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Figure 1: Examples of progressive mesh reconstruction.

Abstract
A new progressive lossless 3D triangular mesh encoder is proposed
in this work, which can encode any 3D triangular mesh with an arbi-
trary topological structure. Given a mesh, the quantized 3D vertices
are first partitioned into an octree (OT) structure, which is then tra-
versed from the root and gradually to the leaves. During the traver-
sal, each 3D cell in the tree front is subdivided into eight child-
cells. For each cell subdivision, both local geometry and connec-
tivity changes are encoded, where the connectivity coding is guided
by the geometry coding. Furthermore, prioritized cell subdivision
is performed in the tree front to provide better rate-distortion (R-
D) performance. Experiments show that the proposed mesh coder
outperforms the kd-tree algorithm in both geometry and connec-
tivity coding efficiency. For the geometry coding part, the range
of improvement is typically around 10%∼20%, but may go up to
50%∼60% for meshes with highly regular geometry data and/or
tight clustering of vertices.

Keywords: 3D geometry compression, mesh compression, pro-
gressive lossless coding, non-manifold mesh, triangle soup

1 Introduction
3D graphics data are widely used in multimedia applications such
as video gaming, engineering design, virtual reality, e-commerce
and scientific visualization. With increasing popularity and com-
plexity of 3D graphics data but limited network bandwidth and pro-
cessing power, it is critical to compress 3D mesh data efficiently.

A typical mesh codec encodes three types of information: connec-
tivity, geometry and attributes. The connectivity data describe the
adjacency relationship between vertices; the geometry data provide
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the positions of vertices; and the attribute data give surface normals,
material reflectance, texture coordinates, etc. Most of current mesh
encoders only deal with the connectivity data and the geometry data
under the argument that the attribute data can be encoded similarly
to the geometry data. Most earlier research in 3D mesh coding
is connectivity-centric in that the compact representation of con-
nectivity data is given a higher priority, while the geometry coding
is driven, and also restrained at the same time, by the connectivity
coding. However, since the geometry data are dominant in the com-
pressed file size in most cases, a good geometry coder is essential to
the high coding efficiency of a 3D graphic codec. Thus, geometry-
centric algorithms focusing on the geometry coding, which even
guided the connectivity coding, have emerged in recent years.

1.1 Historical Review

Early research on 3D mesh compression focused on single-rate
compression techniques to save the bandwidth between the CPU
and the graphics card. Codecs of this category include [Taubin
and Rossignac 1998; Bajaj et al. 1999b; Touma and Gotsman 1998;
Alliez and Desbrun 2001b; Gumhold and Straßer 1998; Rossignac
1999; Coors and Rossignac 2004], all of which are lossless codecs,
only allowing for negligible quantization error. Among those, the
best achievable geometry coding bit rate is 6∼10 bpv at a quanti-
zation resolution of 8 bits per coordinate, and the best achievable
connectivity coding bit rate is typically less than 3 bpv, using the
state-of-the-art codecs [Touma and Gotsman 1998; Alliez and Des-
brun 2001b; Coors and Rossignac 2004]. Recently, lossy single-
rate mesh codecs were proposed in [Szymczak et al. 2002; Attene
et al. 2003], which achieves much higher coding efficiency by com-
bining compression with remeshing.

Later on, with the increasing popularity of networked applica-
tions, progressive compression and transmission has been inten-
sively studied, which enables the progressive reconstruction of a
3D mesh in different levels of detail (LODs). Algorithms of this
category include progressive meshes [Hoppe 1996] and its exten-
sion in [Popovic and Hoppe 1997; Taubin et al. 1998; Pajarola
and Rossignac 2000], the patch coloring approach [Cohen-Or et al.
1999], the valence-driven conquest approach [Alliez and Desbrun
2001a], the embedded coding approach [Li and Kuo 1998], and the
layered decomposition approach [Bajaj et al. 1999a], all of which
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are connectivity-centric. Based on the observation that geome-
try data are often dominant in the compressed file size, geometry-
centric algorithms have emerged in recent years, including the kd-
tree mesh codec [Gandoin and Devillers 2002; Devillers and Gan-
doin 2000], the spectral coding geometry codec [Karni and Gots-
man 2000], and the wavelet-based mesh codecs [Khodakovsky et al.
2000; Khodakovsky and Guskov 2000]. Among all the above-
mentioned progressive mesh codecs, the spectral coding geome-
try codec and the wavelet-based mesh codecs are lossy codecs that
either truncate high-frequency geometric information or start with
a complete remeshing of the input manifold model and have very
high coding efficiency. However, it is not straightforward about
how to remesh/transform complex non-manifold meshes, and some
applications require the original data to be faithfully preserved.
That context calls for the progressive lossless mesh codecs that
faithfully preserve both connectivity and geometry data in the full
resolution, among which the kd-tree codec produced the best results
and is most related to our work.

For a more complete survey of techniques in 3D mesh compres-
sion, readers are referred to [Peng et al. ; Alliez and Gotsman 2003;
Gotsman et al. 2002].

1.2 kd-Tree Mesh Coder

The kd-tree coding algorithm employs an iterative kd-tree decom-
position based on 3D cell subdivisions, inspired by [Schmalstieg
and Schaufler 1997; Rossignac and Borrel 1993] which spatially
group vertices into clusters to construct different LODs. When it
subdivides a cell into two child-cells, the number of vertices in one
of the two child-cells is arithmetic coded, and the associated con-
nectivity change is encoded using one of two operations: the ver-
tex split [Hoppe 1996] or the generalized vertex split [Popovic and
Hoppe 1997]. As reported, it outperforms prior work in terms of
coding efficiency. Furthermore, it can compress triangular meshes
of any topology, even triangle soups. In spite of the excellent per-
formance of the kd-tree algorithm, some drawbacks are observed
and summarized below.

