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Abstract

A robust video communication system based on layered coding and unequal error protection
is developed in this work. We consider two video communication scenarios. First, for pre-com-
pressed video bitstreams, a channel code rate allocation scheme is proposed to minimize the
expectedmean square error subject to a constraint on the overall bit budget. Second, for real-time
video transmission,we jointly optimize the quantizationparameters and the channel coding rates
according to channel conditions. To this end, we develop a simple rate-distortion model for gen-
eral video coders usingDCTandmotion compensation, so that the rate and the distortion can be
estimated without an expensive encoding procedure. Simulation results show that the proposed
algorithms provide acceptable image quality even in high bit error rate environments.
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1. Introduction

With the increasing demand on multimedia services and the stimulus of 4th gen-
eration wireless systems, it has drawn much attention from industry and academia to
design a suitable method for transmitting multimedia signals over wireless channels.
However, wireless channels contain various types of noises and the link quality can
be severely degraded due to shadowing and fading effects. Multimedia signals, such
as audio, image and video, are susceptible to transmission errors. It is necessary to
design a robust transmission scheme to protect the quality of multimedia signals
against transmission errors.

Raw video data require a huge amount of bandwidth for their storage and trans-
mission. Attempts have been made to compress video data efficiently and several
international standards, such as MPEG-4 [1] and H.263 [2], have been proposed
for the compression of digital video. These standards achieve a high compression ra-
tio by exploiting temporal and spatial correlations in an image sequence with motion
compensation (MC) and the discrete cosine transform (DCT). But, as the image se-
quence is more highly compressed, the encoded bitstream becomes more vulnerable
to transmission errors.

Table 1 compares four strategies to enhance the error resilience of video bitstreams
against transmission errors. They are error protection, error confinement, error con-
cealment, and interactive error control. The error protection strategy inserts redundant
information into compressed data so that the decoder can recover from transmission
errors using the redundant information. The error confinement reduces the use of pre-
dictive encoding operations to localize the effect of transmission errors. Both the error
protection and the error confinement are effective especially in high bit error rate (or
packet loss rate) environments. But, they sacrifice coding efficiency and cannot guaran-
tee an error-free transmission. Thus, the error concealment strategy is employed at the
decoder side to hide the effect of remaining errors. The error concealment neither intro-
duces extra delay nor lowers the compression ratio, but its error resilience capability is
limited. Finally, the interactive error control strategy requires a feedback channel to
adjust the encoding mode according to channel conditions or acknowledge signals
from the decoder. This strategy accomplishes error resilience in the most efficient
way, but requires extra delay andmay not be suitable inmulticast and broadcast appli-
cations. To summarize, no strategy always performs better than the others. To select a
suitable resilient method, we should consider application requirements such as coding
efficiency, delay tolerance, and implementation complexity.

We focus on the error protection strategy in this work. From the information the-
oretical viewpoint, the optimum reliable transmission can be achieved by separating
Table 1
Comparison of the strategies to improve error resilience

Error protection Error confinement Error concealment Interactive error control

Coding efficiency Poor Fair Excellent Good
Extra delay No No No Yes
Error resilience Excellent Good Fair Excellent
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the source coding from the channel coding [3]. However, in real applications under
finite delay and complexity constraints, we can improve the quality of reconstructed
video by jointly designing the source and the channel coders. Video signal is a kind of
distortion tolerant media and human eyes are not equally sensitive to all bits in a vi-
deo bitstream. It is thus advantageous to partition compressed video data into sev-
eral layers so that they can be treated in different ways according to their importance
levels. A network, which is capable of providing different service levels (DiffServ),
can transmit each layer at its corresponding priority.

However, many wireless and Internet systems are not intelligent enough to sup-
port DiffServ. In such a case, we can provide unequal protection by employing for-
ward error correction (FEC) codes, such as block codes and convolutional codes
[4–8]. Rate-compatible punctured convolutional (RCPC) codes are especially suit-
able for unequal error protection, since they can flexibly adapt the level of protection
by changing puncturing tables [9]. An alternative approach to provide DiffServ is to
use the different bit error rates, caused by the characteristics of signal constellations
in modulation [10,11].

Due to the limited bandwidth and the delay sensitivity of real-time video transmis-
sion, the optimal trade-off between source and channel coding under rate constraint
[12–15], delay constraint [16] or power constraint [17,18] has been studied extensively
[19]. A typical joint source/channel coder [12–15] is designed to adaptively choose the
quantizer of source coder and the channel rate of FEC coder. When the channel be-
comes very noisy, a coarser quantizer and a lower rate FEC code are selected to combat
channel errors. In contrast, when the channel condition becomes good, a finer quan-
tizer and a higher rate FEC code can be selected to transmit high quality video. It is
not feasible to compute all possible combination of quantizer step size and channel rate
to find the best operating point. Thus,many attempts have beenmade to develop a rate-
distortion model for video signals to reduce the computational complexity [20–27].

