily a vertex) in
the original mesh. Eck et al. [9] proposed an algorithm to con-
struct a base mesh using the Voronoi partitioning. It computes a
piecewise linear harmonic map that minimizes the parameteri-
zation distortion using the conjugate gradient solver. Duchamp
et al. [12] developed a more efficient computation method for
harmonic maps based on the hierarchical mesh reduction. Lee
et al. [10] proposed an algorithm to find a smoother parame-
terization, which employs vertex removal operations for mesh
simplification.

Based on the parameterization information, the base mesh
can be refined into a semiregular mesh with subdivision con-
nectivity. Fig. 2 illustrates the 1–4 subdivision from the th
level to the th level. Let us use , , and to represent
three vertices at the th level, and , , and to
represent their corresponding vertices at the th level.
The triangle is divided into the four sub-triangles,

, , , and

Fig. 2. The one-to-four subdivision.

by adding three new vertices , , and
. There are several subdivision methods to determine the

positions of vertices at the th level from those of the th
level [13]. They can be classified into two types: the interpo-
lating and the approximating approaches. In the interpolating
approach, a vertex at a coarser level is also a vertex at a finer
level, i.e., , , . In contrast,
vertex positions may not be preserved as the level increases
in the approximating approach. Fig. 3 represents the butterfly
subdivision which is an interpolating scheme [14]. Fig. 3(a)
shows the weights used to predict a newly added vertex .
Thus, in Fig. 3(b), the position of a new vertex is
obtained via

(1)

where , , and denote the positions of , , and
, respectively.

The newly added vertex is predicted from the lower level
vertices so that it does not lie on the original mesh surface in
general. The actual remeshing point is found on the orig-
inal surface which corresponds to the center of edge
on the parameter domain. Then the difference be-
tween a remeshing point and its prediction is called a refinement
vector or a wavelet coefficient. The semiregular mesh geometry
can hence be described by the base mesh geometry and the cor-
responding hierarchical wavelet coefficients [15].

In addition, each refinement vector can be constrained to
have the direction of the surface normal, which is called the
normal mesh representation [11]. Then, each wavelet coeffi-
cient is compactly represented by a scalar instead of a 3-D
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Fig. 3. Butterfly subdivision. (a) Butterfly structure and weights. (b) Position
of newly added vertex v̂ is predicted by those of the neighboring vertices on
the butterfly structure.

vector, yielding further coding gain [7]. Fig. 4(a) illustrates the
normal remeshing procedure. The normal line is first evaluated
on , whose direction is determined by those of the neigh-
boring vertices at the th level. Then, the piercing point , on
which the normal line passes through the original mesh surface,
is employed as a candidate for the remeshing point. Fig. 4(b)
shows the parameter domain configuration, where denotes
the parameter coordinates of . Let .
The piercing point can degrade the shape of the original mesh
when lies far from or there can be no piercing point
at all. In such a case, the remeshing point is determined from

, using the parameterization mapping, without the constraint
of the normal direction. It is called a nonnormal vertex and its
wavelet coefficient is described by a 3-D vector. In this work,
the piercing point is accepted only if

The constant is set to 0.2 for the first and the second refinement
levels, and 0.6 for the finer refinement levels.

B. Coding

Schröder and Sweldens [16], [17] developed a scheme for
the wavelet representation of functions on a sphere. Based on
this scheme, Kolarov and Lynch [18] combined the wavelet
transform and the SPIHT zerotree coding algorithm to com-
press a function on 2-manifolds. They introduced the notion of
G-tree as a tree structure for general 2-manifolds. In a G-tree,
the base manifold is the root node, and subdivided triangles
and higher level vertices become offsprings of a lower level
triangle. Morán and García [5] extended this approach to
compress meshes with subdivision connectivity progressively.
Moreover, Khodakovsky et al. [6], [7] proposed a progressive
geometry compression algorithm for semiregular meshes and
normal meshes based on the edge-based tree structure and the
zerotree coder.