• Redundancy in the vertex number information. For the pur-
pose of progressive mesh reconstruction, not the exact num-
ber of vertices in each cell, but whether each cell is empty or
not is necessary since each cell is represented with its cen-
troid in any LOD. The coding overhead is higher at higher
levels (i.e., levels closer to the root), since higher level cells
generally have more vertices.

• Geometry-connectivity correlation not fully utilized. Local
geometry data are exploited in the connectivity coding to pre-
dict the updated connectivity. However, local connectivity
data are not utilized in the geometry coding which, instead,
predicts from a weakly defined “neighborhood” based on spa-
tial closeness of cells. The search for local “neighborhood”
costs computation and memory, and the spatial-closeness-
based “neighborhood” may provide inaccurate information.

• No preferential treatment of cell subdivisions. Cells in the tree
front of the same level are subdivided one by one without any
discrimination. However, the coding of these cells may have
a different R-D contribution.

1.3 Overview of Proposed Algorithm

In this work, we propose a new progressive lossless mesh encoder
using the octree (OT) decomposition. By using the OT decomposi-
tion, we subdivide a 3D cell into eight at each step. The OT decom-
position is used in [Saupe and Kuska 2001; Laney et al. 2002; Lee
et al. 2003] to compress isosurfaces, and in [Botsch et al. 2002] to
represent point sampled geometry data. The motivation of choosing
the OT decomposition is that an OT cell subdivision leads to richer
information that will assist our geometry and connectivity encoders

a lot. Based on the OT decomposition, our proposed algorithm has
the following distinguished features.

• The geometry coding algorithm does not encode the vertex
number in each cell, but encode the information whether each
cell is empty or not, which is often more concise.

• A uniform connectivity coding approach is adopted, which is
efficient and can be potentially applied to the coding of arbi-
trary polygonal meshes.

• Either geometry data or connectivity data are exploited for
local prediction of the other.

• Prioritized cell subdivision is performed in the tree front to
achieve better R-D performance.

It is worthwhile to point out that Botschet al. [2002] also encoded
the information whether each child-cell is empty or not after each
octree cell subdivision. But coding efficiency was not optimized
and there was no need to encode connectivity data in their work.

Given a 3D mesh, we first calculate its bounding box, quantize the
vertex coordinates, and build up an OT structure through recursive
3D space partitioning with each node in the OT representing a 3D
cell. After that, the proposed mesh encoder traverses the OT from
the root to the lowest level in a top-down fashion. During the traver-
sal, each 3D cell in the tree front is subdivided into eight child-
cells with three cell bi-partitionings in three directions along theX ,
Y andZ axes, respectively. Nonempty child-cells are recursively
subdivided until the finest resolution allowed by the quantization
scheme is reached. On the other hand, empty child-cells will not
be subdivided any more. Whenever a cell is subdivided into eight
child-cells, we need to encode the associated local change in both
geometry and connectivity.

Generally speaking, for the local geometry change, we have to spec-
ify which child-cells are nonempty. As to the local connectivity
change, we should encode the connectivity between nonempty child
cells, and the connectivity between nonempty child-cells and the
parent-cell’s neighbor cells. The detail of the geometry coding and
the connectivity coding algorithms will be discussed in Secs. 2 and
3, respectively.

The proposed mesh coder significantly outperforms the kd-tree al-
gorithm in both geometry and connectivity coding efficiency. For
the geometry coding part, the range of improvement is highly de-
pendent on the characteristics of the mesh to encode. Typically, it is
around 10%∼20%, but may go up to 50%∼ 60% for meshes with
highly regular geometry data and/or tight clustering of vertices.

2 Geometry Coder
2.1 Nonempty-Child-Cell Coding

In contrast with the kd-tree geometry encoder, we do not encode
the exact vertex numbers. Instead, we only encode the information
of nonempty child-cells after each cell subdivision. To achieve this
purpose, we propose the nonempty-child-cell coder to encode the
indices of nonempty child-cells.

Here, two cells are called neighbors if there is at least one edge in
the original mesh connecting the vertex of one cell to that of the
other. In the corresponding LOD of the mesh, the neighbor rela-
tionship of two cells is represented by an edge between their rep-
resentative vertices. The valence of a cell is defined as the number
of its neighbor cells. Each child-cell is labelled with a 3-bit index,
b1b2b3, according to its location relative to each bi-partitioning.
For example,b1 is the bit index with respect to the X-axis bi-
partitioning. It is assigned 0 (1) if its x-value is in the lower (upper)
half of the parent-cell. Consider the case that there areT nonempty
child-cells after a cell subdivision. The indices of nonempty child-
cells form a tuple,(t1, t2, . . . , tT ), whereti ∈ {0,1, . . . ,7}, 1≤ i ≤ T ,
andT is the tuple dimension. Typically,T values are concentrated



in 4∼ 8 in higher tree levels (closer to the root) and 1∼ 3 in lower
tree levels (closer to the leaves).T values are more widely spread
between 1 and 8 in the middle tree levels. We call a tuple with
dimensionT a T -tuple.

To encode a cell subdivision, we first encode the number of 1≤
T ≤ 8. Note thatT cannot be 0 since we only subdivide nonempty
cells. In general, the bigger the cell valence is, the more nonempty
child-cells that cell will have. Furthermore, cells of the same OT
level tend to have a similar number of nonempty child-cells. Based
on these observations,T is arithmetic coded using both the cell’s
OT level and its valence as the context, leading to 30%∼50% im-
provement compared with coding without context.