In this work, we first develop a video coder based on layered coding and inter-
leaved packetization. Then, we consider two scenarios of video communications.
The first scenario is to protect the packets of a pre-compressed video signal, when
the channel condition is fixed. We propose a channel code rate allocation scheme
to minimize the expected mean square error subject to a constraint on the overall
bit rate. In the second scenario, we jointly allocate the source and the channel rates
to each packet in real-time video transmission over a wireless channel, whose bit er-
ror rate is fluctuating. We develop a simple rate-distortion model, so that the rate
and the distortion can be estimated without an extensive encoding procedure. Sim-
ulation results demonstrate that the proposed algorithms for both scenarios provide
acceptable image quality even in high bit error rate environments.
2. Video coder

We employ a video coder, which is modified from the standard H.263 coder [2]. In
the encoder, we partition compressed video data into base and enhancement layers
and packetize them in an interleaved way to enhance error resilience. In the decoder,
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we use a motion-compensated error concealment scheme to recover corrupted video
regions faithfully.

2.1. Layered coding and packetization

In the encoder, we first partition compressed video data into two layers as shown
in Fig. 1. The base layer contains macroblock (MB) headers and motion vectors,
whose loss degrades the received video quality severely. The enhancement layer con-
tains less important information, i.e., the residual DCT coefficients after motion
compensation. For an intra MB, DCT coefficients are put into the base layer.

We then perform the packetization at the base and the enhancement layers, respec-
tively. Due to the packetization, the effect of errors can be localized within a packet. As
the packet size becomes smaller, the error localization becomes more effective. How-
ever, a smaller packet size introduces more overhead bits to distinguish separated data
parts. Furthermore, a larger amount of computations are required to evaluate the
importance of each packet so that packets can be treated differently according to their
importance. Thus, the bit rate overhead, the computational complexity as well as the
error localization capability should be taken into account to determine the packet size.

In H.263, a synchronization code can be inserted at the group of blocks (GOB)
level. Similarly, we can partition the encoded video stream into GOBs. In this
way, a QCIF (176 · 144) frame can be partitioned to 9 base packets and 9 enhance-
ment packets. However, if a GOB is corrupted, only the upper and lower MBs are
available to conceal an erroneous MB.

In this work, we introduce an alternative way to reorganize MBs so that each
packet consists of sparsely distributed MBs. Thus, the decoder can conceal the erro-
neous MB more effectively by using the information of more neighboring MBs. Fig.
2 illustrates the proposed packetization scheme. A packet for the QCIF format video
is formed with 11 MBs chosen from every nine consecutive MBs. Specifically, 1st,
10th, 19th, and 28th MBs are grouped into one packet, 2nd, 11th, 20th, and 29th
MBs are grouped into another packet, and so on. Therefore, as in the GOB packet-
ization, the proposed scheme also generates 9 base packets and 9 enhancement pack-
ets for each frame. But, when a packet is missing, the erroneous MBs can be
concealed by using the information of the upper, lower, left and right MBs. At
the end of each packet, a 16-bit cyclic redundancy code (CRC) is added to enable
the error detection at the decoder side.
Fig. 1. Illustration of data partitioning.



Fig. 2. MB grouping for a QCIF frame.
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2.2. Error concealment

Error protection schemes can reduce bit error rate, but they cannot guarantee to cor-
rect all bit errors. Since compressed video data consist of variable length codewords,
they are vulnerable to even a single bit error. Using the CRC code at the end of each
packet, the decoder first performs the error detection. If a packet is detected as errone-
ous, the decoder discards all the data within the packet and conceals the loss.

If an enhancement packet is lost but the corresponding base packet is intact, we
replace the missing DCT coefficients with zeros and copy each MB from the previous
frame using the motion vectors in the base packet. This approach provides a good
image quality, since we can exploit high temporal correlation in image sequences
with correct motion vectors.

On the other hand, if a base packet is lost, the corresponding enhancement packet
is useless. A simple approach is to directly copy the missing MBs from the previous
frame with zero motion vector. This approach gives an acceptable performance when
a sequence contains only slow motions. But, in a fast moving sequence, the direct
copying results in obvious discontinuities and artifacts.