Fig. 5(a) shows the parent-offspring relation between the ver-
tices at the th and the th levels based on the edge-based
tree. is a parent node and ’s are four off-
springs of . Each at the th level has its own four off-
springs at the th level, and so on. The vertex on each base
edge becomes the root node of an edge-based tree. In Fig. 5(b),

is a base triangle, and three vertices , , and
are root nodes. The vertices at the second level are classified into

Fig. 4. Normal remeshing. (a) Refinement step and (b) its configuration on
the parameter domain, where u(v) denotes the parameter coordinates of v. The
validity of the piercing point is tested by checking whether it lies within the
shaded circle on the parameter domain or not.

three sets ’s, ’s, and ’s, which are the offsprings of
, , and , respectively. In this way, all vertices in a semireg-

ular mesh can be covered, without overlapping, by base vertices
and a number of edge-based trees.

C. View-Dependent Transmission

It requires a huge amount of computations to render detailed
3-D models. Many attempts have been made to develop fast and
efficient rendering techniques. An approach is the view-depen-
dent rendering, which assigns different LODs according to the
visibility of the models. Several algorithms have been proposed
for the view-dependent simplification and refinement of height
field surfaces [19], irregular meshes [20]–[22], and meshes with
subdivision connectivity [23], [24].

Some effort has been also made on the view-dependent com-
pression and transmission of 3-D models to facilitate interactive
communication of 3-D data in server-client environments. In
[25], [26], vertex split operations are transmitted to selectively
refine a 3-D model based on the vertex hierarchies. Yang et
al. [27] proposed a view-dependent transmission algorithm for
compressed bitstreams of irregular meshes. Grabner and Zach
[28] employed an adaptive quantization scheme to provide lo-
cally adaptive resolutions to geometry data. Gioia et al. [29]
proposed a rendering and transmission algorithm for semireg-
ular meshes, which can add or suppress wavelet coefficients to
perform view-dependent reconstruction of large meshes at the
decoder side. Also, texture data can be transmitted in a view-de-
pendent way [30].

III. PREPROCESSING

In this work, an input irregular mesh is first simplified to
a base mesh . Then, is refined times

to obtain a normal mesh .
In the simplification process, we use half-edge collapse oper-

ations with quadric error metrics [31] and the polar map [10] to
obtain the initial base mesh and its parameterization. The sim-
plification scheme in [31] provides base mesh with an ac-
ceptable visual quality. However, can be preprocessed for
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Fig. 5. Edge-based tree. (a) Parent-offspring relation, where v is a parent node and v ’s (1 � j � 4) are four offsprings of v . (b) Covering of vertices. There
are three root vertices v , v , and v .

better geometric fidelity to provide a robust remeshing result. In
[11], a base vertex is repositioned to be closer, in the parameter
domain, to the center of the adjacent base triangles. In this work,
we reposition base vertices not only to balance them in the pa-
rameter domain but also to reduce the squared sum of wavelet
coefficients to improve the coding gain.

Let represent the wavelet coefficient for . Wavelet co-
efficients ’s for the roots of edge-based trees are included
in an energy function, and base vertices are translated to min-
imize the energy function. Fig. 6(a) shows how base vertex
is used in the prediction of associated vertices at the first level.
Note that ’s, ’s, and ’s have as a butterfly neighbor.
Based on the structure in Fig. 3, they are predicted from with
butterfly weights 1/2, 1/8, and 1/16, respectively. Thus, when

is repositioned, wavelet coefficients or prediction errors of
’s, ’s, and ’s change accordingly. The energy func-

tion for is defined as

(2)

which is the squared sum of affected wavelet coefficients.
Fig. 6(b) represents the parameter domain corresponding to

the base triangles adjacent to . The small dots depict the orig-
inal vertices, which are mapped to this region by the polar map
[10]. As shown in Fig. 6(b), is translated to one of those dots,

, to minimize the cost function in (2). This procedure is iter-
atively applied to all base vertices until the decrease in the total
energy becomes negligible. Fig. 7 shows the energy minimiza-
tion results for the “Teeth” model. It is observed that the base
mesh yields a more uniform triangles as the iteration continues.

In the energy minimization procedure, the initial parameteri-
zation is modified following the change of the base mesh. Then,
with the modified parameterization, the energy-minimized base
mesh is repeatedly refined to obtain a normal mesh .
The butterfly subdivision is adopted in the refinement.

Fig. 6. Energy minimization procedure. (a) Vertices at the first level which are
predicted from the base vertex v based on the butterfly structure. (b) In the
parameter domain, u(v ) is moved to u(�v ) to minimize the energy function.