The nonempty-child-cell tuple of the target cell is also arithmetic
coded, using theT value of the target cell as the context. For a
givenT , the number of possible tuples can be computed as a com-
binatorial number,KT = C8

T . By encoding the nonempty-child-cell
tuple in a straightforward manner using the arithmetic coder under
contextT , we need log2 KT bits per nonempty-child-cell tuple on
the average. One simple way to implement this coder is to have a
look-up table that links the codes and the tuples. To further improve
coding efficiency, we can estimate the pseudo-probability of each
T -tuple’s being the nonempty-child-cell tuple, sort all the possible
T -tuples in a descending order of their pseudo-probability values,
and encode the nonempty-child-cell tuple’s index in the sorted array
with an arithmetic coder under contextT .

Before calculating the tuples’ pseudo-probability values, we first
calculate a priority value for each child-cell, which estimates its
possibility of being nonempty. The prediction is based on the ob-
servation that nonempty child-cells tend to be close to the centroid
of the parent-cell’s neighbor cells, if the original 3D surface is lo-
cally sampled with a high regularity. Thus, we can calculate a pri-
ority value for each child-cell by taking into account the number of
the parent’s neighbor cells in its vicinity and their distances to the
centroid of the parent cell.

Associated with the parent-cell, there are three cell bi-partitionings
along three orthogonal axes, denoted bybpi(i ∈ {1,2,3}), where
the subscripti means the axis number, and the 1st, the 2nd and the
3rd axis refers to theX , Y , andZ axis, respectively. Associated
with each cell bi-partitioning, the partitioning plane also partitions
the neighbor cells into two subsets:Si,1 = {Ci,1,1,Ci,1,2, . . . ,Ci,1,ni,1}

and Si,2 = {Ci,2,1,Ci,2,2, . . . ,Ci,2,ni,2}. They containni,1 and ni,2
neighbor cells, respectively. For each neighbor cellCi, j,k(i ∈
{1,2,3}, j ∈ {1,2},k ∈ {1,2, . . . ,ni, j}), we can calculate the dis-
tance along theith axis, di, j,k, between the centroid of the cell
to be subdivided and the centroid of the neighbor cellCi, j,k, re-
sulting in two distance subsets,Li,1 = {di,1,1,di,1,2, . . . ,di,1,ni,1}

andLi,2 = {di,2,1,di,2,2, . . . ,di,2,ni,2}, corresponding toSi,1 andSi,2.
Next, we sum up the distances inLi, j(i ∈ {1,2,3}, j ∈ {1,2}) and
get

Di, j =
ni, j

∑
k=1

wi, j,k ×di, j,k,

wherewi, j,k is the weight assigned to neighbor cellCi, j,k. Since
cells at lower OT levels provide more accurate geometry informa-
tion, we assign the OT level number of cellCi, j,k to wi, j,k. Thus, it
is called the weight of levels. After bi-partitioningbpi, i ∈ {1,2,3},
if child-cell ck(k ∈ {1,2, . . . ,8}) and the cells inSi,ki

(ki ∈ {1,2}) are
located at the same side of the bi-partitioning plane, its prioritypk
is calculated as

pk =
3

∑
i=1

(

wi ×Di,ki

)

,

where wi is the weight of unbalance associated with the bi-
partitioningbpi. For eachbpi(i ∈ {1,2,3}), we calculate its extent

of “unbalancing” as

ui =
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Sortingui, i = 1,2,3, in a descending order, we obtainui j , j = 1,2,3
andi j ∈ {1,2,3}, such thatui1 ≥ ui2 ≥ ui3. Observing that a more
unbalanced bi-partitioning is usually more helpful in nonempty-
child-cell prediction, we assign to each bi-partitioning,bpi, a
weight of unbalance aswi1 = 3, wi2 = 2, wi3 = 1.

To illustrate the idea described above, let us consider a 2D exam-
ple as shown in Fig. 2, where the dotted lines represent part of the
quantization grid, the solid squares represent the cells in the current
tree front, a solid line between two cells represent the neighbor re-
lationship, the blue dashed lines represent the two bi-partitionings,
bp1 and bp2, respectively, and a black dot means that the asso-
ciated cell is nonempty. Cells are of different sizes because they
are located in different OT levels. In Fig. 2,C0 is the cell to be
subdivided,C1 ∼ C5 are the neighbor cells ofC0. Cell C0 will
be subdivided into four child-cells,c1 ∼ c4, of which c2 and c4
are nonempty. Associated with the bi-partitioningbp1, we have
S1,1 = {C2,C3,C4}, S1,2 = {C1,C5}, L1,1 = {5,5,1}, L1,2 = {8,7}.
Assuming thatC0 and C1 are located at the 5th OT level, and
C2 ∼ C5 are located at the 6th OT level, we have weights of the
level asw1,1,1 = w1,1,2 = w1,1,3 = w1,2,2 = 6, andw1,2,1 = 5. Thus,
D1,1 = ∑3

k=1 w1,1,k ×d1,1,k = 66, D1,2 = ∑2
k=1 w1,2,k ×d1,2,k = 82.

Similarly, we obtainD2,1 = 50, andD2,2 = 78. Sincebp2 is more

unbalanced thanbp1, we assign more weight tobp2. That is, we
have weightsw1 = 1, w2 = 2. Finally, we calculate the priority
value for each child-cell. For example, the priority value for child-
cell c1 is p1 = w1 ×D1,1 + w2 ×D2,1 = 166. The priority values
for other child-cells can be similarly obtained. They arep2 = 182,
p3 = 222, andp4 = 238.

C2

C1

C3 C4 C5

C0

c1 c2

c3 c4

bp1

bp2

X
Y

Figure 2: A 2D example of priority value calculation.

To demonstrate the effectiveness of priority calculation, for the
manifold meshes used in our experiments, we count the number
of nonempty child-cells at each of the eight child-cell locations be-
fore and after the priority calculation, and plot the histograms in
Fig. 3(a) and Fig. 3(b) respectively. Note that, in Fig. 3(b), the
child-cell locations are ordered with respect to the priority values
within each cell subdivision. From this figure, we see that after
priority calculation, the nonempty child-cells are concentrated in
high-priority locations.
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Figure 3: The nonempty-child-cell number histograms before and
after priority calculation for the tested manifold meshes.