In this work, the loss of a base packet is concealed in the following way. Suppose
that a corrupted MB is surrounded by four correctly received inter MBs. For each
missing pixel p in the corrupted MB, four predicted pixels are obtained from the pre-
vious frame by the motion vectors of the upper, lower, left and right MBs, respec-
tively. They are denoted by pupper, plower, pleft, and pright. To conceal the pixel p,
the four predicted pixel values are averaged using weighting coefficients, which are
inversely proportional to the distances between p and the adjacent MBs. Specifically,
assume that p is the (x,y)th pixel in the missing MB, where 1 6 x, y 6 16. Then, it is
concealed via

~p ¼
pupper � ð17� yÞ þ plower � y þ pleft � ð17� xÞ þ pright � x

34
:

Note that the weighting coefficient for pleft is
17�x
34

. It approaches 0.5, as p becomes
closer to the left MB (i.e., x is smaller). In contrast, it approaches 0, as p becomes



Fig. 3. Loss of the 3rd base packet. (A) The erroneous region is copied from the previous frame. (B) The
erroneous region is concealed by the proposed algorithm.
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closer to the right MB. The weighting coefficients for the other predicted pixels are
defined in a similar way. If a neighboring motion vector is not available due to the
packet loss, intra coding mode or boundary effect, only those available motion vec-
tors are used for the concealment. If all motion vectors are not available, the erro-
neous MB is copied from the previous frame with zero motion vector.

Fig. 3 compares the reconstructed frames of the direct copying method and the
proposed algorithm, when the 3rd base packet for the 2nd frame of �Foreman� se-
quence is lost. We see clearly that the copying algorithm yields obvious discontinu-
ities in the background building, while the proposed algorithm recovers the motion
vectors smoothly and provides very faithful image reconstruction without noticeable
artifacts.
3. Static channel code rate allocation

3.1. RCPC

Error correction codes are used to combat undesired noises and interferences in
wireless environments. Since our goal is to vary the channel coding rate according
to different QoS requirements, we adopt the rate-compatible punctured convolu-
tional (RCPC) code [9] due to its flexibility in adjusting the rate. A convolutional
code with a coding rate of k/n can be represented with n linear algebraic function
generators and implemented by passing an input sequence through a finite state
machine with k-bits per stage. As shown in Fig. 4, in RCPC coding, certain out-
put bits are deleted according to the puncturing table after the convolutional
encoding to increase the channel coding rate. At the decoder side, �0�s are inserted
using the same puncturing table as in the encoder before the Viterbi decoding.
Efficient generator functions and tables can be found in related textbooks and
papers [9].



Fig. 4. RCPC with rate = 4/5.
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3.2. Channel distortion

It is necessary to assign the channel code rate to each packet according to its
importance so that the limited bandwidth can be used efficiently. An ideal way
to measure the packet importance is to associate each packet with the effect of
its loss on human perception. However, human eyes are very complicated or-
gans, and it is difficult to obtain the exact relation between video packet and
its perceptual quality. Thus, for simplicity, we use the mean square error
(MSE) to measure packet loss effect. The MSE measurement of each packet loss
is straightforward. We emulate the dropping of each packet, perform its error
concealment and then compute MSE between the concealed data and the er-
ror-free data.

Let d2i denote the MSE value due to the loss of packet i. Then the expected chan-
nel distortion for a frame can be written as

Dchannel ¼
Xn

i¼1

d2i � P i; ð1Þ

where n is the number of packets for the frame and Pi is the probability that packet i
is lost. The packet loss rate Pi is given by

P i ¼ 1� ð1� eÞNi ; ð2Þ
where e is the bit error rate when a certain RCPC channel code rate is applied, and
Ni is the size of packet i in bits. We assume that even a single bit error ruins the whole
packet. In other words, an uncorrupted packet means that it contains no bit error
after the RCPC decoding.

The objective is to determine the RCPC channel code rate for each packet, which
minimizes the distortion in Eq. (1) subject to a certain rate constraint. Therefore, we
need to find the relation between the channel code rate and the bit error rate e in Eq.
(2). Since it is difficult to find a closed form relation, we use several training se-
quences to measure the bit error rate when a certain channel code rate is used. In this
way, we can find an experimental mapping of channel code rate and bit error rate.
Then, we can solve the problem by the following exhaustive search:
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(1) Get the MSE value d2i for each packet in a frame.
(2) Try every combination of channel code rates, and select the set that minimizes

the expected distortion in Eq. (1) subject to the constraint on the overall trans-
mission rate.

(3) Apply RCPC to each packet with the selected channel code rate.

3.3. Fast search algorithm

The rate assignment method described above is computationally expensive. In our
implementation, there are four choices of channel code rates (8/8, 8/16, 8/24 and
8/32), and we process a frame as a unit for the assignment. For example, in a QCIF
frame, there are 18 packets, and the exhaustive search should check 418 candidates to
find the best channel rate combination. Such a high complexity is unacceptable, and
a fast search algorithm is necessary in real time applications.

The Lagrangian multiplier method [19] is often employed to solve the rate-distor-
tion optimization problem, though it has the limitation that it can only reach points
on the convex hull of the achievable R-D region. Unfortunately, in our case, the con-
vex hull is not dense enough and the Lagrangian solution may not provide a reason-
ably good performance. Although the dynamic programming approach can
overcome this problem, its complexity increases exponentially with both the number
of packets and the number of rate choices.

