
www.elsevier.com/locate/jvci

J. Vis. Commun. Image R. 16 (2005) 589–620
MPEG video markup language and its
applications to robust video transmission q

Xiaoming Sun a, Chang-Su Kim b, C.-C. Jay Kuo a,*

a Integrated Media Systems Center and Department of Electrical Engineering,

University of Southern California, Los Angeles, CA 90089-2564, USA
b Department of Information Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong

Received 16 March 2004; accepted 8 March 2005
Available online 27 April 2005
Abstract

In this research, we develop theMPEG videomarkup language (MPML) to describeMPEG-
4 video contents. As an XML designed specifically for MPEG-4 bitstreams, MPML provides a
friendly support for random access, portability, interoperability, flexibility, and extendibility.
Wepropose an efficient compression algorithm to reduce the amount of storage space forMPML
documents. Then, as two applications, we show how to use MPML for error-resilient video
transmission over wireless channels and video multicast over Internet. It is demonstrated that
theMPML-based decoding algorithm can protect image quality effectively against transmission
errors over noisy channels by using the random access support of MPML.
� 2005 Elsevier Inc. All rights reserved.

Keywords: MPEG video; Markup language; XML; MPEG-4; Robust video transmission; Video multicast
1047-3203/$ - see front matter � 2005 Elsevier Inc. All rights reserved.

doi:10.1016/j.jvcir.2005.03.007

q This research was funded by the Integrated Media Systems Center, a National Science Foundation
Engineering Research Center, Cooperative Agreement No. EEC-9529152.
* Corresponding author. Fax: +1 213 740 4651.
E-mail addresses: sunx@pollux.usc.edu (X. Sun), cskim@ieee.org (C.-S. Kim), cckuo@sipi.usc.edu

(C.-C. Jay Kuo).

mailto:␣sunx@pollux.usc.edu␣
mailto:<!?A3B2 twb=.45w?>cskim@ieee.org␣
mailto:␣cckuo@sipi.usc.edu

590 X. Sun et al. / J. Vis. Commun. Image R. 16 (2005) 589–620
1. Introduction

Multimedia contents, especially video, consist of a rich volume of data. Various
compression algorithms have been developed to reduce the redundancy of video data
in the statistical, spatial, and temporal domains. Typical video compression algo-
rithms are based on the hybrid coding framework of motion-compensated prediction
and transform coding [1]. They follow a sequential processing fashion so that the
decoding process is restricted by the sequential mode as well. For example, the cur-
rent macroblocks (MBs) or frames cannot be decoded until the previous MBs or
frames are available. The current video coding approach also provides a limited
amount of global information for the decoder so that some desirable functionalities
cannot be easily accomplished such as random access and error resilience. In this
work, we design a new video description scheme to overcome the drawbacks of
the sequential processing while maintaining consistency with the current video cod-
ing framework.

The drastic increase of Internet applications has brought important impacts on
multimedia systems. Internet provides open interfaces to heterogeneous systems to
establish a bigger interconnected system. To facilitate Internet publishing and sup-
port seamless interoperability with various heterogeneous platforms, multimedia
applications require a media descriptive language (or markup language). The exten-
sible markup language (XML) [2] is an emerging generation of markup language for
Web-oriented publishing. It provides simple and flexible markup definitions and has
a great potential to represent a rich class of document structures. Thus, it has been
used in a wide range of applications including Web-oriented databases, document
management, and software engineering. Due to its powerful markup syntax, XML
can satisfy various requirements arising from heterogeneous systems such as interop-
erability, scalability, openness, and random access.

These properties of XML can be helpful in various video delivery applications,
including error-resilient video transmission and multicast video streaming. As video
file gets compressed more, the encoded bitstream becomes more vulnerable to bit er-
rors over wireless channels and packet loss over IP networks. Many techniques have
been developed to enhance the error resilience of video bitstreams [1,3], but the lack
of random access capability in the decoder makes it difficult to recover from trans-
mission errors. Also, the synchronization of multiple receivers is an important issue
in multicast video streaming [4–6]. But traditional video coding schemes do not pro-
vide enough global information to facilitate the synchronization. These problems
can be effectively overcome by an XML-based markup language due to its inherent
support for random access.

Motivated by these considerations, we have developed a markup language for
MPEG-4 video, called MPEG video markup language (MPML), in [7–12]. MPML
is a portable XML description for MPEG video, which can be customized for var-
ious video applications. The extensible MPEG textual format (XMT) [13] is an-
other XML for the description of MPEG video contents. It aims at interacting
with existing multimedia XMLs (e.g., X3D [14], SMIL [15], SVG [16]) and equip-
ping users with XML-based abstraction and manipulation of MPEG-4 systems. It

X. Sun et al. / J. Vis. Commun. Image R. 16 (2005) 589–620 591
has two levels of textual syntax and semantics: XMT-A and XMT-O. XMT-A,
which is interoperable with X3D, provides XML description of MPEG-4 binary
format for scenes (BIFS) and object descriptors. XMT-O is a higher level abstrac-
tion based on SMIL and can be mapped to XMT-A representation. Also, the ISO
MPEG-7 framework [17–19] attempts to support interactive scene description, con-
tent description, and powerful programmability of various multimedia contents.
Currently, XMT is being integrated into the MPEG-7 framework. As compared
with XMT and MPEG-7, MPML provides XML description of MPEG compo-
nents at the bit level. To summarize, MPML, XMT, and MPEG-7 provide low-le-
vel, medium-level and high-level XML descriptions of MPEG video contents,
respectively. Although designed for different purposes, these XML descriptions
are inherently interoperable and can be embedded into one another due to their
conformances to the MPEG standard.

In this research, we first propose an efficient compression algorithm for MPML
documents to reduce their overheads. Then, as two applications of MPML, we inves-
tigate the application of MPML to error-resilient video transmission on the wireless
environment and multicast resynchronization over Internet.

The article is organized as follows. We discuss the design of MPML and its com-
pression in Section 2. The MPML-based robust video transmission is introduced in
Section 3, and the MPML-based multicast resynchronization is discussed in Section
4. Finally, concluding remarks are given in Section 5.
2. MPML and its compression

In this section, we briefly review the markup theory. Then, we introduce the
MPML description for MPEG-4 video contents and its efficient compression
algorithm.

2.1. Markup theory and XML

Markup is a set of instructions written on a manuscript to clarify its information.
In markup theory, there are six types of markups [20]. Punctuational markup con-
sists of a primary set of markups providing syntactic information about the written
utterances. Presentational markup can make the presentation clearer with appropri-
ate horizontal and vertical spacing, page breaks, and so on. Procedural markup pro-
vides commands indicating how the document should be formatted and often
replaces the presentational markup. Descriptive markup declares the membership
of a portion of text stream and thus describes the document structure. Many prob-
lems in document development can be tackled by the descriptive markup. Referential
markup refers to external entities and is replaced by those entities during the docu-
ment processing. Meta markup provides us with a facility of controlling the interpre-
tation of markups and extending the vocabulary of descriptive markup languages.

To regulate a standardized markup language, ISO developed the standard gener-
alized markup language (SGML) as a mature language for expressing document

Fig. 1. Separation of plain text and markup.

592 X. Sun et al. / J. Vis. Commun. Image R. 16 (2005) 589–620
structure in 1986 [21]. Two separations were first declared in SGML: the separation
between plain text and markups and the separation between document structure and
its display. Fig. 1 shows an example of the separation between plain text and mark-
ups. The markups do not modify the document content. They are only used to de-
scribe the document structure, and the original text body can be retrieved by
removing the markups. Fig. 2 shows the processing of SGML. The marked-up doc-
ument is parsed by the SGML parser. Then, the renderer displays the parsed result.
It is clear that the parsing process is separated from the rendering process. In this
way, the document content (or text) itself does not vary with the style how it is read
or displayed. As a result, document portability, interoperability, and maintenance
can be improved significantly.