Consequently, can be represented by the base mesh and
its geometrical refinements for higher level vertices, i.e., their
wavelet coefficients. The base mesh can be encoded by any
static mesh compression algorithm, e.g., the algorithm in [32]
or [33]. The wavelet coefficients can be compressed effectively
by exploiting the hierarchical structure. An R-D optimized
wavelet coefficient compression algorithm is proposed in the
next section.
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Fig. 7. Results of energy minimization applied to the “Teeth” model.

IV. R-D OPTIMIZED WAVELET COEFFICIENT COMPRESSION

While conventional algorithms proposed in [5]–[7] encode all
wavelet coefficients as a whole, our algorithm partitions them
into disjoint segments and encodes each segment adaptively to
maximize the R-D performance.

A. Mesh Partitioning

There are several partitioning algorithms for irregular
meshes. For example, Mangan and Whitaker [34] used the
watershed scheme to partition a 3-D mesh, and Zuckerberger et
al. [35] partitioned a polyhedral surface based on the flooding
convex decomposition and the watershed segmentation. Com-
pared with irregular mesh partitioning, semiregular meshes can
be partitioned in a relatively simple way. As described in Sec-
tion II-B, edge-based trees can provide a disjoint partitioning
of vertices in a semiregular mesh [6]. Alternatively, a segment
can be defined for each base triangle, and the vertices can be
partitioned into appropriate segments [5].

We adopt an edge-based tree in Fig. 5 as one segment for a
normal mesh in this work. However, as shown in Fig. 5(b), three
tree segments, which grow from , , and , intersect one
another within the base triangle . Thus, the conven-
tional edge-based tree structure cannot yield a compact localiza-
tion of a segment. To address this problem, we propose two more
edge-based tree structures called the “scissor” tree and “arrow”
tree in this work. Fig. 8(a) shows a scissor tree and Fig. 8(b)
illustrates the covering of vertices using scissor trees. All four
offsprings ’s are reachable from the parent
via a single edge at the th level. In contrast, in Fig. 5(a),

or is reachable from via at least two edges. Thus,
the scissor tree structure alleviates the intersection problem and
provides a more compact localization of a segment than the con-
ventional tree structure.

Similarly, as shown in Fig. 8(c) and (d), the arrow tree struc-
ture also localizes a segment compactly. However, two arrow
trees can conflict with each other at a base edge, which is in-
cident with an odd valence vertex. Fig. 9 shows an exceptional
patching example, where dotted arrows represent the directions
of arrow trees. Since the valence of is 5, the orientations
of two base triangles and conflict with
each other at . In other words, edge cannot be as-
sociated with an arrow tree. In this case, a scissor tree is used

instead to reconcile the opposite directions and provide a dis-
joint covering of all vertices.

All three types of edge-based trees can be employed in the fol-
lowing R-D optimized compression and view-dependent trans-
mission. Especially, in view-dependent transmission, the scissor
and arrow structures provide better visual quality than the con-
ventional structure, since they result in the compact localization
of a segment.

B. Optimal Truncation of Bitstreams

Each segment (i.e., the edge-based tree) in a normal mesh
is encoded by the SPIHT algorithm [8]. As mentioned in
Section II-A, there are two types of vertices in a normal mesh:
normal vertices and nonnormal vertices. We use one bit per
vertex to specify whether it is a normal vertex or not. The
SPIHT algorithm can be directly applied to encode scalar
wavelet coefficients for normal vertices. On the other hand,
to encode a vector wavelet coefficient for a
nonnormal vertex, is
first encoded as a scalar, where denotes the sign of

. After the scalar is encoded as significant, the encoding of
and follows.

In the SPIHT algorithm, the compressed bitstream consists of
significant bits, sign bits, and magnitude refinement bits. In this
work, truncation points are defined as last bits of significance en-
coding passes and magnitude refinement passes for each vertex,
and a packet is defined as a set of bits between two consecutive
truncation points. Let denote the th segment, and de-
note the th packet for . Also, let denote the cumulative
number of bits in the first packets , and
denote the distortion of the segment reconstructed using the
first packets. Then, the packet is associated with the in-
cremental rate and distortion

It is expected that the R-D curve is convex so that the slope
is a monotonic decreasing function of

. However, it is possible for some that is larger than
. This abnormality is eliminated by merging and

into one packet [36].
Let be the total bit budget for all segments with

, where is the number of segments. Then, the
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Fig. 8. Two modified edge-based trees. (a) Scissor tree. (b) Covering of vertices using scissor trees. (c) Arrow tree. (d) Covering of vertices using arrow trees.

optimization problem is to find the set of ’s that minimizes
subject to the constraint .