We develop a different fast search method. As given in the cost function in Eq. (1),
there are two factors that affect the assignment result. One is the MSE value of each
packet loss, and the other is the packet loss rate that is a function of the packet size.
If we assume that all packets have the same size, the assignment depends only on the
MSE value. Specifically, the packet with a higher MSE value requires stronger pro-
tection. Thus, if we arrange packets in the descending order of the MSE values, the
assigned rates for those packets should be in the ascending order. The assigned chan-
nel code rates also should satisfy the overall transmission rate constraint. But, if the
total rate is much lower than the rate constraint, we can lower the channel code rates
of some packets to provide stronger protection. Thus, the best channel rate combi-
nation happens only when the total transmission rate is close to the rate constraint.
The following procedure is developed based on these observations:

(1) List the packets in the descending order of their MSE values.
(2) Find the set S of the channel code rate vectors rk that satisfies the ascending

rule. Specifically, S = {rk = (rk,1, rk,2, . . . , rk,n) : rk,i 6 rk,j for i < j}, where rk,i
denotes a channel code rate for packet i.

(3) Find the subset S0 of S that contains only the vectors satisfying the overall
transmission rate constraint.

(4) Let rl = (rl,1, rl,2, . . . , rl,n) and rm = (rm,1, rm,2, . . . , rm,n) be two elements in S0.
Note that the protection capability of rl is inferior to that of rm, if rl,i P rm,i

for all i. Thus, we remove such elements from S0 by comparing every pair
of elements in S0. Let S00 denote the resulting subset of S0.
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(5) Select the suboptimal code rate vector from S00 that minimizes the cost func-
tion in Eq. (1).

In the above procedure, we reduce the candidate set from S to S00. In general, the
size of S00 is much smaller than that of S, reducing the search time significantly.
For example, let us assume that there are 6 packets and each packet can have
one of the four channel rates 8/8, 8/16, 8/24, and 8/32. When the overall transmis-
sion rate is constrained to be smaller than twice the original source rate, the above
procedure yields S00 consisting of only 7 candidate vectors in Table 2. On the con-
trary, if the full search method is employed, we need to calculate the cost function
46 = 4096 times.

Although the same packet size assumption was made in developing the fast search
algorithm, packet sizes are actually varying in our system. It is, however, worthwhile
to point out that packet sizes do not vary significantly, since we employ a rate con-
trol scheme at the video encoder. Experimental results confirm that the fast search
algorithm provides an acceptable performance at a low complexity. For a QCIF
frame, the fast search algorithm usually takes around 40 time units to find the solu-
tion instead of 418 time units for the full search. Table 3 compares the search results
of the Lagrangian multiplier method and the fast search algorithm. We see that the
fast search algorithm tends to achieve a significantly lower cost than the Lagrange
multiplier method.
Table 2
An example of the fast channel code rate assignment

Packet 1 Packet 2 Packet 3 Packet 4 Packet 5 Packet 6

1 8/16 8/16 8/16 8/16 8/16 8/16
2 8/24 8/16 8/16 8/16 8/16 8/8
3 8/24 8/24 8/16 8/16 8/8 8/8
4 8/24 8/24 8/24 8/8 8/8 8/8
5 8/32 8/16 8/16 8/16 8/8 8/8
6 8/32 8/24 8/16 8/8 8/8 8/8
7 8/32 8/32 8/8 8/8 8/8 8/8

Table 3
Comparison of different search results

Lagrangian multiplier method Fast search algorithm

Frame 1 Cost = 18.699 Cost = 6.27394
Rate = 1518 Rate = 1478

Frame 2 Cost = 40.6726 Cost = 7.03531
Rate = 1741 Rate = 1741

Frame 3 Cost = 31.4817 Cost = 6.7466
Rate = 1652 Rate = 1927



484 W.-Y. Kung et al. / J. Vis. Commun. Image R. 16 (2005) 475–498
4. Adaptive source and channel rate allocation

In the previous section, we developed a channel rate allocation scheme for the
case when the source bit rate and the channel condition are fixed. However, the chan-
nel condition varies dynamically in wireless video communications. In such cases, it
is advantageous to jointly allocate the source and the channel rates according to the
fluctuating channel condition.

4.1. Video source model

A typical video encoder performs motion estimation, DCT, quantization, and
variable length coding (VLC). These components affect one another. For example,
if the motion estimation module can find a well-matched block in the previous frame
or the quantization is performed with a large step size, VLC requires a small amount
of bits to encode residual DCT coefficients. Also, the distribution of residual coeffi-
cients highly depends on the characteristics of the input image sequence. It is hence
not easy to develop a statistic model that precisely predicts bit rates and distortions.
However, in this work, we attempt to develop a simple model that can estimate
the bit rate and the distortion of a video packet in terms of the quantization para-
meter Q.