After calculating the child-cells’ priority values, we need to calcu-
late the pseudo-probability values of all possibleT -tuples for given
T . More specifically, for eachT -tuple T Pi = (i1, i2, . . . , iT ), its
pseudo-probabilityPPi is calculated byPPi = ∑T

j=1 pi j . According
to our experiments on the tested manifold meshes, the above tu-
ple sorting technique improves the nonempty-child-cell-tuple cod-
ing by 23% on the average.

2.2 Prioritized Cell Subdivision

In contrast with the original kd-tree algorithm that treats all cells
in the tree front equally, we rank cells in the tree front according
to their importance and subdivide more important cells earlier to
provide better mesh quality at lower bit rates. All cells in the tree
front are efficiently maintained with a heap structure, which costs
O(log(N)) time, whereN is the number of elements in the heap, for
the most important cell search/removal or new cell insertion. The
key issue lies in the definition of cell importance. Here, we identify
the following three rules.

1. A higher cell valence implies more vertices contained in a
cell.

2. A bigger cell size implies more mesh quality improvement
when the cell is subdivided.

3. A larger distance from neighbor cells implies more impact of
cell subdivision on local 3D volume refinement.

Based on the above observation, we define the importance valueI
for each cellc as

Ic = vsl,

wherev is the cell valance,s the cell size andl the average distance
of the target cell’s centroid to its neighbor cells’ centroids. On one
hand, the R-D performance is improved by dividing important cells
first. On the other, the coding bit rate is reduced by about 0.2 bpv on
the average for the tested manifold meshes, since earlier subdivision
of more important cells often leads to better improvement of the
mesh, which will in turn benefit the nonempty-child-cell prediction
in later subdivision of less important cells.

3 Proposed Connectivity Coder

For each cell subdivision, the change of local connectivity has to
be encoded by the connectivity encoder. Under the kd-tree frame-
work, Devillers and Gandoin [2000] proposed a purely edge-based
connectivity encoder, which can encode arbitrary edge-based con-
nectivity but its coding efficiency is not yet optimized and the facet
information are missing. Later on, Gandoin and Devillers [2002]
proposed another connectivity encoder that encodes the connectiv-
ity change associated with each cell subdivision using one of two
operations: the vertex split [Hoppe 1996] or the generalized ver-
tex split [Popovic and Hoppe 1997]. As a result, it can encode the
connectivity of any simplicial complex with improved coding effi-
ciency. However, it is not suitable for an arbitrary polygonal mesh
since it is generally not a simplicial complex. In this work, we pro-
pose an efficient connectivity encoder that can encode the connec-
tivity data of arbitrary triangular meshes and can be easily extended
to polygonal mesh coding. In the following, we first concentrate on
the coding of triangular mesh connectivity.

For each OT cell subdivision that subdivides a cellC into K
nonempty child-cells, we useK−1 kd-tree cell subdivisions to sim-
ulate it, where each subdivision partitions a set of nonempty child
OT cells into two subsets. In each of these kd-tree cell subdivisions,
with the positions of all nonempty child OT cells known before the
kd-tree simulation, the representative point of each nonempty kd-
tree cell is no more its centroid as in the kd-tree algorithm [Gan-
doin and Devillers 2002], but the average position of the centroids

of all nonempty OT cells contained, which generally provides a bet-
ter approximation and helps increase the accuracy of the prediction
technique used in our connectivity coder.

We say that there is a vertex split whenever the corresponding kd-
tree cell subdivision leads to two nonempty child-cells, without dif-
ferentiating between the vertex split and the generalized vertex split
as done in [Gandoin and Devillers 2002]. If two cells are neigh-
bors, we say that their representative vertices are neighbors in the
current LOD of mesh. For each vertex split, let us denote the ver-
tex to split byv, the neighbor vertices before the vertex split byNi,
i = 1,2, . . . ,M, whereM is the number of neighbor vertices, and the
two new vertices resulted from the vertex split byv1 andv2. Then,
we need to encode the following information associated with this
vertex split:

• vertices inNi that are connected to bothv1 andv2 (called the
pivot vertices);

• whether each nonpivot vertex inNi is connected tov1 or v2;
• whetherv1 andv2 are adjacent in the refined mesh.

N2

N3 N4

N5

N6

v

N1

v1 v2N2

N3 N4

N5

N6N1

(a) (b)

Figure 4: Illustration of the vertex split.

An example of the vertex split is illustrated in Fig. 4. The configu-
rations before and after the vertex split are shown in Figs. 4(a) and
(b), respectively. We see that, of the six neighbor vertices,N1, N3
andN6 are pivot vertices that are connected to bothv1 andv2 in the
refined mesh. In the connectivity coding of this example, we need
to specify the pivot neighbor vertices,N1, N3 andN6, to assign each
of the rest neighbor vertices to eitherv1 or v2 and to specify thatv1
andv2 are adjacent in the refined mesh.

Note that only the edge information is encoded in above. For the
purpose of mesh reconstruction, we also need to keep the facet in-
formation, which can be done automatically with no extra coding
cost, as described in Subsection 3.4.

3.1 Coding of Pivot-Vertex-Tuple

To encode the pivot vertices among all neighbor verticesNi, i =
1,2, . . . ,M, we employ a method similar to that used in the pro-
posed geometry coder. Assuming that there areP pivot vertices,
the numberP is arithmetic coded usingM as the context. Next, we
need to encode the pivot-vertex-tuple, which is theP-tuple of the
pivot vertices’ indices. For each possibleP-tuple of the neighbor
vertex indices, we estimate its probability of being the pivot-vertex-
tuple. The probability values of all possibleP-tuples form a prob-
ability table which is utilized by the arithmetic coder that encodes
the pivot-vertex-tuple using bothM andP as contexts. The remain-
ing issue is how to estimate eachP-tuple’s probability of being the
pivot-vertex-tuple.