To find the set, we minimize the following cost function:

(3)

where is the Lagrangian multiplier. By varying , the optimal
solution satisfying the rate constraint can be found. In practice,
all packets are sorted in the decreasing order of slopes .
Then, the encoder continues popping the packet with the largest
slope from the sorted list and transmitting it to the decoder, until
the total bit budget is exhausted.

C. Distortion Model

The geometry distortion between the original
normal mesh and a reconstructed mesh is defined as

(4)

where is the number of vertices in , and and denote
the original and reconstructed positions of , respectively. The
remeshing error is not incorporated in the geometry distortion,
since remeshing and compression are performed separately.
Note that the remeshing error is usually negligible as compared
to the quantization distortion in the compression procedure.
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Fig. 9. Exceptional patching example of the arrow trees. Since a base vertex
v has an odd valence 5, the directions of two triangles (v ; v ; v ) and
(v ; v ; v ) conflict each other on edge (v ; v ). We substitute the arrow tree
with the scissor tree to achieve a disjoint covering of vertices.

Vertex positions are related to wavelet coefficients that are pre-
dictionerrors in the butterfly subdivision.Thus, the geometry dis-
tortion is related to themeansquarederrorofwavelet coefficients.
However, since the synthesis filter in the butterfly subdivision is
notorthogonal,thegeometrydistortionisnotlinearlyproportional
to the mean squared error of wavelet coefficients, i.e.,

where and are the original and reconstructed wavelet
coefficients of , respectively. Obviously, wavelet coefficients
can be inverse-transformed to vertex positions, and the exact
geometry distortion can be computed. However, this approach
demands too high computational burden in the R-D optimiza-
tion procedure. In our approach, wavelet coefficient errors are
weighted depending on their remeshing levels to approximate
the geometry distortion at a modest computational complexity.
A similar approach was adopted in image compression [37].

Fig. 3 shows a vertex at the fine level and its eight but-
terfly neighboring vertices at the coarse level . Conversely, a
vertex at the coarse level is used to predict a number of vertices
at the fine level. In Fig. 10, vertex at level is used for the pre-
diction of ’s, ’s, and ’s at level with weights
1/2, 1/8, and 1/16, respectively. In a normal mesh, all vertices
except a few base vertices have a valence equal to 6. Thus, if

, the numbers of ’s, ’s, and ’s are equal to
6, 6, and 12, respectively. Since is used for the prediction
of the associated vertices, the position error of propagates to

’s, ’s, and ’s, and the propagation effect (including
the error of itself) can be approximated by a weighting param-
eter

(5)

Fig. 10. Locally associated vertices of v based on the butterfly subdivision.
The vertices at level l are classified into v ’s, v ’s and v ’s, which are
depicted in different gray shades. The vertex v is a butterfly neighbor of v ’s,

v ’s and v ’s with weighs 1/2, 1/8, and �1/16, respectively.

The vertex position errors at the th and th levels also
propagate to associated vertices at the th level. It can be
easily shown that the error propagation of to the th and

th level vertices, including its own error, can be approxi-
mated by a weighting parameter , assuming that the errors of
neighboring vertices are statistically independent. In a similar
way, the error propagation of to the whole normal mesh
can be approximated by

(6)

where is given by (5).
Thus, distortion in (3) can be obtained by multiplying

the squared error of each wavelet coefficient at the th level with
weight and summing up errors from all levels

(7)

where is given by (6). Intuitively speaking, wavelet coeffi-
cients at a lower level represent low frequency components of
an input mesh, and are used in the prediction of higher level co-
efficients. Thus, wavelet coefficients at a lower level are more
important and, therefore, multiplied by a larger weighting pa-
rameter in our distortion model.