As a simple instantiation of SGML, HTML was invented as a media descrip-
tion language for interconnected computer systems at CERN in 1991, which
marked the new era of the World Wide Web. Although HTML is simple and pow-
erful in media representation for Web publishing, it does not fully implement
SGML. The markup definitions in HTML are fixed, and they may not satisfy
the requirements of various applications. These drawbacks were recognized by
researchers, and XML was proposed as a complete incarnation of SGML [2].
XML strictly conforms to the two separation rules of SGML and allows high free-
dom of markup definitions. Therefore, users can define their own XML as well as
the document structure. Due to the powerful syntax, open markup definitions, and
friendly support for portability and interoperability, XML is not only used in
Web-oriented applications, but also plays an important role in cross-platform
and data-exchangeable applications. Microsoft Office software is a good example
for the latter case.

XML has been applied to multimedia applications. The synchronized multimedia
integration language (SMIL) was recommended by W3C as an XML-based language
for authoring interactive multimedia presentations [15]. The scalable vector graphics
(SVG) [16] was released by W3C as a standard for describing vector-based graphic
format. The vector markup language (VML) is another markup language for vector
information coding. The Web3D Consortium, jointly with the W3C Consortium,
Fig. 2. The processing of SGML.

X. Sun et al. / J. Vis. Commun. Image R. 16 (2005) 589–620 593
proposed the extensible 3D (X3D) to describe interactive 3D contents integrated
with multimedia. X3D is the successor to virtual reality modeling language (VRML)
and improves upon VRML with new features, stricter conformance and additional
data encoding formats [13,14].

2.2. MPML description for MPEG-4 video content

2.2.1. Terminologies

The current video coding standards, including MPEG-4, emphasize the sequen-
tial coding fashion. However, the sequential coding causes strong dependencies
among compressed data, which are not desirable when random access is required
in applications. To alleviate this problem, we design an XML-based markup lan-
guage, called MPML, to describe MPEG-4 video contents [7–12].

Fig. 3 introduces several terminologies for MPML. MPML-coded contents are
saved in XML documents, which are referred to as MPML descriptions or docu-
ments. XML trees for MPML descriptions are referred to as MPML trees.
An MPML parser can read an MPML document and generate the corresponding
MPML tree. Conversely, an MPML generator can convert the MPML tree to the
MPML document. MPML encoder and decoder are, respectively, the MPEG enco-
der and decoder integrated with an MPML parser, which can encode and decode
both MPEG bitstreams and MPML descriptions. An MPML tree can be directly
translated into an MPEG bitstream by an MPML–MPEG parser.

A full MPML description of a given MPEG bitstream is referred to as the com-
plete MPML description. Basically, an MPML description consists of two parts: the
Fig. 3. MPML concepts and applications.

594 X. Sun et al. / J. Vis. Commun. Image R. 16 (2005) 589–620
video structure, which contains XML tags for storing the structural information of
MPEG video; and the video contents, which contain XML attributes to represent the
compressed codewords of MPEG video. Note that the MPML description does not
contain XML data but only tags and attributes. The complete MPML description
may be too large to be directly used in applications. A partial MPML description
can be generated from the complete MPML description by an MPML customizer
according to the requirements of applications.

An MPEG bitstream and its MPML description can be stored as an aggregated
file or two separate files. The aggregated MPML–MPEG bitstream demands strong
error protection of the entire bitstream in hostile error-prone environments. In con-
trast, the separated MPML–MPEG bitstreams facilitate the use of unequal error
protection codes. In Sections 3 and 4, we will apply MPML to error-resilient coding
and multicast resynchronization. In these applications, the video content is sent as
separate MPML–MPEG bitstreams and the error correction codes are applied only
to the MPML description.

2.2.2. Mapping from MPEG syntax to MPML description

In MPEG-4, each visual object (VO) is represented by its shape, texture, and mo-
tion [22,23]. VOs can be created in a variety of ways. They can be generated from the
spatio-temporal segmentation of natural scenes or the parametric description of gra-
phic objects. Alternatively, one or a set of rectangular image frames can be treated as
a VO. The syntax of MPEG-4 bitstream is defined hierarchically as shown in Fig. 4.
The frame or picture is called the video object plane (VOP), whose shape and texture
Fig. 4. Hierarchical representation of an MPEG visual bitstream.

X. Sun et al. / J. Vis. Commun. Image R. 16 (2005) 589–620 595
data are predictively encoded. A group of VOP (GOV) defines a collection of VOPs,
which can be independently decoded. The video object layer (VOL) is reserved for
scalable coding options.

Note that the MPEG-4 syntax is hierarchically organized in a well-defined tree. In
fact, Fig. 4 illustrates the tree structure of headers in MPEG-4 bitstream, and the ac-
tual bitstream can be obtained by the pre-order traversal of the tree. Thus, the root
element of a subtree at a certain level (e.g., VOL or VOP) represents a number of bits
in the compressed bitstream. This mapping relation can be nicely preserved in most
situations, although there are some exceptions due to the requirements of synchro-
nization and error resilience.

Fig. 5 shows the mapping of the MPEG tree structure to the MPML document,
which is also tree-structured. We design MPML based on the following two princi-
ples. First, MPML adopts the same mnemonics as the C-style pseudo code represen-
tation of MPEG-4 standard. Second, MPML preserves the same storage order as
MPEG-4 bitstream. Based on these principles, MPML can present a clear view of
the MPEG-4 video content.

We have mapped all components in MPEG-4 video into XML tags in our MPML
name space. The presence of XML tags outlines the structural information of the vi-
deo, while the attributes of XML tags carry the descriptive information about the
video content. To enable the reconstruction of the original MPEG bitstream from
the MPML description, three attributes pos, bits and value are used for most
Fig. 5. The tree structure of an MPEG-4 visual bitstream and the corresponding MPML document.

596 X. Sun et al. / J. Vis. Commun. Image R. 16 (2005) 589–620
XML tags as shown in Fig. 5. The attribute pos represents the position of the cor-
responding element in the video bitstream, and bits informs how many bits the ele-
ment occupies. From the pair (pos, bits), we can locate a compressed element
within the MPEG bitstream. The attribute value is the real value of the element,
which is converted from the binary codeword. We can validate the genuineness of
the compressed video elements by cross-checking with the value attributes.

To enhance error resilience, MPEG-4 provides the optional mode of data parti-
tioning (DP), which separates the header and motion information from the texture
information. This mode breaks the basic tree structure of MPEG-4, since the MB
and block data are shuffled within a slice. However, to maintain the random access
capability of MPML, we still use the MPML tree structure in the DP mode and
make necessary modifications. In the VOL header, there is a tag �data_partitioned�
indicating whether the video data are encoded in the DP mode. Even in the DP
mode, the texture and motion data are put under the corresponding MB/block
nodes, such that they can be randomly accessed from the MPML tree. The pos attri-
bute gives the real physical locations within the video bitstream. Using the modified
pos attributes, MPML parser can achieve the exact correspondence between
MPEG-4 bitstream and MPML document.

2.3. Joint processing of MPEG bitstreams with MPML descriptions

2.3.1. Generation of MPML descriptions

MPML is a precise markup description of MPEG-4 video without any essential
modifications on the encoding and decoding algorithms. Hence, the MPML genera-
tor is a tight combination of the MPEG encoder/decoder and the XML parser, and
MPML descriptions can be generated at the encoder or the decoder of MPEG-4
bitstreams.