First, we estimate the prioritypi for each neighbor vertexNi, where
1 ≤ i ≤ M. To estimatepi, we make three virtual edges: between
Ni andv1, betweenv1 andv2, and betweenv2 andNi. Generally
speaking, the more regular the triangle△Niv1v2 is, the more prob-
able thatNi will be a pivot vertex. For a given perimeter, the bigger
the area, the more regular a triangle will be. Thus, we calculate the
regularityri of △Niv1v2 and the prioritypi of Ni as

pi = ri =
σi

2s
=

√

s(s−a)(s−b)(s− c)

2s
,



wherea, b and c are the lengths of the three edges in△Niv1v2,
respectively,σi is the area of△Niv1v2 ands = (a+b+ c)/2.

To demonstrate the effectiveness of the proposed priority calcula-
tion, for the manifold meshes used in our experiments, we count
the number of pivots at each neighbor locations before and after the
priority calculation, and plot the histograms in Figs. 5(a) and (b),
respectively. The neighbor locations are indexed based on their or-
der in the target cell’s neighbor vertex list in Fig. 5(a) while they are
indexed based on the relative magnitude of priority values within
each vertex split in Fig. 5(b). Note that we only plot for the vertex
splits with at most 10 neighbor vertices, since they constitute the
majority of vertex splits. From Fig. 5, we see that the pivot vertices
are concentrated in high-priority locations after priority calculation.
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Figure 5: The pivot number histograms before and after priority
calculation for the tested manifold meshes.

Once the priority value for each neighbor vertex is calculated, the
probability of eachP-tuple’s being the pivot-vertex-tuple is esti-
mated by summing up the priority values of the neighbor vertices
contained in that tuple. After normalization, the estimated prob-
ability table is obtained, which is used by the arithmetic coder to
encode the pivot-vertex-tuple. According to our experiments on the
tested manifold meshes, the above probability estimation technique
improves the pivot-vertex-tuple coding by 45% on the average.

3.2 Nonpivot Neighbor Assignment

After identifying pivot vertices, we have to assign the nonpivot
neighbor vertices tov1 or v2. To do so, we first partition the non-
pivot vertices inNi, 1 ≤ i ≤ M, into different segments. Each
nonpivot vertex that is adjacent to more than two other vertices
in Ni forms a separate segment. Then, the remaining nonpivot
vertices are partitioned into maximum connected segments. The
segment partitioning is illustrated in Fig. 6. For the configura-
tion in Fig. 6(a),N1 and N5 are pivot vertices, and the nonpivot
neighbor vertices are partitioned into two maximum connected seg-
ments:{N2,N3,N4} and{N6,N7,N8}. Each nonpivot neighbor ver-
tex is labeled with its segment number and each segment is colored
uniquely. For the configuration in Fig. 6(b), againN1 andN5 are
pivot vertices, and the nonpivot neighbor vertices are partitioned
into four segments:{N2}, {N8}, {N3,N4}, and{N6,N7}. Note that
eitherN2 or N8 forms a segment by itself since it is adjacent to three
other vertices inNi, 1≤ i ≤ 8.
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Figure 6: Illustration of nonpivot neighbor vertex segmentation.

For each segment, we use one flag bit to indicate whether all the
vertices in it are connected to the same one ofv1 andv2. If not, we
treat each vertex in that segment as a separate segment. Sometimes,
a nonpivot vertex segment may be connected to bothv1 andv2. For
instance, in the 4th segment in Fig. 6(b),N6 is connected tov1, and
N7 is connected tov2. However, in a manifold or “almost man-
ifold” mesh, almost every nonpivot segment is connected to only

one ofv1 andv2, such as the two nonpivot segments that are shown
in Fig. 6(a). Since the flag bits can be efficiently coded with an
arithmetic coder, the segmentation of nonpivot vertices provides an
effective way to group vertices connected to the same new vertex.

Next, for each segmentSi, we calculate its centroid,oi, and calcu-
late the distancesdi, j, j = 1,2, betweenoi andv j, i = 1,2, respec-
tively. We predict that the segment is adjacent to the one ofv1 and
v2 with the smaller distance. For instance, in Fig. 6(a), the cen-
troids, o1 ando2 are calculated for the 1st and the 2nd segments,
respectively. For the 1st segment, sinceo1 is closer tov1 than to
v2, we predict that it is adjacent tov1, which is accurate. For each
segment, a 1-bit flag is used to indicate whether the prediction is
accurate. This flag bit is again arithmetic coded.

3.3 Adjacency between New Vertices

One bit is used to indicate whether the new vertices,v1 andv2, are
connected in the refined mesh, which is arithmetic coded, too. Ac-
cording to our experiments, the pivot-vertex-tuple selection domi-
nates the connectivity coding cost, while the coding of the nonpivot
neighbor assignment and the adjacency between the new vertices
can be done very efficiently, whose total cost is in general less than
0.5 bpv for manifold or “almost manifold” meshes.

3.4 Facet Construction

In this work, we assume that facets in a triangular mesh are double-
sided, i.e., a facet has the same set of material properties in its
two opposite sides and can be rendered from either side when it
comes into view. In other words, for the purpose of rendering, we
do not differentiate between the two orientations of a facet. Actu-
ally, this should be the same underlying assumption in the kd-tree
algorithm [Gandoin and Devillers 2002] since it does not encode
the orientation information that cannot be simply inferred from the
local context of each vertex split or generalized vertex split, espe-
cially for non-manifold meshes.

We can construct the facets for each vertex split among the updated
local neighborhood as follows.