V. VIEW-DEPENDENT TRANSMISSION

In 3-D model streaming applications, the client’s viewing
position can be exploited to maximize visual quality by allo-
cating a major portion of the available bandwidth to visible
parts. Fig. 11 illustrates the principle of view-dependent trans-
mission, where the viewing position lies on . The bold line
from to depicts the visible region of the object. The server
can reduce the required bandwidth by transmitting only the data
for the visible region. Following discussion in the previous two
sections, we propose a more sophisticated algorithm for view-
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Fig. 11. View-dependent processing with respect to a viewing position.

dependent compression and transmission of normal meshes in
this section.

A. Visibility Test and Visibility Priority

The viewing parameter of a client is sent to the server through
a feedback channel. With this information, the server performs
a visibility test and assigns visibility priorities to vertices. The
simplest way to find the visibility is to use the angle between
the surface normal vector and the viewing vector. The surface
normal test has been used for many graphic processing proce-
dures, such as back-face culling, LOD control, silhouette con-
struction and collision detection [21]–[23], [26], [27]. Note that
the surface normal test is valid only if the surface is closed.

In a normal mesh, the visibility of a vertex can be deter-

mined by two vectors, the vertex normal vector and the

viewing position vector that begins at the center of object
and ends at the viewing position . Let denote the angle

between and , given by

(8)

Vertex is more visible to the client as approaches 0. It
is invisible if is larger than . In other words, the visi-
bility is proportional to and is 0 if . Since
we employ the mean squared error of vertex positions as the ge-
ometry distortion measure, the self priority of from
the viewing position is defined as

if

if .
(9)

It is called the self priority, since it considers only the view-
dependent distortion of itself.

However, as mentioned in Section IV-C, vertices in a normal
mesh are related to one another according to the subdivision hi-
erarchy, and the position error of a lower level vertex propagates
to higher level vertices. Therefore, the overall visibility priority
of a vertex should take into account the error propagation effect
as well. With the notation given in Fig. 10, we can obtain the

overall visibility priority of each vertex from the highest level
to the lowest level recursively via

(10)

Also, the visibility priority of vertex at the highest level is
equal to its self priority

(11)

The visibility priority is equal to weighting parameter
given by (6), if we assume all vertices are perfectly visible,

i.e., for all ’s.
It is worthwhile to point out that the view-dependent distor-

tion was defined as the projected geometric error in [19]. In other
words, a vertex is assigned a higher priority if the angle between
the normal vector and the viewing vector is closer to . This
put more emphasis on faithful reconstruction of the object sil-
houette. However, in this work, the visibility priorities of ver-
tices are not used for individual vertices but employed to allo-
cate higher bitrates to more visible surface segments. Therefore,
instead of using the sine function, we adopt the cosine function
in (9).

B. Optimal Truncation of View-Dependent Bitstreams

To support view-dependent transmission effectively, we in-
corporate the above visibility criterion into the R-D optimized
compression system. Let be the view-dependent distortion
of the th reconstructed segment using the first packets. To
compute , the visibility priorities of vertices are used in-
stead of the weighting parameters ’s in (7). That is

(12)

The optimal view-dependent transmission is achieved by
finding the set of ’s that minimizes

subject to the constraint . This is basi-
cally identical to the R-D optimized compression formulation
presented in Section IV-B except that the view-independent
distortion measure is replaced by the view-dependent one. Thus,
the optimal set of ’s can be found using the method
described in Section IV-B. By employing the view-dependent
distortion measure, the proposed algorithm can allocate the
total bit budget more effectively to offer the maximum visual
quality to a client.

Since the visibility priorities depend on the viewing position,
they should be updated periodically and the R-D optimization
algorithm should be performed based on updated visibility
priorities. The view-dependent processing for dynamic viewing
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Fig. 12. View-dependent processing with respect to dynamic viewing positions.