4.1.1. Bit rate model

The bit rate can be approximated as the entropy of quantized coefficients [28].
However, the empirical rate is usually lower than the 0th-order entropy, which is
computed by assuming that the coefficients are independent of one another. This
is because the coefficients are encoded by the run-length coding, exploiting consecu-
tive zero coefficients. The discrepancy between the entropy and the empirical rate be-
comes larger as the image sequence is encoded at a lower bit rate with a larger Q.
Since we focus on the low bit rate coding for wireless applications, the entropy meth-
od is not suitable in our approach. Recently, another method called q-domain R-D
analysis was proposed in [25], where the relationship between the bit rate and the
percentage q of zeros in quantized DCT coefficients was analyzed. However, to
achieve an accurate rate estimation, the method proposed in [25] requires a compu-
tationally expensive process to obtain about 10 model parameters.

To maintain a low computational complexity, we attempt to find a bit rate func-
tion in terms of Q rather than through several intermediate parameters. Fig. 5 shows
the average bit rate for three sequences �Foreman,� �Claire� and �Salesman.� Let us
analyze the bit rates for base packets and enhancement packets separately.

Enhancement packets contain residual DCT coefficients, and their bit rate de-
creases hyperbolically as Q increases. In Fig. 5, we also plot the polynomial function

Renh ¼
A

Q2
þ B;

which approximates the enhancement bit rate. Parameters A and B are obtained to
minimize the mean square approximation error. It is observed that the polynomial
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functions approximate very well the empirical bit rates. Table 4 summarizes param-
eters A and B for the three sequences. Note that B is negligible as compared to A.
Thus, we can approximate the bit rate further with

Renh ¼
A

Q2
: ð3Þ

Parameter A depends on source characteristics. �Foreman� sequence contains the
fastest motion, thus its DCT coefficients are more widely distributed and require a
higher bit rate than those of the other two sequences. Thus,�Foreman� sequence
Table 4
Parameters for the rate-quantization model Re ¼ A

Q2 þ B

A B

Foreman 28778 5
Claire 5226.4 �0.9
Salesman 9713.5 �3.3
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has the largest A in Table 4. Parameter A is estimated by encoding a packet with a
sample quantization parameter Qs. We obtain the resulting bit rate Renh,s for the
packet. Then, A is estimated as A ¼ Renh;s � Q2

s . Finally, Eq. (3) is used to estimate
the bit rates of the enhancement packet at the other quantization parameters.

On the other hand, base packets contain MB headers and motion vectors, thus
their bit rate does not vary significantly as Q changes. It is observed that the average
bit rate for base packets linearly decreases as Q increases, where the slope is empir-
ically found to be around 1. Thus, the bit rate for base packets can be approximated
via

Rbase ¼ Rbase;s þ ðQs � QÞ; ð4Þ

where Rbase,s is the bit rate when Qs is selected as the sample quantization parameter.
Fig. 6 compares the empirical bit rates and the estimated bit rates. It can be seen

that the estimated bit rates for both base and enhancement packets are very close to
the empirical ones.
4.1.2. Quantization distortion model

In a typical video coder, only the quantization of DCT coefficients incurs the
source distortion Dsource, whereas the other components process video signals loss-
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lessly. We adopt the mean square error as the measure for the quantization distor-
tion, which is given by

Dsource ¼ E½ðf � f̂ Þ2� ¼
Z aU

aL

ðf � f̂ Þ2pðf Þdf ;

where f is a DCT coefficient ranging from aL to aU, f̂ is the quantized output, and
p (Æ) is the probability density function of f. The distribution of DCT coefficients is
often modelled as the Laplacian distribution [29], given by

pðxÞ ¼ l
2
exp�ljxj: ð5Þ

Then, we have the quantization distortion

Dsource ¼
X1
i¼�1

Z qðiþ1=2Þ

qði�1=2Þ
ðx� qiÞ2pðxÞdx;

where q denotes the quantization step size and i denotes the quantization index. Note
that the quantization parameter Q is half the step size in H.263 (i.e., q = 2Q). As
shown in Appendix A, the quantization distortion can be approximated as
Fig. 7. The distortion-Q curves for (A) �Foreman,� (B) �Claire,� and (C) �Salesman� sequences.
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Dsource ¼
2

l2
1� e�1=2lq � e�128:5lq

1� e�lq
ðlqÞ

� �
� 2

l2
1� e�lQ

1� e�2lQ
ð2lQÞ

� �
: ð6Þ

Fig. 7 plots the quantization distortion in terms of the quantization parameter Q. At
the same Q, �Foreman� sequence has the highest distortion, since it contains fast
movements. The distortions of �Claire� and �Salesman� reach saturation points when
Q is greater than 10, i.e., when most DCT coefficients are quantized to zeros. The
proposed model tends to underestimate Dsource, when a small value of Q is chosen.
This is because there is a large discrepancy between the actual distribution and the
Laplacian distribution at a small Q. Nevertheless, the proposed model provides a
much more accurate estimation of Dsource than the traditional model