1. For each facet existing before the vertex split, denoted by
△A1A2A3 with Ai ∈ {v,N1, . . . ,NM}, i = 1,2,3, we consider
the following scenarios. IfAi 6= v, i = 1,2,3, do nothing. Oth-
erwise, without loss of generality, we assumeA1 = v and do
the following.

(a) If bothA2 andA3 are connected tov1, add△v1A2A3.
(b) If both A2 andA3 are connected tov2, add△v2A2A3.
(c) Delete△A1A2A3.

2. If v1 and v2 are connected, for each pivot vertexPi, i =
1, . . . ,P, add△v1v2Pi.

To give an example, let us examine the vertex split as shown in
Fig. 4. Prior to the vertex split, there are six local facets as shown
in Fig. 4(a). After the vertex split,△N1N2v is replaced by△N1N2v1
sinceN1 andN2 are both connected tov1, △N6N1v is replaced by
△N6N1v1 and△N6N1v2 sinceN6 andN1 are connected to bothv1
andv2 as shown in Fig. 4(b). Other facets existing before the vertex
split are similarly updated after the vertex split. Furthermore, three
new facets are added, which are△v1v2N1, △v1v2N3 and△v1v2N6,
sincev1 andv2 are connected andN1, N3 andN6 are pivot vertices.

The above algorithm constructs all possible triangular facets from
the edge-based connectivity. On one hand, when the mesh is fully
restored, all the original facets have been constructed. On the other,
the reconstructed mesh may contain facets that do not exist in the
original mesh. This may happen only when there are boundary
loops with exactly three distinct vertices after quantization, which
will be treated as valid triangular facets in our algorithm. In typical



meshes, this problem rarely occurs since most boundary loops (if
there is any) contain more than three vertices after quantization.

To solve the invalid facet problem, we can apply a pre-processing
step by adding extra vertices to each problematic boundary loop so
that it has more than three vertices after quantization. Note that
when the quantization resolution is not sufficiently high, vertices
on a problematic boundary loop may be very close to each other
after quantization, adding extra vertices may introduce significant
distortion to that boundary loop. This phenomenon is however more
a problem of the quantization resolution than one of our algorithm.

3.5 Discussion

The proposed connectivity encoder is general in the sense that, in-
dependent of facet construction, the underlying edge-based connec-
tivity coding can be used to compress aibitrary connectivity among
a set of 3D points. Thus, we can extend it to encode the connectivity
data of arbitrary polygonal meshes by modifying the facet construc-
tion procedure. That is, for each vertex split, we have to take care
of the update of existing facets and the generation of new facets.

If the orientation information of each facet is required (e.g., the
facet is no longer double-sided), we need extra coding bits. Then,
we may use a flag bit for each newly generated facet to specify its
orientation. To improve the efficiency of flag bit coding, a local pre-
diction scheme could be performed, which is expected to be highly
accurate for manifold or “almost manifold” meshes.

4 Coding Performance Analysis
4.1 Geometry Coder

For the ease of analysis, we focus on the case that the OT of the
vertex data is expanded level by level without using prioritized cell
subdivision. Similar to [Devillers and Gandoin 2000], we divide
the whole cell subdivision process into the following two stages.

1. Vertex separation. Cells are recursively subdivided until the
OT level is reached where there is at most 1 vertex in each
tree-front cell.

2. Position finalization. The position of each vertex is further re-
fined with recursive cell subdivision, until the finest resolution
allowed by the coordinate quantization is reached.

They are examined in detail below.

Vertex Separation. For an arbitrary mesh, the vertex distribution can
be quite random. Therefore, it is difficult, if not impossible, to con-
duct an analysis that is applicable to all kinds of meshes. For regu-
larly sampled manifold or “almost manifold” meshes, it is however
often true that a cell subdivision leads to four nonempty child-cells
on the average, if the vertex density is sufficiently high. A similar
observation was also made in [Botsch et al. 2002]. To facilitate the
analysis, we concentrate on manifold or “almost manifold” meshes.
Furthermore, we have the following two assumptions.

1. The total vertex numbern is an integral power of four,i.e.,
n = 4K , whereK is a positive integer.

2. Each cell subdivision in the vertex separation stage leads to
exactly four nonempty child-cells.

In the analysis, we label the OT levels increasingly from the root
to the leaves, where the root is labeled as the 0th level. Since there
areNi = 4i cells in theith level (0≤ i ≤ K), there areIi = 4K−i

vertices in each cell of theith level on the average. Since each cell
subdivision leads to four nonempty child-cells, the entropy coding
of T values costs 0 bit. The nonempty-child-cell tuple coding costs
log2 K4 = 6.13 bits per cell subdivision, when entropy coded with
no prediction. Thus, the number of coding bits is calculated as

CO = 6.13
K−1

∑
i=0

4i ≈
6.13

3
×4K = 2.04n. (1)

To compare the performance of the proposed geometry coder and
the kd-tree geometry coder, let us estimate the lower bound of cod-
ing bits with the kd-tree geometry encoder under the same assump-
tions. Corresponding to each OT cell subdivision, there exist a se-
quence of kd-tree cell subdivisions that achieve the same effect. Of
all the possible OT cell subdivisions that lead to four nonempty
child-cells, the corresponding kd-tree coding is most efficient when
the first kd-tree subdivision allocates all vertices into one kd-tree
child-cell, the second allocates two vertices into one child-cell and
the remaining into the other, the third and the fourth subdivide
the associated vertex sets into two nonempty subsets, respectively.
Thus, if there areI vertices in an OT cell that has four nonempty
child-cells, with the arithmetic coder, the number of kd-tree coding
bits is, at the best,

B(I) = 2log2(I +1)+ log2(I −1)+ log23 > 3log2 I + log2 3. (2)

Thus, the lower bound number for the coding bits required by the
kd-tree geometry encoder can be found by

CK =
K−1

∑
i=0

4iB(4K−i) > (
log23

3
+

8
3
)(4K −1)−2K ≈ 3.19n, (3)

whereB(· · ·) is computed based on Eq. (2). Comparing Eqs. (1)
and (3), we see a substantial performance gain of the proposed ge-
ometry coder over the kd-tree geometry coder.