Fig. 13. Comparison of the original irregular mesh (left) and the corresponding normal mesh (right) for six test models with their rendered images.

positions is illustrated in Fig. 12. When an initial viewing
position lies on , the bold curve from to is visible.
The visibility priorities are initialized to be ’s, and the
R-D optimization is performed to transmit the first
packets for each segment . When the viewing position
approaches toward , the visible region expands to include

. The server performs the visibility test again, and updates

the visibility priorities to ’s. Then, based on the new
information, the R-D optimization algorithm is performed on
the remaining packets. Thus, subject to the rate constraint,
additional packets are transmitted for
each to maximize the visual quality from . Similarly,
the update of visibility priorities and the R-D optimization are
performed based on the next viewing position .
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C. Implementation for Real-Time Applications

The above algorithm computes the visibility priorities of all
vertices whenever the viewing position changes. Thus, real-time
interaction may be impeded by a high encoder complexity.
We develop another implementation for real-time applications,
which can reduce the computational complexity significantly at
the cost of modest performance degradation.

In this implementation, a visibility priority is assigned to each
segment rather than to each vertex. For each segment , a seg-

ment normal is defined as the sum of vertex normals in the
segment and given by

(13)

Then, the visibility priority of is defined in a way
similar to (9) via

if
if

(14)

where denotes the angle between and .
Then, the view-dependent distortion in (12) is approx-

imated by

(15)

where is the view-independent distortion given by (7). In
other words, to approximate the view-dependent distortion, the
view-independent distortion is weighted by the segment visi-
bility priority. The server can pre-compute the view-indepen-
dent distortion for each pair of and . When the viewing
position changes, the sever only computes the segment visibility
priorities and approximates the view-dependent distortions with
(15). Note that this approach requires much less computation,
since it does not compute the visibility priorities of all vertices.

VI. SIMULATION RESULTS

A. Remeshing and R-D Optimized Compression of
Normal Meshes

The performance of the proposed algorithm is evaluated with
six test models as shown in Fig. 13, where the original irreg-
ular mesh and the corresponding normal mesh are presented
side-by-side for visual comparison. Furthermore, five levels of
the “Venus” normal mesh are shown in Fig. 14. Some properties
of these test models are summarized in Table I.

The remeshing distortion in the table is calculated using the
METRO algorithm [38]. That is, in order to measure the distor-
tion between two meshes and , is scan-converted
to yield a sufficient number of sample points. Then, the distance
from to is given by the root mean of minimum squared
distances from the randomly selected sample points on to

. Similarly, the distance from to is computed. The
distortion is given by the maximum of the two distances, and

Fig. 14. Representation of the “Venus” model at various levels.

TABLE I
PROPERTIES OF TEST MESH MODELS. # V = NUMBEROF VERTICES IN AN

ORIGINAL IRREGULAR MESHM; # T = NUMBER OF TRIANGLES INM; # BT =
NUMBER OF TRIANGLES IN A BASE MESHM ; # L = MAXIMUM

REMESHING LEVEL; # NNV = NUMBER OF NON-NORMAL VERTICES IN A

NORMAL MESHM

then normalized by the diagonal of the bounding box for
and .

We compare the performance of the proposed R-D optimized
compression algorithm with that of the conventional algorithm
[7], which compresses a normal mesh as a whole. For a fair com-
parison, a base mesh is assumed to be transmitted losslessly in
both algorithms. Fig. 15 compares the R-D curves of the pro-
posed algorithm and the conventional algorithm. The unit of the
rate is in byte, and the distortion is measured using the METRO
algorithm. The conventional algorithm encodes the forest of
edge-based trees in an implicit order. Thus, it requires no extra



864 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 15, NO. 7, JULY 2005

Fig. 15. R-D curves for six test models. (a) BallJoint. (b) Horse. (c) Rabbit. (d) Santa. (e) Teeth. (f) Venus.

information except the SPIHT bitstreams. In contrast, the pro-
posed algorithm partitions the forest into tree segments and as-
signs a different bitrate to each segment. Therefore, additional

data should be transmitted to indicate the bitrate of each seg-
ment. These additional data are taken into account in the R-D
curves of the proposed algorithm.
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As shown in Fig. 15, the proposed algorithm provides a better
compression performance than the conventional algorithm for
most test models, especially at low bitrates. The “Rabbit” model
is relatively smooth, and all of its segments have similar charac-
teristics. Thus, the proposed algorithm does not provide a sub-
stantial coding gain over the conventional algorithm. However,
for other models, the proposed algorithm allocates a total rate ef-
fectively according to the segment characteristics. For example,
the conventional algorithm requires 4635 bytes to yield the re-
constructed distortion of 5 10 on the “Horse” model, while
the proposed algorithm consumes only 3262 bytes to yield the
same distortion.