Fig. 6 illustrates the MPML generator implemented at the decoder end. The XML
parser is integrated into the MPEG decoder at the point where the shape, motion,
and texture data are fetched from the demultiplexer. When the MPEG decoder gets
a codeword from the demultiplexer, the integrated XML parser (i.e., the MPML par-
ser) generates the corresponding MPML node to build up the XML tree. The
MPML attributes such as pos and bits are determined at this moment.

The MPML generator implemented at the encoder end has a similar architecture.
Fig. 7 shows the MPML generator at the encoder end, which can generate both the
MPML document and the MPEG bitstream. When a codeword is written out to the
MPEG bitstream, it is also recognized by the MPML parser.

2.3.2. Indexing and random access of MPML trees

In general, XML parsers provide a set of powerful tools to allow various opera-
tions on XML trees, such as random access of nodes. Thus, using the MPML parser
that is a specific example of XML parsers, the global indexing and random access of
MPML trees can be performed efficiently.

An element of the MPML tree is identified by its name and index. The name rep-
resents the level of the element within the tree, and the index represents the order of

Fig. 6. Generation of MPML at the decoder end.

Fig. 7. Generation of MPML at the encoder end.

X. Sun et al. / J. Vis. Commun. Image R. 16 (2005) 589–620 597
the element among its siblings. Using the name and the index, we can find the path
from the root node to the target node, which contains the desired element.

Fig. 8 shows how to randomly access the attribute value of the node �Visual-
Object/VideoObjectLayer/VOP/macroblock/mcbpc.� If we traverse the tree nodes

Fig. 8. Random access of an MPML tree.

598 X. Sun et al. / J. Vis. Commun. Image R. 16 (2005) 589–620
sequentially in the same order as the MPEG-4 bitstream, it is not necessary to specify
the indices. Instead, we can keep track of already accessed nodes and know the index
of the next node to be accessed. In Fig. 8, �xml_statistics� is the data structure which
stores the number of already accessed nodes.

2.3.3. MPML-assisted decoding

To apply the MPML description to the decoding of MPEG-4 video, the descrip-
tion should be parsed by the MPML parser to generate the MPML tree. Fig. 9 shows
the structure of the MPML-assisted MPEG decoder. Once the MPML tree is built
up, there are two input sources available for the decoding. The first source is fetched
from the MPEG bitstream through the demultiplexer, and the second source is
obtained by traversing the MPML tree. The compressed video data can be accessed
from the MPML tree using the random access capability.
Fig. 9. The MPML-assisted decoding process.

X. Sun et al. / J. Vis. Commun. Image R. 16 (2005) 589–620 599
Depending on applications, we can determine which source should be used for the
decoding and turn on/off the switch �Use_MPML� in Fig. 9 accordingly. For exam-
ple, if the transmitted MPEG bitstream is not reliable due to the network congestion,
the information conveyed by the MPML document can be employed to improve the
decoding performance. We will discuss the issue of error-resilient decoding of MPEG
video in Section 3.

2.4. MPML compression

One of the main advantages with the MPML description is that we can randomly
access to any element in the compressed video. However, without careful implemen-
tation, MPML documents can be too huge to be used in practical applications. Our
experiments confirmed that a text-based MPML document can be up to 200 times
bigger than the corresponding MPEG bitstream. MPML documents can be com-
pressed losslessly using Huffman coder or Lempel-Ziv coders. However, these coders
achieve a typical compression ratio of 40–60%, which is not enough to compress
huge MPML documents. It is essential to develop a more efficient compression algo-
rithm for MPML documents.

General XML documents have well-defined structures and limited vocabulary,
and their attribute values are confined within a specific range. XMill [24] and
XMLPPM [25] are two examples of XML coders, which exploits these properties
to achieve a good compression ratio. XMill first separates the structure from the
data. Then, it groups related items and apply the gzip method to compress each
group. It can achieve about twice higher compression ratio than general-purpose
coders. XMLPPM uses an alternative approach for XML compression based on
the prediction by partial match (PPM) modeling. It was shown that XMLPPM
provides even better compression performance than XMill.

2.4.1. Structural and semantic properties of MPML documents
MPML documents have a succincter format than general-purpose XML docu-

ments. The structural properties of MPML documents can be summarized as
follows.

(1) An MPML document is composed of XML tags only.
(2) The MPML document uses a small and fixed set of XML tag names.
(3) The XML tree is fat in general. Its depth is bounded by a small number less

than 10. Its widths at the top two levels (VO and VOL) can be large, whereas
its widths at the other levels are bounded by a fixed number. For example, a
VOP of QCIF format contains only 99 MBs.

(4) The XML tree is roughly balanced.

An MPML document is the description of MPEG-encoded video, which has a
well-defined semantics. Thus, the MPML document also has a number of semantic
properties that can be used for a higher coding gain. For example, if �start_code_pre-
fix� and �vop_start_code� appear contiguously in the MPML document, they are also

600 X. Sun et al. / J. Vis. Commun. Image R. 16 (2005) 589–620
contiguous in the MPEG bitstream. Also, they are represented by a fixed number of
bits.

The MPML document contains the topology information of MPML tree and
three kinds of tag attributes (i.e., pos, bits, and value). The topology and tag
attributes in MPML documents have the following semantic properties.

(1) The topology can be induced by the positions of MPML tags.
(2) All the attributes are of integer type. Moreover, the pos and bits attributes

are non-negative integers.
(3) The attribute pos of the current MPML tag can be obtained by adding pos

and bits of the previous MPML tag.
(4) The bits attributes of many MPML tags are fixed numbers.

These structural and semantic properties are used to develop a highly efficient
MPML coder.

2.4.2. Compression algorithm for MPML documents

The MPML tree is partitioned into a sequence of subtrees, and each subtree is en-
coded independently as a partition unit. If the corresponding MPEG-4 bitstream is
encoded in the DP mode, a partition unit is a video packet delimited by resynchro-
nization markers. In the default mode, a partition unit is defined as a number of con-
tiguous MBs.

We encode tag names and attributes separately. For the attribute coding, if an
MPML tag spends a fixed number of bits, its bits attribute is not encoded. Also,
from the semantic property (3), the pos attribute of an MPML tag can be recon-
structed by adding pos and bits of the previous MPML tag. Hence, all pos attri-
butes, except those for macroblock tags, are omitted in the compressed MPML
bitstream. The pos attributes for macroblock tags are retained to support random
access to the macroblock data.

If there is no request, the topology information of the MPML tree is not encoded,
since it can be reconstructed by parsing the MPML tags. As an optional mode, we
encode the tree topology based on the breadth-first traversal [26].

Fig. 10 shows the architecture of the MPML coder, which is similar to that of
the XMill coder [24]. The MPML compression is a two-pass procedure. The SAX
(simple API for XML) parser is an XML parser, which facilitates the access of the
MPML tree. In the first pass, using the SAX parser and the path processor, we
classify the MPML data and put them into different semantic coders. The seman-
tic coders convert the textual MPML data into binary data. Then, those binary
data are put into appropriate containers, according to the information they carry.
In the second pass, the arithmetic coder (AC) is applied to each container to
reduce the bit rate. Note that by grouping related data into the same container,
the compression performance of the arithmetic coding can be improved signifi-
cantly. Finally, to support the DP mode of MPEG-4, the MPML data for MB
modes and motion vectors (MVs) are coded into separate segments in the output
bitstream.

Fig. 10. The architecture of the MPML coder.