Position Finalization. Consider the case where the quantization res-
olution isL bits per coordinate. That corresponds toL+1 OT levels
in total, including the root level. After the first stage, in which the
OT is fully expanded to theKth level, we still need to subdivide
the tree-front cells throughL−K iterations to characterize the final
position of each vertex. Since there is only one vertex in each tree
front cell, the proposed geometry coder and the kd-tree geometry
encoder need 3 bits per cell subdivision. Therefore, they cost the
same number of bits

CF = (L−K)×n×3 = 3(L− log4 n)n (4)

to specify the final position of each vertex. Let the total geome-
try coding costs for the proposed geometry coder and the kd-tree
geometry coder beCO,T andCK,T , respectively. Then, we have

CO,T = CO +CF = (3(L−K)+2.04)n, (5)

CK,T ≥CK +CF > (3(L−K)+3.19)n. (6)

From Eqs. (5) and (6), we see that the proposed geometry coder is
more efficient than the kd-tree geometry coder. Furthermore, it is
easy to see that if finer resolutions (i.e., larger values ofL−K) are
needed for mesh reconstruction, the coding gains of both geometry
coders become less, and the coding gain of the proposed geometry
coder over the kd-tree geometry coder becomes less significant due
to the fixed overhead of the 3(L−K) term.

4.2 Connectivity Coder

Let us assume that the average valence of all vertices generated dur-
ing the whole coding process isV , and the average number of pivot
vertices in all vertex splits isP. Using the proposed connectivity
coder, in each vertex split, by rough estimation, we need

1. log2(V +1) bits for the coding of pivot vertex number,
2. log2CV

P bits for the coding of pivot-vertex-tuple,
3. 1 bit for the coding of new vertices’ adjacency, and
4. at mostV −P bits for the nonpivot neighbor assignment.

Overall, the average number of bits for each vertex split is equal to

Cn = log2(V +1)+ log2CV
P +V −P+1.



For manifold or “almost manifold” meshes, almost all vertex splits
have two pivot vertices and almost all new vertices are connected
in the refined mesh. Thus, the coding of pivot vertex number and
new vertices’ adjacency can be done efficiently. Furthermore, with
the proposed method, the coding of nonpivot assignment is also
very efficient. Generally speaking, for each vertex split, the coding
cost mainly comes from the coding of the pivot-vertex-tuple, which
needs log2CV

P bits, while the coding of all other information takes
less than 1 bit. In our experiments,V is around 7,P is about 2 for
manifold or “almost manifold” meshes. Thus, the average coding
cost is about 5 bits per vertex split, which can be even reduced after
the use of prediction and arithmetic coding. Since each vertex split
introduces a new vertex, the connectivity coding cost per vertex
split is roughly equal to the connectivity coding cost per vertex.

5 Experimental Results
For the purpose of comparison, we have implemented the kd-tree
geometry coder ourselves. It yields results close to those reported
in [Gandoin and Devillers 2002] with an difference of about 5%.
In this section, we primarily focus on the comparison of geometry
coding since the geometry data dominate the compressed file size in
most cases. In our experiments, almost all mesh vertices are quan-
tized with 12 bits per coordinate, with an exception of the ‘fandisk’
mesh, whose vertices are quantized with 10 bits per coordinate to
be consistent with [Gandoin and Devillers 2002] for fair compari-
son. All the triangle soups (i.e., the meshes ‘skeleton’, ‘mtree6’,
‘m tree8’, ‘plant06s’, ‘plant12 s’, and ‘aqua05’) are obtained from
the 3DCafe website,http://www.3dcafe.com/asp/meshes.asp. The
test meshes are organized into three classes: class A, class B and
class C. This classification is based on the range of improvement of
the proposed algorithm over the kd-tree algorithm in terms of geom-
etry coding efficiency. The ranges of improvement are 5%∼15%,
15%∼25% and 25%∼100% for meshes in classes A, B and C, re-
spectively.

Experimental results are listed in Table 1, where the mesh class,
the mesh name and the number of vertices in each mesh are listed
in the first three columns. Then, we compare the coding bit rates
(in the unit of bpv) for two algorithms, namely, the kd-tree mesh
coder [Gandoin and Devillers 2002] and the mesh coder proposed
in this work. They are denoted by KT and OT, respectively. For
each algorithm, we report the geometry and the connectivity coding
costs separately. In other words, bit rates for the geometry coding
are listed in the 4th and the 6th columns while those for the connec-
tivity coding are listed in the 5th and the 7th columns. Among the
geometry bit rates of KT, those marked with ‘*’ are taken from the
original paper [Gandoin and Devillers 2002], while others are ob-
tained with our own implementation of the kd-tree geometry coder.
For meshes that are not tested in [Gandoin and Devillers 2002],
their connectivity coding bit rates are indicated by ‘–’ in the table.
For each mesh in Table 1, if its geometry coding bit rates areGKT
and GOT for KT and OT, respectively, then the geometry coding
gain (GG) of OT over KT is calculated by

GG =
GKT −GOT

GKT
×100%.