Notice that even though the proposed algorithm uses the R-D
optimization technique, the obtained results are only subop-
timal, since the resource is allocated based on the approximate
distortion model to alleviate the high computational complexity
in Section IV-C.

B. View-Dependent Transmission of Normal Meshes

Next, we investigate the performance of the view-dependent
transmission method, when the viewing position is fixed. Fig. 16
shows the rendered images of the reconstructed “Venus” models
at various bitrates. The left and right images are obtained using
the view-independent and the view-dependent methods, respec-
tively. The two images with similar visual quality are shown at
the same row and labeled with the required bitrates. We see that
the view-dependent transmission saves more than 50% of the bi-
trates while providing similar visual quality by allocating a main
portion of the transmission bandwidth to visible segments.

In the above test, the conventional tree in Fig. 5 is employed.
The modified trees in Fig. 8 provide almost the same R-D perfor-
mance as the conventional tree. However, in the case of view-
dependent transmission, the modified trees reconstruct visible
parts more reliably than the conventional one, since they localize
segments more compactly. The performance of the three edge-
based trees in the view-dependent transmission case is com-
pared in Fig. 17. The upper and lower rows render local parts of
the “BallJoint” and “Santa” models, respectively. The bitrates
for the conventional, scissor, and arrow trees are 2836, 2844,
and 2849 bytes for the “BallJoint” model, and 3770, 3793, and
3814 bytes for the “Santa” model, respectively. It is observed
that the original shapes are reconstructed more faithfully using
the modified trees.

Finally, we test the performance of the view-dependent trans-
mission algorithm when the viewing position varies dynami-
cally. In this test, the fast algorithm described in Section V-C
is used to approximate the view-dependent distortion to alle-
viate the computational burden of the server, and the conven-
tional edge-based tree is used. Fig. 18 shows the reconstructed
models, when the viewing position rotates with an angular speed

(rad/sec) around the “Venus” model from the right face to
the left face. The upper (or lower) row renders a sequence of
the front (or rear) part of the model observed. The required bi-
trates are 3734, 5643, 6601, and 7100 bytes, from left to right,
respectively. We see that good visual quality is offered to the
client by allocating higher bitrates to the front part, while details
of the rear part are reconstructed gradually by including previ-
ously visible regions. These simulation results indicate that the

Fig. 16. Comparison of the reconstructed “Venus” models with
view-independent and view-dependent methods.

proposed algorithm is a promising technique for interactive 3-D
data transmission.

VII. CONCLUSION AND FUTURE WORK

A unified framework to achieve the R-D optimized compres-
sion and view-dependent transmission of 3-D normal meshes
was proposed in this work. The proposed algorithm partitions
a normal mesh into disjoint segments, and allocates an optimal
bitrate to each segment to minimize the overall distortion. We
developed a geometry distortion model to reduce the computa-
tional complexity of the optimization process. It was also shown
that the visibility priorities of vertices or segments can be in-
corporated in the distortion model to support view-dependent
transmission effectively. Simulation results demonstrated that
the proposed algorithm is an efficient technique for 3-D data
compression and streaming.

As an extension of the current work, some future research can
be performed in the following areas. First, we may consider the
region-of-interest coding and transmission. In this work, view-
independent and view-dependent distortion models are used in
the R-D optimization procedure. More general criteria can be
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Fig. 17. Comparison of three edge-based trees in the view-dependent transmission, where the upper and the lower rows demonstrate the “BallJoint” and the
“Santa” models, respectively.

Fig. 18. Reconstructed models with dynamic viewing positions, where the upper and lower rows show the front and rear parts of the “Venus” model, respectively.

used to enable various interactive applications. For example, a
client can inform the server of its region-of-interest. Then, the
server can find the set of segments which cover the region-of-in-
terest, and then allocate the bit budget only to this set of seg-
ments. Second, this framework can be used in the error-resilient
coding of 3-D models. To transmit 3-D data over error-prone
channels, compressed bitstreams should be resilient to transmis-
sion errors. There have been some work on the error-resilient
coding of irregular meshes, e.g., [39]. Based on the edge-based
tree segmentation, we may modify the proposed algorithm to
improve the robustness of the compressed bitstreams for normal
meshes.
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