X. Sun et al. / J. Vis. Commun. Image R. 16 (2005) 589–620 601
The semantic coders convert the textual data of MPML documents into binary
data. Table 1 lists the semantic coders employed in the MPML encoder. The first co-
der vlc is used to represent MPML tags with variable length codewords. Several tags
are always associated with fixed attributes. For example, �vop_start_code� has always
a fixed value 000001B6 in hexadecimal number. In such cases, the attributes are not
encoded. The second coder i16 is used to encode the attributes that are signed 16-bit
integers. For instance, i16 is used to encode the value attribute of �dct_dc_differen-
tial,� which represents the difference between the DC coefficients of adjacent blocks.
The third coder u8 is used to encode the attributes that are unsigned 8-bit integers. In
MPML, value attributes often represent codewords in VLC tables of MPEG-4. All
these tables contain less than 256 codewords. Therefore, those value attributes can
be represented by the corresponding indices to the VLC tables, which in turn can be
encoded by u8.

As an optional mode, the coders i16 and u8 can be replaced with the range
partitioning coders rpi16 and rpu8, respectively. These range partitioning coders
Table 1
The semantic coders in the MPML encoder

Coder Data items

vlc MPML tags
i16 Signed attributes, e.g., the value attribute of ‘‘dct_dc_differential’’
u8 Unsigned attributes, e.g., the indices to MPEG-4 codeword tables
rpi16 The same as those for semantic coder i16
rpu8 The same as those for semantic coder u8

Table 2
The 16-bit signed range partitioning semantic coder rpi16

Flag Bits allocated Value range Total bits

00 2 [�21,21�1] 4
01 4 [�23,23�1] 6
00 8 [�27,27�1] 10
11 16 [�215,215�1] 18

602 X. Sun et al. / J. Vis. Commun. Image R. 16 (2005) 589–620
use a 2-bit flag to confine the range and then use a different number of bits to rep-
resent the actual value. Table 2 shows the coding scheme of rpi16. For example, to
represent value 6, rpi16 first encodes the flag 01 and then encodes the actual value
with 4 bits 0110. Thus, 6 bits (=010110) are required in total. Since small attributes
are more probable than large attributes, the range partitioning coders can save bits.
The coding scheme of rpu8 is defined in a similar way.

The decoding process is performed at the partition unit level. If the topology
information is omitted, the MPML tree is built up by parsing MPML tags. After
decoding an MPML tag, the corresponding attributes are decoded and put into
the proper places.

2.4.3. Experimental results

Fig. 11 and Table 3 show the compression performances of Winzip, XMill, and
the proposed algorithm on MPML documents. In this test, ‘‘dog and man’’ QCIF
(176 · 144) sequence is used as a test sequence. Its frame rate is 6 frames/s. It is first
encoded into the MPEG-4 bitstream at a bit rate of 48 kbps and then converted into
the MPML document. For comparison, the file sizes for the MPEG-4 bitstream are
also presented.
Fig. 11. The compression performances on MPML file.

Table 3
Performance comparison of several compression algorithms

Frames MPEG-4 Winzip XMill MPML

10 11,307(2.97%) 219,633(57.78%) 108,667(28.58%) 17,240(4.53%)
20 22,231(2.92%) 429,733(56.52%) 214,787(28.25%) 31,519(4.15%)
30 33,202(2.91%) 638,143(55.95%) 319,666(28.03%) 46,094(4.04%)
40 44,699(2.94%) 857,303(56.38%) 429,255(28.23%) 61,408(4.04%)
50 56,492(2.97%) 1,078,655(56.75%) 542,314(28.53%) 76,923(4.05%)
60 69,314(3.04%) 1,315,879(57.69%) 664,029(29.11%) 93,660(4.11%)
70 83,532(3.14%) 1,577,616(59.28%) 799,754(30.05%) 112,411(4.22%)
80 91,620(3.01%) 1,745,667(52.45%) 879,688(28.92%) 122,832(4.04%)
90 101,092(2.95%) 1,932,937(56.49%) 969,898(28.35%) 134,886(3.94%)
100 111,587(2.93%) 2,135,576(56.18%) 1,070,988(28.17%) 148,326(3.90%)

For each entry, the first number is the compressed file size required to encode the video up to the frame
number, and the number within the parenthesis is the percentage of the compressed file size compared with
the size of the raw video sequence.

X. Sun et al. / J. Vis. Commun. Image R. 16 (2005) 589–620 603
In Table 3, we have two numbers for each entry. The first number is the number
of bytes required to encode the sequence up to the target frame number. The second
number is the percentage of the compressed file size in comparison with the raw
video sequence. Note that Winzip is a universal coder for arbitrary signals, and
XMill is an encoding method for general XML documents. We can see that the
proposed MPML compression algorithm provides a substantially better perfor-
mance than both Winzip and XMill, by exploiting the properties of MPML docu-
ments. However, the proposed compression algorithm requires about two times
larger file size than the original MPEG-4 bitstream. Therefore, in terms of only com-
pression, the proposed MPML compression algorithm is inferior to the sequential
coding of MPEG-4. But, the MPML representation has the advantage of flexibility
and random access support. Using these properties, MPML documents can be cus-
tomized and used to facilitate video communications applications, as will be shown
in next two sections.
3. MPML-based robust video transmission

As in the other video coding standards, MPEG-4 also employs variable length
coding (VLC) and motion compensated prediction to achieve a high compression
performance. However, VLC has a shortcoming that even a single bit error can result
in a loss of synchronization and the following bits may not be correctly decoded until
the next resynchronization marker. Moreover, transmission errors may propagate to
subsequent frames due to the motion compensated prediction. Therefore, various
approaches have been proposed to protect image quality against transmission errors
[1,3].

The proposed MPML provides a new approach to robust video transmission.
Fig. 12 illustrates the proposed MPML-based robust video transmission system. The
MPML encoder generates an MPML description as well as an MPEG-4 bitstream.

Fig. 12. Robust video transmission system using MPML and adaptive error correction coding (ECC).

604 X. Sun et al. / J. Vis. Commun. Image R. 16 (2005) 589–620
Since the MPML description can be randomly accessed, it can be used at the decoder
to detect and correct transmission errors in the MPEG-4 bitstream. However, the
complete MPML description often requires too much overhead for transmission
and can be also corrupted by transmission errors. Therefore, the MPML customizer
first tailors it to the partial MPML description according to the importance of video
components, and then compress the partial description into binary data. Finally, the
compressed MPML description is protected by error correction codes (ECCs) [27] to
resist transmission errors.

3.1. MPML customization for robust video transmission

The data in MPEG-4 video can be classified into headers, MVs and DCT coeffi-
cients. The header information describes the structural information of MPEG-4 vi-
deo and plays a more critical role in the decoding process than MVs or DCT
coefficients. Thus, the MPML customizer always keeps the header information,
while omitting the MVs and DCT coefficients of less important MBs in the partial
MPML description to reduce the transmission overhead.

3.1.1. Selection of important MBs

MB losses have different impacts on the overall quality of reconstructed video.
For instance, if an MB is not used in the prediction of future frames, its loss causes
only temporary degradation. In contrast, if its pixel values are repeatedly used in the
prediction of future frames, the overall video quality can be severely degraded by
temporal error propagation. In general, the importance of an MB is proportional
to the extent to which it is used in the motion compensated prediction.

Fig. 13. The distribution of importance indices of MBs in a typical frame.

X. Sun et al. / J. Vis. Commun. Image R. 16 (2005) 589–620 605
We adopt the notion of dependency weight, proposed by Kim et al. in [28], to
quantify the importance of each MB. Let Mn,i denote the ith MB in frame n. Then,
the dependency weight Wn,i (j) is defined as the normalized number of pixels in Mn,i

that are used to predict pixels in Mn + 1,j. The importance index In,i of Mn,i is then
defined as the sum of Wn,i (j)�s, given by

In;i ¼
XK

j¼1

W n;iðjÞ;

where K is the number of MBs in a frame. Note that In,i indicates how much the loss
of Mn,i affects the next frame n + 1.