The higher geometry coding gain of the proposed OT algorithm for
meshes in classes B and C is attributed to their underlying proper-
ties: (i) tighter vertex clustering and (ii) higher regularity of geom-
etry data. To measure whether a mesh has tight vertex clustering,
we can examine the number of OT decomposition levels required
to reach the stage of one-vertex-per-cell. A larger number of lev-
els implies tighter clustering of vertices. As explained in Sec. 4.1,
compared with the kd-tree algorithm, the proposed geometry coder
has higher efficiency in the vertex separation stage and about the
same efficiency in the position finalization stage. Therefore, the

tighter the vertex clustering is, the more efficient the proposed ge-
ometry coder will be. For instance, for the ‘bunny’ mesh in class A,
it needs about 8 OT decomposition levels to reach the one-vertex-
per-cell stage. For the ‘rabbit’ mesh in class B, it demands about 9
OT decomposition levels to reach the same stage. Finally, for the
‘plant06 s’ model in class C, even when the OT is fully expanded,
there are still about 3.5 vertices per cell on the average. Thus, it
has the tightest vertex clustering among the three. By examining
mesh ‘plant06s’ as rendered in Fig. 1, we see that most vertices
are clustered around stems and leaves. As shown in the last column
of Table 1, the geometry coding gains of OT over KT are 10.8%,
21.9% and 61.2% for the ‘bunny’, ‘rabbit’ and ‘plant06s’ models,
respectively.

Table 1: Bit rates (in bpv) for geometry and connectivity coding.
Class Mesh #v KT/G KT/C OT/G OT/C GG

skeleton 6,308 15.9* 11.4 14.8 10.3 6.9%
A bunny 35,947 14.8* 3.1 13.2 2.7 10.8%

fandisk 6,475 12.1* 2.9 10.7 2.6 11.6%
feline 49,864 15.4 – 13.1 3.6 14.9%

horse 19,851 16.4* 3.9 13.7 2.9 16.5%
B m tree6 19,616 15.9 – 12.9 7.9 18.9%

m tree8 54,223 13.3 – 10.6 9.7 20.3%
rabbit 67,039 14.6 – 11.4 3.4 21.9%

tore high 36,450 16.9 – 8.9 2.9 47.3%
C plant06s 21,582 13.9 – 5.4 2.5 61.2%

plant12s 36,423 11.6 – 3.9 2.1 66.4%
aqua05 16,784 16.4* 8.5 5.3 3.1 67.7%

By examining the geometry bit rates of the proposed OT algorithm
for manifold meshes in Table 1 (including ‘bunny’, ‘feline’, ‘horse’,
and ‘rabbit’), we observe that the more vertices a manifold mesh
has, the more efficient the geometry coding will be with respect to
a fixed quantization resolution. This is largely true since the more
vertices a manifold mesh has, the more OT decomposition levels are
needed to reach the one-vertex-per-cell stage, which leads to higher
coding efficiency according to the analysis given in Sec. 4.1. How-
ever, the ‘tore high’ mesh is an exception to this general rule. The
high coding efficiency of OT mainly comes from its highly regular
geometry data. Note that the ‘tore high’ mesh is a high resolution
mesh of torus with ideal geometry and connectivity regularity. The
regular geometry leads to regular vertex distribution and good pre-
diction accuracy, which both contribute to high efficiency in entropy
coding.

To compare the rate-distortion (R-D) performance, we plot the R-
D curves for three meshes (‘feline’, ‘rabbit’, and ‘plant12s’) for
the kd-tree geometry coder (KT/G) and the proposed OT geometry
coder (OT/G) in Fig. 7. The distortion of any intermediate mesh
is measured by the average distance between the original vertices
(after 12-bit quantization) and their representative vertices. Note
that the three meshes are representatives from classes A, B and C,
respectively. We see from Figs. 7(a)-(c) that, as compared with the
KT/G coder, the proposed OT/G coder produces significantly less
distortion at all bit rates for all three meshes. The gain is partic-
ularly obvious at low bit rates. Furthermore, the R-D advantage
increases from Fig. 7(a) to Fig. 7(c).

Some visual examples of progressive mesh reconstruction based on
the 12-bit coordinate quantization are given in Fig. 1. For the ren-
dering, no smoothing was done and the Phong shading was used.
For each reconstructed mesh, its total bit rate (including the bit rates
for both geometry and connectivity coders) and the percentage of
the compressed data size over the original data size are given in sub-
captions. The original data size is calculated using 3×12 bits per
vertex and 3× log2 n bits per triangle, assuming there aren vertices
in the original mesh. Generally speaking, the reconstructed mesh is
indistinguishable from the original mesh at a data size that is less
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Figure 7: The R-D performance comparison between the OT/G and the KT/G coders for three meshes: (a) feline, (b) rabbit and (c) plant12s.

than 10% of the original one.

As to connectivity coding efficiency, the OT/C algorithm also out-
performs the kd-tree connectivity coder (KT/C) as shown in Ta-
ble 1. The gain varies from 10% (for ‘skeleton’, ‘bunny’ and ‘fan-
disk’) to 60% (for ‘aqua05’).

6 Conclusion and Future Work
An octree(OT)-based progressive lossless 3D mesh encoder was
proposed in this work to process 3D meshes of any topology. In-
stead of encoding the vertex numbers in each subdivided child-cells
directly, we examine an alternative way to encode the change of the
geometry information. Besides, extensive prediction schemes were
developed to make various arithmetic coders more efficient. It was
demonstrated that the proposed mesh coder achieves the state-of-
the-art coding performance.

Our main experimental results can be summarized as follow. The
proposed OT coder is superior to the KT coder in both geome-
try and connectivity coding efficiency. For the geometry coding,
the improvement depends on the characteristics of the underlying
model. Generally speaking, if the model has tighter vertex cluster-
ing and/or more regular geometry data, more improvement can be
observed. The improvement of geometry coding may go as high
as 50%∼60% for meshes with tight vertex clustering and/or high
regularity.

In the future, we will generalize various ideas in this work to encode
point-based geometry data, since the point-based representation is
a popular representation of 3D graphics data and the huge amount
of point-based geometry data demands efficient coding.
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