Dsource ¼
q2

12
¼ Q2

3

that assumes the uniform distribution of coefficients.
For each packet, after DCT but before the quantization, the Laplacian parameter

l can be obtained from the variance r2 of DCT coefficients by

l ¼
ffiffiffiffiffi
2

r2

r
:

Then, Dsource can be estimated from the quantization parameter Q via Eq. (6). Fig. 8
shows that the proposed model effectively estimates the quantization distortion for
each packet, even though the distribution of DCT coefficients varies dynamically
according to the motion and the texture of video contents.

4.2. Channel distortion

In the proposed adaptive source and channel rate allocation, a GOB is a basic
adaptation unit. A GOB consists of a base packet and an enhancement packet. Sim-
ilar to Eq. (1), the channel distortion due to possible losses of the base and the
enhancement packets can be written as

Dchannel ¼ d2base � P base þ d2enh � P enh: ð7Þ
The MSE values d2base and d2enh are computed by emulating the dropping and conceal-
ment of the base and the enhancement packets, respectively. Also, the packet loss
rates Pbase and Penh can be computed from the packet sizes via Eq. (2).

The quantization parameter Q also affects d2base and d2enh, and its influence on the
channel distortion should be investigated. An enhancement packet consists of resid-
ual DCT coefficients only. When it is lost, all coefficients are set to zeros. If we as-
sume that there is no quantization distortion, d2enh is equal to the variance r2 of
the residual coefficients. In general, it was found experimentally that d2enh is inversely
proportional to the quantization distortion Dsource and can be approximated as

d2enh ¼ r2 � Dsource: ð8Þ
Also, the motion-compensated error concealment is applied to a missing base packet.
From definition, d2base is the mean square difference between the concealed recon-
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Fig. 8. The estimation of the quantization distortion Dsource for each packet: (A) �Foreman,� (B) �Claire,�
and (C) �Salesman� sequences.
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struction and the error-free reconstruction. The concealed reconstruction is based on
the previously reconstructed frame and the neighboring motion vectors so that it is
independent of the current Q. But, the error-free reconstruction is dependent on Q.
We calculate the mean square difference, d2 (Qs,Q), between the reconstructed frames
using the quantization parameters Qs and Q. Then, d2base is approximated by

d2base ¼ d2base;s � d2ðQs;QÞ; ð9Þ

where d2base;s is the mean square error due to the loss of the base packet when the
sample quantization parameter Qs is employed. The above formula indicates that
d2base decreases as Q increases, which is consistent with empirical results.

Fig. 9 shows that the estimated distortions are close to the empirical data for
�Foreman,� �Claire,� and �Salesman� sequences.

4.3. Adaptation

The overall distortion D is the sum of the source and the channel distortions.
From Eqs. (6)–(9), we have
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D ¼ Dsource þ Dchannel ¼ ½d2base;s � d2ðQs;QÞ�P base þ r2P enh

þ 2

l2
1� e�lQ

1� e�2lQ
ð2lQÞ

� �
ð1� P enhÞ; ð10Þ

where r2 is the variance of DCT coefficients and l ¼
ffiffiffiffi
2
r2

q
.

Before the RCPC coding, the bit rates of the base and the enhancement packets
are given by Eqs. (4) and (3), respectively. Then, the overall transmission rate can be
written as

R ¼ Rbase

Cbase

þ Renh

Cenh

¼ Rbase;s þ Qs � Q
Cbase

þ A=Q2

Cenh

; ð11Þ

where Cbase and Cenh are the RCPC channel code rates for the base and the enhance-
ment packets.

Our goal is to optimize the quantization parameter and the channel code rates for
each pair of base and enhancement packets, which minimize the overall distortion D
in Eq. (10) subject to the constraint that the overall rate R in Eq. (11) is lower than a
certain bit rate. The optimization is performed as shown in Fig. 10. The detailed pro-
cedure is described as below:



Fig. 10. Flow chart of the proposed adaptation algorithm.
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(1) Encode the current frame by a sample quantization parameter Qs. Count the
bit rates generated from the base packets (Rbase,s) and the enhancement pack-
ets (Renh,s). Determine coefficient A via A ¼ Renh;s � Q2

s .
(2) For each enhancement packet, calculate the variance r2 of the residual DCT

coefficients and the corresponding Laplacian parameter l ¼
ffiffiffiffi
2
r2

q
.