Fig. 13 shows the distribution of importance indices of MBs in a typical frame. In
this work, the distribution is modeled by the Gaussian distribution with mean l and
variance r2. The importance indices are computed from MVs as described in [28],
and their sample mean and variance are obtained and updated during the encoding.
We select a threshold h (k) = l + kr2, which is parameterized by k. Then, the data
for MBs are recorded in the partial MPML description, if their importance indices
are higher than the threshold h (k).

3.1.2. Error correction coding for customized MPML descriptions

The bit error rate (BER) of a typical wireless link is around 10�3, which is much
higher than that of a wired one (.10�6) [29,30]. Therefore, a proper error protection
scheme is essential to transmit MPML descriptions reliably over wireless channels.
In this work, we develop an unequal error protection method for MPML descrip-
tions to ensure robust transmission while controlling the additional overhead within
an acceptable limit.

The nodes in the customized MPML document are protected by error correction
codes (ECCs) as follows.

606 X. Sun et al. / J. Vis. Commun. Image R. 16 (2005) 589–620
• The header nodes are protected by a (31,21) BCH code, which can correct up to 2
bit errors for every 21 data bits using 10 parity check bits [27].

• The MB data, including MVs, MB modes and DCT coefficients, are encoded by
the (33,32) parity check code, which can detect a single bit error within 32 data
bits using 1 parity check bit.

Note that the header information is more important and thus protected by the
strong BCH code. In contrast, the MB data are protected only by the simple parity
check code, and their transmission errors are detectable but not correctable.

3.2. Error detection and recovery in the decoder

The conventionalMPEG-4 decoder can detect errors in two cases: an illegal bit pat-
tern is encountered or the decoded value does not lie within the legal range. The
MPEG-4 standard provides several tools to localize the effect of transmission errors.
The start code is a byte-aligned 32-bit code identifying the start of VOP in MPEG-4
bitstream. Start codes can be used to resynchronize the decoding process at the frame
level. Data partitioning mode can further localize transmission errors at the video
packet (VP) level using resynchronization markers (RMs). However, start codes and
RMs can be also corrupted, yielding severe corruption of reconstructed video.

In the proposed algorithm, the customized MPML description is used to recon-
struct MPEG-4 video in a robust way. First, the channel decoder detects and corrects
possible errors in the MPML description. If data bits contain detectable but not cor-
rectable errors, they are discarded. Then, the MPML parser builds up the MPML
tree from the corrected description. Since the header nodes are protected by the
strong BCH codes, they can be successfully decoded with a high probability and
facilitate the random access to the MPEG-4 bitstream.

Using theMPML tree, the proposed algorithm can detect transmission errors in the
MPEG-4 bitstream as follows. When the decoder decodes a codeword from the bit-
stream, it searches the MPML tree for the corresponding node. If the node is found
and not consistent with the codeword, the decoder declares the codeword as corrupted.
If the node is not found, the conventional error detection method is employed.

Table 4 summarizes the types of MPEG-4 decoding errors [22,31]. Note that error
types 2, 3, 4, and 5 can be directly detected by comparing the bitstream with the
header nodes in the MPML tree. Also, error type 1 can be similarly detected if the
block data are present in the MPML tree. Error types 6 and 7 can be detected by
checking whether codewords conform to the MPEG-4 syntax.

Fig. 14 shows a typical error record generated by the MPML-assisted error detec-
tion algorithm. It informs the decoder of the exact position of the corrupted code-
word as well as the number of bits for the codeword. Therefore, the decoder can
resume the decoding immediately after the corrupted codeword. This is the main
advantage of the MPML-assisted error detection. Notice that in the conventional de-
coder, an error is often detected after the true position due to the property of vari-
able length codes as shown in Fig. 15. Thus, when an error is detected, the whole
video packet is usually discarded to avoid the decoding of false codewords.

Table 4
Categories of MPEG-4 decoding errors

Error type Description of errors

1 An illegal codeword for DCT coefficient is received or the number of DCT
coefficients in a block exceeds 64

2 VO, VOL or GOV headers are corrupted
3 VOP start codes, RMs or motion markers are corrupted
4 VOP parameters are outside valid ranges
5 Parameters in RMs are invalid, i.e., QP is out of range or MB_number is out of range
6 No error is detected while decoding the MBs in the current packet,

but the number of the decoded MBs is not consistent with
the starting MB number in the next packet header

7 RVLC buffer size is exceeded, or the number of blocks
falls outside the valid range in RVLC decoding

Fig. 15. Error location and its detection point. The whole video packet may be discarded.

Fig. 14. An error record generated by the MPML-assisted error detection.

X. Sun et al. / J. Vis. Commun. Image R. 16 (2005) 589–620 607
Fig. 16 illustrates the proposed reconstruction algorithm for an MB. If the XML
tags for the MB are present in the MPML description, their attributes are used to
reconstruct the MB. Otherwise, the codewords are decoded from the MPEG bit-
stream. If errors are detected in the codewords, the corrupted MB is recovered by
two error concealment methods. For the damaged inter VOP, the decoded MB in
the previous reconstructed frame at the same spatial position is directly copied to
the corrupted MB in the current VOP. For the damaged intra-VOP, the pixel values
of the erroneous MB are linearly interpolated using the decoded pixel values of its
neighboring MBs [32].

3.3. Simulation results

In this section, the performance of the proposed MPML error-resilience algo-
rithm is evaluated on the ‘‘Foreman’’ QCIF sequence, which has a frame rate of

Fig. 16. MPML-based decoding of an MB.

608 X. Sun et al. / J. Vis. Commun. Image R. 16 (2005) 589–620
6 frames/s. In the proposed algorithm, anMB is protected byMPML tags, if its impor-
tance index is larger than a threshold h (k) = l + kr2. As k becomes larger, the over-
head due to the MPML protection becomes lower. For each k, we choose
quantization parameters to make the overall bit rate (for the MPEG-4 bitstream and
itsMPMLprotection) 48 kbps.Weuse the error patternswith randomandburst errors
by simulating the two-stateGilbertmodel forwireless fading channels at aBERof 10�3

[29,34,35].We investigate the performance ofMPEG-4 in two encodingmodes: the de-
fault mode and the data partitioning and RVLC (DP-RVLC) mode.

We compare the proposed algorithm with the cyclic intra-refresh (CIR), adaptive
intra-refresh (AIR) and CIR-AIR methods [1]. In AIR, the MBs to be encoded in
intra-mode is adaptively decided according to the motion activity in each frame.
CIR cyclicly decides the timing of intra-refreshment and does not track the motion
activities. CIR-AIR is a hybrid method of CIR and AIR to utilize the merits of both
methods. The refresh rate is set to 1/3 in all these intra-refresh methods. The pure
concealment method, which uses the direct copy and the linear interpolation for
the recovery of damaged blocks, is tested also for comparison.

Fig. 17 compares PSNR performances of these methods. The proposed algorithm
outperforms the other approaches in the default mode, while it provides worse per-
formances than the intra-refresh approaches (CIR, AIR, and CIR-AIR) in the DP-
RVLC mode. This is because transmission errors are more difficult to localize in the
default mode. Thus, the random access support of MPML is more beneficiary in the
default mode. Also note that the intra-refresh approaches and the MPML protection
are complementary to each other and can be used together to suppress temporal
error propagation as well as support fast bit error localization.

Fig. 17. The PSNR performances of the proposed MPML algorithm and several other approaches: the
default (A) and the DP-RVLC (B) modes.

X. Sun et al. / J. Vis. Commun. Image R. 16 (2005) 589–620 609

610 X. Sun et al. / J. Vis. Commun. Image R. 16 (2005) 589–620
Fig. 18 shows the percentage of the MPML overhead in the total bit rate
(=48 kbps) in terms of the parameter k. A small k leads to a large overhead. In
the extreme case of k = �1, all the MB data are protected and the overhead con-
sumes about 60% of the total bit rate. However, as more MB data are protected,
the decoder can reconstruct video data more reliably. Fig. 19 shows the PSNR per-
formance of the MPML algorithm as a function of k. Since the channel condition is
severe (i.e., BER = 10�3), we can see that the proposed algorithm provides a good
performance when k has a relatively small value. In general, the parameter k should
be selected by considering both the channel condition and the amount of overhead.

In Fig. 20, we compare the 24th frames of the ‘‘Foreman’’ sequence, reconstructed
by the proposed algorithm and the other approaches. In this test, the MPEG-4
encoding uses the default mode. We can see that the proposed MPML error resil-
ience algorithm provides a better image quality than the other approaches.
Fig. 18. The percentage of MPML overhead as a function of the parameter k in the default (A) and
DP-RVLC (B) modes.

Fig. 19. The PSNR performances of the proposed algorithm in terms of the parameter k in the default
(A) and DP-RVLC (B) modes. The performances of other approaches are also shown for comparison.

Fig. 20. The ‘‘Foreman’’ 24th frames, obtained by the MPML algorithm at (A) k = 0, (B) k = 2, (C) AIR,
(D) CIR, (E) CIR-AIR, and (F) the pure EC method.

X. Sun et al. / J. Vis. Commun. Image R. 16 (2005) 589–620 611
It is also worthwhile to note that the MPML protection has another advantage
that it reduces the probability of the decoding failure. Header data can be corrupted
at severe error conditions, which often leads to unexpected behaviors of the decoder
including the total failure. By protecting the header information and supporting the
random access capability, MPML enables the decoder to operate in a highly reliable
way.
4. MPML-based multicast resynchronization

Recently, video multicast has received a lot of attention to transmit video infor-
mation to a group of recipients efficiently. Three approaches have been proposed
for video multicast applications [4]. In the first approach, the source transmits a sin-
gle bitstream to all receivers, and performs the rate control based on the feedback
information from the receivers. The main drawback is the feedback implosion, which
occurs when several receivers transmit contrary feedback requests. In the second
approach, the same video content is encoded into multiple bitstreams with different
bit rates and then transmitted to the receivers. The third approach, called layered
video multicast [4–6], encodes a video sequence into a base layer and several
enhancement layers. The base layer offers a basic level of quality, whereas the
enhancement layers provide further refinement information of the video contents.
In addition to the base layer, the receiver subscribes to a number of enhancement
layers depending on its processing power and bandwidth availability.

Fig. 21. Illustration of a layered video multicast system.

612 X. Sun et al. / J. Vis. Commun. Image R. 16 (2005) 589–620
In this work, we focus on the layered video multicast, which uses limited network
resources more effectively. Fig. 21 illustrates the concept of layered video multicast.
The sender transmits several layers of compressed bitstream simultaneously. Recei-
ver 1 only subscribes to the base layer to reconstruct a low quality video, while re-
ceiver 2 subscribes to the base layer and all the enhancement layers to obtain the
highest quality.

Synchronization is a challenging problem in video multicast applications. Since
each receiver has a limited buffer to cache bitstreams, the video content should be
synchronized to a certain degree among all receivers. In the extreme case when all
receivers have zero buffer size, the strict synchronization should be maintained. In
this work, we propose the MPML fine grain scalability (FGS) representation to syn-
chronize video stream in a flexible manner.

Another problem in layered video multicast is the loss of video packets. If a bit-
stream at a certain layer is corrupted by packet losses, then the decoded data at high-
er layers are of little use. Classical retransmission protocols are not effective in this
situation, since the retransmission can degrade the streaming performance to the
unaffected receivers. To overcome this problem, the proposed algorithm uses the
MPML description to provide extra resynchronization points, where the receivers
can resume the normal decoding process.

4.1. MPML customization for multicast resynchronization

Besides the spatial, temporal, and SNR scalabilities, the MPEG-4 standard in-
cludes the fine grain scalability (FGS) as a more efficient scalable coding tool [23].
In the spatial, temporal, and SNR scalable coding, the number of layers is pre-deter-

Fig. 22. The FGS coding format.

X. Sun et al. / J. Vis. Commun. Image R. 16 (2005) 589–620 613
mined at the encoding time. Thus, a different quality requirement at the decoder may
cause the encoder to re-encode the whole video content into a new multi-layer for-
mat. FGS provides a more efficient and flexible solution to this problem [33].

The FGS coding format consists of two layers, i.e., a base layer and an enhance-
ment layer, as shown in Fig. 22. The base layer can be independently decoded and
provides a low video quality. The enhancement layer contains the DCT coefficients,
which represent the difference between the original frame and the reconstructed
frame at the base layer decoder. The differential DCT coefficients are encoded using
the bit-plane coding scheme. The multicast video server can treat each bit-plane as an
enhancement layer.

MPML also supports the FGS mode in the MPEG-4 standard. Fig. 23 shows the
complete MPML description of FGS base and enhancement layers. The base layer
follows the regular VOP syntax [22], but new components (e.g., �fgs_layer_type�
and �fgs_ref_layer_id�) are introduced into the VOL header. The enhancement layer
also has a tree structure, which can be naturally mapped to the XML tree represen-
tation. A VOP in the enhancement layer consists of a sequence of FGS bit-planes.
Each FGS bit-plane is an array of 64-bit block bit-planes. The 64 bits of each
DCT block are zigzag-scanned and encoded into (RUN, EOP) symbols using the
run-length coding. Each XML tag is named after the corresponding mnemonics in
the MPEG-4 standard documentation and contains three attributes pos, bits,
and value in general. The original bitstream can be losslessly reconstructed from
the complete MPML description.

We tailor the complete MPML description to a customized version for the mul-
ticast synchronization problem. In the customized MPML description, all header
nodes are included to provide a random access point at the start of each VOP for
the base layer and each bit-plane for the enhancement layer. To minimize the size
of the MPML description, we omit all the MPML tags for MB data, i.e., MVs,
MB modes, and DCT coefficients.

4.2. Resynchronization in the decoder

We propose a video multicast system based on the MPML FGS description,
which is shown in Fig. 24. Concurrently with MPEG-4 bitstreams, the MPML
encoder generates partial MPML documents for the base and enhancement layers.

Fig. 23. The complete MPML description for MPEG-4 FGS base layer (A) and enhancement layer (B).

614 X. Sun et al. / J. Vis. Commun. Image R. 16 (2005) 589–620
The FGS server is in charge of the delivery of the MPEG-4 bitstreams, while the
MPML parser sends out the customized MPML documents. The customized MPML
documents provide the navigation information to help the MPML decoder ran-
domly access the MPEG-4 bitstreams, but introduces additional transmission over-
head. The MPML documents are compressed and protected by ECCs.

At the decoder end, the MPML trees are built up using the MPML documents.
From the trees, the MPML parser can extract the synchronization information for
all multicast layers at the VOP and the bit-plane levels. Using this information,
the MPML decoder applies the same error detection mechanism as discussed in Sec-
tion 3.2. When errors are detected at a multicast layer, the packet is abandoned and
the next resynchronization point is searched from the MPML trees. Then, the deco-
der can resume the normal decoding process.

4.3. Simulation results

In this test, we simulate the resynchronization problem for video multicast in IP
environment, where typical bit rate ranges from 100 kbps to 10 Mbps. The ‘‘Fore-
man’’ QCIF sequence at a frame rate 6 frames/s is encoded into the base and

Fig. 25. PSNRs of reconstructed frames in the MPML FGS multicast system.