(3) For each combination of (Q, Cbase, Cenh), compute the total bit rate via Eq.
(11). If it exceeds the given bit budget, reject the choice. If it is within the
bit budget, compute the overall distortion via Eq. (10).

(4) Repeat Step 3 for all valid combinations and find out the best combination
ðQ�;C�

base;C
�
enhÞ that minimizes D.

(5) Quantize the DCT coefficients by Q* and apply RCPC with rates C�
base and

C�
enh to the base and the enhancement packets, respectively.

(6) Repeat Steps 2–5 to process all the packets in the frame.
5. Simulation results

5.1. Channel rate allocation for pre-compressed video bitstreams

We investigate the performance of the channel rate allocation system in Section 3
in high bit error rate environments. A binary symmetric channel with bit error rate
(BER) 0.01 or 0.05 is simulated. For channel coding, RCPC with four rates, which
are 8/8, 8/16, 8/24, and 8/32, is employed. Also, the Viterbi decoder is assumed to be
capable of tracing back 80 symbols.
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We use three test sequences. They are the �Claire� 1st–50th frames, the �Foreman�
1st–50th frames and the �Foreman� 100th–150th frames, which have slow, moderate,
and fast motion characteristics, respectively. Figs. 11–13 show the PSNR perfor-
mances of the proposed algorithm (UEP) and the equal error protection (EEP)
scheme, which uses the same channel code rate (= 8/16) for all base and enhance-
ment packets. For error recovery, �w/ER� indicates that the error concealment meth-
od in Section 2.2 is used, while �w/o ER� denotes the direct copying algorithm. Since
the locations of errors affect the quality of the reconstructed video significantly, each
curve is obtained by averaging PSNRs over 100 different error patterns. It is clear
that the method �UEP w/ER� provides a significant performance improvement as
compared to the other three methods.

For the slow motion sequence, the gap between UEP and EEP is larger than that
between �w/ER� and �w/o ER� as shown in Fig. 11. This indicates that UEP is more
powerful than the motion-compensated error concealment, since the simple copying
Fig. 11. PSNR comparison for the �Claire� 1st–50th frames, which have slow motion characteristics: (A)
BER = 0.01 and (B) BER = 0.05.

Fig. 12. PSNR comparison for the �Foreman� 100th–150th frames, which have fast motion characteristics:
(A) BER = 0.01 and (B) BER = 0.05.



Fig. 13. PSNR comparison for the �Foreman� 1st–50th frames, which have moderate motion activities: (A)
BER = 0.01 and (B) BER = 0.05.
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algorithm is sufficient to conceal the loss of slowly moving objects. However, even in
the slow motion sequence, the importance of each packet varies greatly and UEP en-
hances the performance. On the contrary, for the fast motion sequence, the error
concealment is more powerful than UEP when BER = 0.01, as shown in Fig. 12A.
The simple copying algorithm causes severe discontinuities and artifacts if the se-
quence contains fast motion. Thus, the proposed motion-compensated concealment
provides a much better performance than the simple copying algorithm. However, as
BER increases, there are more packet losses and the error concealment performance
becomes poorer. Thus, when BER = 0.05, UEP plays a more important role than the
error concealment.

The best performance improvement is obtained in the moderate motion sequence
as shown in Fig. 13. Both the error concealment and UEP provide significant PSNR
improvements. As shown in Fig. 13B, UEP gives about 3 dB improvement, and the
error concealment also gives about 3 dB improvement on the average. However, the
total improvement is not additive. It is about 4 dB. That is because the error conceal-
ment tends to reduce the cost of the base packet loss. In other words, a good error
concealment decreases the cost gap between the base packet and the enhancement
packet, which in turn decreases the gain of UEP over EEP.

Fig. 14 compares several frames of the moderate motion sequence, which are recon-
structed by the �UEP w/ER� and �EEP w/o ER� methods. It can be observed that the
�UEP w/ER� method provides much better image quality than �EEP w/o ER.�

5.2. Adaptive source and channel rate allocation for real time video communications

Next, we investigate the performance of the proposed adaptive video transmission
system in Section 4. In the following experiments, a binary symmetric channel with
average BER = 0.004 and 0.02 is simulated. The spontaneous BER for a packet
varies from 0.1 to 10�11 for an average BER of 0.004, and varies from 0.1 to
0.001 for an average BER of 0.02. RCPC with four channel code rates, 8/8, 8/16,
8/24, and 8/32, is employed and the Viterbi decoder traces back 80 symbols. The test



Fig. 14. Several frames of �Foreman� sequence, which are reconstructed by (A) equal error protection and
direct copying (�EEP w/o ER�) and (B) unequal error protection and error concealment (�UEP w/ER�).
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video sequences are encoded in IPPP. . . format. The first I frame is assumed to be
transmitted without any channel error, and the proposed algorithm is applied only
to the following P frames.