Fig. 24. Illustration of the MPML FGS-based multicast system.

X. Sun et al. / J. Vis. Commun. Image R. 16 (2005) 589–620 615

Table 5
File size comparison of MPEG-4 bitstreams and MPML documents (in bytes)

VOP MPEG-4 bitstreams MPML documents Compressed MPML documents Overhead ratio (%)

Base layer (A) Enhancement
layer (B)

Base layer Enhancement
layer

Base layer (C) Enhancement
layer (D)

C/A D/B

50 82,114 1,409,025 25,471 56,264 2,357 3,041 2.87 0.22
75 124,654 2,139,426 37,636 85,079 3,535 4,562 2.84 0.21
100 174,113 2,884,958 50,181 113,591 4,562 6,083 2.62 0.21
125 207,757 3,604,487 62,726 142,750 5,702 7,603 2.74 0.21
150 255,011 4,352,072 75,272 171,756 6,843 9,124 2.68 0.21
175 310,030 5,092,053 87,817 200,915 7,983 10,644 2.57 0.21
200 390,804 5,816,448 100,362 231,746 9,124 12,165 2.33 0.21
225 460,868 6,645,805 112,908 260,029 10,264 13,686 2.22 0.21
250 508,654 7,674,289 125,453 289,302 11,405 14,826 2.24 0.19
275 547,811 8,712,697 137,998 318,232 12,545 16,309 2.29 0.19
300 584,382 9,725,557 150,543 347,618 13,686 17,791 2.34 0.18

Compressed MPML documents mean MPML documents after compression and ECC protection.

616
X
.
S
u
n
et

a
l.
/
J
.
V
is.

C
o
m
m
u
n
.
Im

a
g
e
R
.
1
6
(
2
0
0
5
)
5
8
9
–
6
2
0

X. Sun et al. / J. Vis. Commun. Image R. 16 (2005) 589–620 617
enhancement layers by the MPEG-4 FGS encoder. The bit rates of the base and the
enhancement layers are 128 and 512 kbps, respectively. These bitstreams are trans-
mitted by the multicast server in Fig. 24.

Both the base layer bitstream and enhancement layers are corrupted at a BER of
10�3 using the two-sate Gilbert model [29,34,35]. When errors are detected, the de-
coded data are discarded. In traditional multicast approaches, it is difficult for the
decoder to synchronize the decoding of all the subscribed layers of the next VOP.
In contrast, the proposed MPML decoder can easily access the correct positions
at all the layers of the next VOP by parsing the MPML trees. Fig. 25 shows the
PSNR performances of the reconstructed frames. The PSNR curve deteriorates sig-
nificantly at the VOPs containing transmission errors. However, their effects are
transient and the PSNRs of next VOPs quickly approach to those of the error-free
reconstruction.

Table 5 compares the file sizes of MPEG-4 bitstreams and MPML documents. In
multicast applications, the MPML document is customized to contain only the head-
er nodes for VOPs and bit-planes, and thus it requires only a small amount of over-
heads. Moreover, the size of the customized MPML document becomes even smaller
after the compression and the ECC protection. We can see that the compressed
MPML documents only introduce less than 3.0% and 0.3% overheads for the base
layer and the enhancement layer, respectively. Using these small overheads, the
MPML document can provide an effective solution to the synchronization problem
for video multicasting.
5. Conclusion

In this research, we developed the MPML description format to describe
MPEG-4 video contents. As an XML designed specifically for MPEG-4 bitstreams,
MPML not only provides an alternative format for describing the semantics of the
MPEG standard, but also is equipped with friendly support for random access,
portability, interoperability, flexibility, and extendibility in various video
applications.

A text-coded MPML document improves readability and interoperability for
cross-platform applications but demands a significant amount of overhead. Since
the document is textual and of a tree structure, it is possible to develop a compres-
sion algorithm to reduce the amount of overhead. We developed an efficient com-
pression algorithm for MPML documents, which provides a much higher coding
gain than Winzip and a few XML-aware coders.

In real-world applications, the MPML description can be adaptively tailored with
a different degree of details to meet the requirements of a specific problem. In this
work, we demonstrated how to use MPML to tackle the error-resilient problem
and the multicast resynchronization problem, which are critical in video delivery
over unreliable transmission channels. It was shown that the MPML-based decoding
algorithm provides elegant solutions to these two problems by using the random
access support of MPML.

618 X. Sun et al. / J. Vis. Commun. Image R. 16 (2005) 589–620
References

[1] Y. Wang, S. Wenger, J. Wen, A.K. Katsaggelos, Error resilient video coding techniques, IEEE Signal
Process. Mag. 17 (2000) 61–82.

[2] W3C Candidate Recommendation, Extensible Markup Language (XML) 1.0 (2nd ed.). Available
from: <http://www.w3.org/TR/REC-xml>, 2004.

[3] B. Girod, N. Färber, Feedback-based error control for mobile video transmission, Proc. IEEE 87 (10)
(1999) 1707–1723.

[4] X. Li, M.H. Ammar, S. Paul, Video multicast over the Internet, IEEE Network 13 (2) (1999) 46–60.
[5] D. Wu, Y.T. Hou, W. Zhu, Y. Zhang, J.M. Peha, Streaming video over the Internet: approaches and

directions, IEEE Trans. Circuits Syst. Video Technol. 11 (3) (2001) 282–300.
[6] S. McCanne, V. Jacobson, M. Vetterli, Receiver-driven layered multicast, ACM SIGCOMM

Comput. Commun. Rev. 26 (4) (1996) 117–130.
[7] X. Sun, Z. Shi, C.-C.J. Kuo, XML-based MPEG-4 video representation, streaming and error

resilience, in: Proceedings of SPIE 16th Annual International Symposium on AeroSense 4736, 2002,
pp. 139–150.

[8] X. Sun, Z. Shi, C.-C.J. Kuo, XML-based MPEG-4 video representation and error resilience, Proc.
IEEE Int. Symp. Circuits Syst. 2 (2002) 676–679.

[9] X. Sun, C.-C.J. Kuo, An MPEG-4/XML FGS approach to multicast video synchronization, in:
Proceedings of IS & T/SPIE 15th Annual Symposium, Electronic Imaging, 5018, 2003, pp. 284–
295.

[10] X. Sun, C.-C.J. Kuo, Multicast video synchronization via MPEG-4 FGS/XML representation, Proc.
IEEE Int. Symp. Circuits Syst. 2 (2003) 820–823.

[11] X. Sun, C.-C.J. Kuo, Performance evaluation of MPML-based error resilient video transmission, in:
Proceedings of SPIE 17th Annual International Symposium on AeroSense, 5108, 2003, pp. 263–274.

[12] X. Sun, C.-C.J. Kuo, MPML-based error resilient wireless video transmission, Proc. SPIE ITCOM
5241 (2003) 111–122.

[13] M. Kim, S. Wood, L. Cheok, Extensible MPEG-4 Textual Format (XMT), in: Proceedings of ACM
Workshops on Multimedia, 2000, pp. 71–74.

[14] Web3D Consortium, X3D: The Virtual Reality Modeling Language—International Standard ISO/
IEC 14772:200x. Available from: <http://www.web3d. org/TaskGroups/x3d/specification>, 2001.

[15] W3C Recommendation, Synchronized Multimedia Integration Language 1.0 Specification. Available
from: <http://www.w3.org/TR/REC-smil>, 1998.

[16] W3C Recommendation, Scalable Vector Graphics 1.0 Specification. Available from: <http://
www.w3.org/TR/SVG/>, 2001.

[17] S. Chang, T. Sikora, A. Puri, Overview of the MPEG-7 standard, IEEE Trans. Circuits Syst. Video
Technol. 11 (6) (2001) 688–695.

[18] T. Sikora, The MPEG-7 visual standard for content description—an overview, IEEE Trans. Circuits
Syst. Video Technol. 11 (6) (2001) 696–702.

[19] P. Salembier, J.R. Smith, MPEG-7 multimedia description schemes, IEEE Trans. Circuits Syst. Video
Technol. 11 (6) (2001) 748–759.

[20] J.H. Coombs, A.H. Renear, S.J. DeRose, Markup systems and the future of scholarly text
processing, Commun. ACM 30 (11) (1987) 933–947.

[21] R. Price, Beyond SGML, in: Proceedings of the 3rd ACM Conference on Digital Libraries, 1998, pp.
172–181.

[22] MPEG-4 Video Group, Information Technology—Generic Coding of Audio-visual Objects—Part 2:
Visual (ISO/IEC FDIS 14496-2, N2502), ISO/IEC JTC1/SC29/WG11, 1998.

[23] MPEG-4 Video Group, MPEG-4 Video Verification Model Version 18.0 (N3908), ISO/IEC JTC1/
SC29/WG11, 2001.

[24] H. Liefke, D. Suciu, XMill: an efficient compressor for XML data, in: Proceedings of the ACM
International Conference on Management of Data, 2000, pp. 153–164.

[25] J. Cheney, Compressing XML with multiplexed hierarchical PPM models, Proceedings of IEEE Data
Compression Conference, 2001, pp. 163–172.

http://www.w3.org/TR/REC-xml
http://www.web3d.org/TaskGroups/x3d/specification
http://www.w3.org/TR/REC-smil
http://www.w3.org/TR/SVG/
http://www.w3.org/TR/SVG/

X. Sun et al. / J. Vis. Commun. Image R. 16 (2005) 589–620 619
[26] X. Sun, Design and Applications of MPEG Video Markup Language (MPML), University of
Southern California, 2004.

[27] S. Lin, D.J. Costello, Jr., Error Control Coding: Fundamentals and Applications, Prentice-Hall Inc.,
Eglewood Cliffs, NJ, 07632, 1983.

[28] J.-G. Kim, J. Kim, C.-C.J. Kuo, Corruption model of loss propagation for relative prioritized packet
video, Proc. SPIE Appl. Digital Image Process. XXIII 4115 (2000) 214–224.

[29] E.N. Gilbert, Capacity of a burst-noise channel, Bell Syst. Tech. J. 39 (1960) 1253–1265.
[30] B.P. Crow, I. Widjaja, J.G. Kim, P.T. Sakai, IEEE 802.11 wireless local area networks, IEEE

Commun. Mag. 35 (9) (1997) 116–126.
[31] MPEG-4 Video Group, Description of Error Resilient Core Experiments (N1996), ISO/IEC JTC1/

SC29/WG11, 1998.
[32] S. Aign, K. Fazel, Temporal & spatial error concealment techniques for hierarchical MPEG-2 video

codec, Proc. IEEE Int. Conf. Commun. 3 (1995) 1778–1783.
[33] R. Yan, F. Wu, S. Li, R. Tao, Y. Wang, Y. Zhang, Error robust coding for the FGS enhancement

bitstream, in: Proceedings of the 3rd International Conference on Information, 2001.
[34] J.R. Yee, E.J. Weldon Jr., Evaluation of the performance of error-correcting codes on a Gilbert

channel, IEEE Trans. Commun. 43 (8) (1995) 2316–2323.
[35] S. Gringeri, R. Egorov, K. Shuaib, A. Lewis, B. Basch, Robust compression and transmission of

MPEG-4 video, in: Proceedings of the 7th ACM International Conference on Multimedia, 1999, pp.
113–120
.Biography of Dr. Xiaoming Sun. Xiaoming Sun received the B.S. degree in Computer Science from the
Beijing University of Science and Technology, China, in 1993, two M.S. degrees in Computer Science from
the Peking University in 1996 and from the University of Southern California in 2000, respectively, and
the Ph.D. degree in Electrical Engineering from the University of Southern California in 2004. From 2004,
he joined ESS Technology, Inc. as a senior software engineer and project developer. His research interests
are in the areas of digital video processing, multimedia compression and embedded multimedia system
design.

Biography of Dr. Chang-Su Kim. Chang-Su Kim received the B.S. and M.S. degrees in control and
instrumentation engineering in 1994 and 1996, respectively, and the Ph.D. degree in electrical engineering
in 2000, all from Seoul National University (SNU), Seoul, Korea. From 2000 to 2001, he was a Visiting
Scholar with the Signal and Image Processing Institute, University of Southern California, Los Angeles,
and a Consultant for InterVideo Inc., Los Angeles. From 2001 to 2003, he was a Postdoctoral Researcher
with the School of Electrical Engineering, SNU. In August 2003, he joined the Department of Information
Engineering, the Chinese University of Hong Kong as an Assistant Professor. His research topics include
video and 3-D graphics processing and multimedia communications. Dr. Kim has published more than 70
technical papers in international conferences and journals.

Biography of Dr. C.-C. Jay Kuo. Dr. C.-C. Jay Kuo received the B.S. degree from the National Taiwan
University, Taipei, in 1980 and the M.S. and Ph.D. degrees from the Massachusetts Institute of Tech-
nology, Cambridge, in 1985 and 1987, respectively, all in Electrical Engineering. He is with the Depart-
ment of Electrical Engineering, the Signal and Image Processing Institute (SIPI) and the Integrated Media
Systems Center (IMSC) at the University of Southern California (USC) as Professor of Electrical Engi-
neering and Mathematics. His research interests are in the areas of digital media processing, multimedia
compression, communication, and networking technologies, and embedded multimedia system design.
Dr. Kuo is a Fellow of IEEE and SPIE. He received the National Science Foundation Young Investigator
Award (NYI) and Presidential Faculty Fellow (PFF) Award in 1992 and 1993, respectively.
Dr. Kuo has guided about 60 students to their Ph.D. degrees and supervised 15 postdoctoral research

fellows. Currently, his research group at USC consists around 40 Ph.D. students and five postdoctors (visit
website http://viola.usc.edu), which is one of the largest academic research groups in multimedia tech-
nologies. He is a co-author of about 100 journal papers, 600 conference papers and seven books. Dr. Kuo
is Editor-in-Chief for the Journal of Visual Communication and Image Representation, and Editor for the

http://viola.usc.edu

620 X. Sun et al. / J. Vis. Commun. Image R. 16 (2005) 589–620
Journal of Information Science and Engineering and the EURASIP Journal of Applied Signal Processing. He
was on the Editorial Board of the IEEE Signal Processing Magazine in 2003–2004. He served as Associate
Editor for IEEE Transactions on Image Processing in 1995–1998, IEEE Transactions on Circuits and

Systems for Video Technology in 1995–1997 and IEEE Transactions on Speech and Audio Processing in
2001–2003.

	MPEG video markup language and its applications to robust video transmission
	Introduction
	MPML and its compression
	Markup theory and XML
	MPML description for MPEG-4 video content
	Terminologies
	Mapping from MPEG syntax to MPML description

	Joint processing of MPEG bitstreams with MPML descriptions
	Generation of MPML descriptions
	Indexing and random access of MPML trees
	MPML-assisted decoding

	MPML compression
	Structural and semantic properties of MPML documents
	Compression algorithm for MPML documents
	Experimental results

	MPML-based robust video transmission
	MPML customization for robust video transmission
	Selection of important MBs
	Error correction coding for customized MPML descriptions

	Error detection and recovery in the decoder
	Simulation results

	MPML-based multicast resynchronization
	MPML customization for multicast resynchronization
	Resynchronization in the decoder
	Simulation results

	Conclusion
	References