Figs. 15–17 show the performances of the proposed adaptive system on �Claire,�
�Salesman,� and �Foreman� sequences, which are examples of slow, moderate, and
fast motion pictures, respectively. For comparison, we also show the performance
of the non-adaptive system under the same channel condition, where Q and the
channel code rate are fixed to 20 and 8/16, respectively. Due to the bit rate control
and the proper channel code rate assignment, the proposed algorithm reduces the
packet loss rate significantly. It can be seen that the adaptive system provides at least
2 dB and up to 6 dB improvement as compared with the non-adaptive system.

For the slow motion sequence �Claire,� the motion-compensated error conceal-
ment algorithm conceals corrupted regions faithfully. However, the non-adaptive
system does not fully utilize the bandwidth, and its PSNR performance is limited
by the quantization error. In contrast, the proposed algorithm assigns a smaller Q
Fig. 15. The PSNR comparison for �Claire� sequence at (A) BER = 10�1 to 10�11 and (B) BER = 10�1 to
10�3.



Fig. 16. The PSNR comparison for �Salesman� sequence at (A) BER = 10�1 to 10�11 and (B) BER = 10�1

to 10�3.

Fig. 17. The PSNR comparison for �Foreman� sequence at (A) BER = 10�1 to 10�11 and (B) BER = 10�1

to 10�3.
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and improves the quality of the received video. For the moderate motion sequence
�Salesman,� the PSNR value decreases sharply around the 10th frame, where the se-
quence contains fast motion. Nevertheless, the proposed adaptive system still per-
forms better than the non-adaptive system. For the fast motion sequence
�Foreman,� the average assigned Q value is around 20. Thus, the average source
bit rate in the adaptive system is close to that in the non-adaptive system. However,
the adaptive system allocates different channel rates to the base packets and the
enhancement packets to minimize the overall distortion. Due to the fast motion
activities of �Foreman� sequence, the base packets are more important, thus being
protected with stronger channel codes. Therefore, the adaptive system provides
much better PSNR performance than the non-adaptive system as shown in Fig.
17A. As shown in Fig. 17B, when the channel condition becomes worse, the adaptive
system has to lower Q and the channel code rate to satisfy the overall bit rate con-
straint. Therefore, the PSNR improvement becomes smaller.



Fig. 18. Several frames of �Foreman� sequence, which are reconstructed by (A) the non-adaptive system
and (B) the proposed adaptive system.
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Fig. 18 shows examples of reconstructed frames of �Foreman� sequence when BER
varies from 10�1 to 10�11. In the non-adaptive system, the reconstructed frames con-
tain severe distortions and blurring. On the contrary, the proposed algorithm recon-
structs the frames with an acceptable image quality. These simulation results indicate
that the proposed algorithm is an effective method for robust video transmission.
6. Conclusions

In this work, we developed a video coder based on layered coding and interleaved
packetization. In addition, we proposed joint source/channel coding schemes for
two typical video communication scenarios. The first one was designed for pre-com-
pressed video bitstreams, such that the expected mean square error is minimized
subject to a constraint on the overall bit rate. The second scheme was designed
for real-time video transmission over wireless channels, where the source and the
channel rates of each packet are jointly optimized to maximize the quality of recon-
structed video. Simulation results demonstrated that the proposed algorithms for
both scenarios provide acceptable image quality even in high bit error rate
environments.
Appendix A. Derivation of quantization distortion

When a uniform quantizer is employed, the expected distortion is expressed as

Dsource ¼
X1
i¼�1

Z qðiþ1=2Þ

qði�1=2Þ
ðx� qiÞ2pðxÞdx;

where q denotes the quantization step size and i denotes the quantization index. Sup-
pose that x has the Laplacian distribution in Eq. (5). In real implementation, i can
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not be infinitely large. We assume that i is restricted between �127 and 127. Then,
Dsource is derived as

Dsource ¼ 2

Z 1=2

0

x2
l
2
e�lx dxþ 2

X127
i¼1

Z qðiþ1=2Þ

qði�1=2Þ
ðx� qiÞ2 l

2
e�lx dx

þ 2

Z 1

127:5q
ðx� 128qÞ2 l

2
e�lx dx ¼

2� e�1=2lqð2þ lqþ 1
4
l2q2Þ

l2

þ
X127
i¼1

e�lqðiþ1=2Þð�2� lq� 1
4
l2q2Þ � e�lqði�1=2Þð�2þ lq� 1

4
l2q2Þ

l2

þ
e�127:5lqð2� lqþ 1

4
l2q2Þ

l2
¼ 2

l2
1� e�1=2lq � e�128:5lq

1� e�lq
ðlqÞ

� �
:
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