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Abstract— An efficient near-optimal energy allocation
method for multimedia data transmitted using multicarrier
modulation is investigated in this research. Our algorithm
allocates energy to carriers by solving a simple set of lin-
ear equations, which is near-optimal for almost the entire
SNR range. Furthermore, based on the proposed energy al-
location algorithm, we develop asymptotic limits for the ap-
proximation error, the carrier energy, and the carrier rate.
While limits for the special case with uniform noise and
BPSK modulation were obtained before, our derivation ap-
plies to the more general case with non-uniform noise and
higher-order M-QAM constellations. Finally, we link these
limits with several types of multimedia and non-multimedia
sources.
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I. Introduction

Multicarrier modulation [1] has received much attention
due to its ability to adapt to environments with various
channel conditions, e.g. narrowband interference, fading
effects, impulse noise, etc. When these carriers are orthog-
onal to each other over the channel bandwidth, the tech-
nique is called Discrete Multitone Transmission (DMT) for
wired channels and Orthogonal Frequency Division Multi-
plexing (OFDM) for wireless channels. The allocation of
energy and/or rate to each carrier to improve the quality
of service (QoS) is known as loading. In this research, we
examine multimedia loading on multicarrier systems.

Early loading research was focused on DMT applications
under channel capacity considerations. An acceptable mar-
gin was proposed in [2], [3] to offset the difficulty of trans-
mitting signals near channel capacity. While this approach
proves to be useful, it does not specifically take the sym-
bol error probability, Ps, into account for higher order M-
QAM (multilevel quadrature amplitude modulation) con-
stellations. A data-loading scheme to reach uniform mini-
mum Ps across carriers was developed in [4], [5]. More re-
cently, a computationally efficient loading algorithm based
on the SNR criterion was studied in [6]. While these ap-
proaches are useful for certain types of applications, they
are not optimized for multimedia data transmission.

There has been some research on multimedia data trans-
mission over multicarrier systems. Ho and Kahn [7] op-
timized the source coding scheme subject to channel con-
ditions. Ho and Kahn [8] allocated power according to
a source-channel distortion model, where the asymptotic
limit for the BPSK modulation was derived. Zheng and Liu
[9] proposed a bit rate allocation scheme to carriers, and
demonstrated the performance gain for image and video
transmission. Embedded modulation for a two-layer source
was examined by Pradhan and Ramchandran [10].

Our current research differs from previous work in two
aspects. First, we show that energy allocation can be ob-
tained by solving a linear set of equations, rather than by a
computationally intensive iterative process that is required
by optimal multimedia allocation methods proposed previ-
ously. The near optimal results apply to almost the entire
SNR range. Second, based on the proposed energy alloca-
tion algorithm, we develop a set of asymptotic limits for
the approximation error, the carrier energy, and the car-
rier rate. While limits for the case with uniform noise and
BPSK modulation were obtained before, our derivation ap-
plies to the more general case with non-uniform noise and
higher-order M-QAM constellations. Finally, we link these
limits with several types of multimedia and non-multimedia
sources.

The remainder of this paper is organized as follows. Sec.
II presents background on multicarrier allocations using
M-QAM constellations for multimedia. Next, we present
the linearized energy optimization algorithm in Sec. III.
Asymptotic analysis of several bounds is given in Sec. IV.
Simulation results are presented in Sec. V. Concluding
remarks are given in Sec. VI.

II. Background on Multicarrier Allocation

A. Problem Formulation

The end-to-end data distortion DT can be expressed as
the sum of source distortion DS and channel distortion DC

as
DT = DS + DC . (1)

For a given source coding scheme, where DS is fixed, mini-
mizing DT is equivalent to minimizing DC . We begin with
a multicarrier system composed of M independent carriers
and a goal of minimizing DC , subject to energy and rate
constraints. The energies Ei, whose sum is ET , and rates
Ri, whose sum is RT , with index i ∈ {1 . . . M}, are dis-
tributed among these carriers. In the following, we consider
a frequency selective fading channel, where each carrier has
its own noise power spectral density, N0i

.
The allocation scheme determines DC , which can be

written as

DC =
Q∑

i=1

Q∑
j=1

dijP (j|i)qi (2)

where di,j denotes the inter-symbol distortion between
symbols i and j, P (j|i) is the transitional probability that
symbol i was sent and symbol j was received, qi is the a
priori probability of symbol i, and Q = 2Rs is the number
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of symbols, each of which contains Rs bits. With this defi-
nition, DC is composed of elements related to source coding
and transmission parameters. Source coding manifests it-
self through Rs, qi, and dij . Transmission parameters man-
ifest themselves through P (j|i), which is dependent upon
e and r. Here, e and r are vectors of allocated energies and
rates, respectively.

For large Q, the complexity involved in computing this
distortion can be prohibitive. Hence, an accurate approx-
imation is required to enable a feasible system design. A
good approximation is given in [8]. It assumes that only
single bit errors are likely to occur, which is valid for the
SNR (Eb/N0) range of interest in multimedia applications.
This approximation can be formally stated via

P (j|i) ≈
 1 Nb = 0

pbm
Nb = 1

0 Nb > 1
(3)

where Nb is the number of bit errors between the transmit-
ted and received symbols, and pbm

denotes the probability
of bit error at bit index m.

In a multicarrier system, the energy and rate for each can
be modified while still yielding a constant average energy.
For this case, P (·) is dependent upon the bit layer and the
energy and rate allocated to it. Then, the distortion can
be further approximated by

DC ≈ 1
k

Rs∑
m=1

i∈{1...M}

Pi(Ei;Ri)Wm (4)

where Wm represents the weight associated with the source
coding and inter-symbol distortions for bit layer m, k is
the dimensionality of the source code (k = 1 for scalar),
Pi, Ei, and Ri are the probabilities of error, energy and
rate for carrier i, respectively. Although it may happen
that Rs carriers are used (e.g. one bit per carrier), there
are generally more bits than carriers. For this reason, each
carrier requires higher order constellations, which will be
discussed further in the next subsection.

B. M-QAM Constellations

There are many ways of constructing M-QAM constella-
tions. They can be square, rectangular, circular, or a myr-
iad of other shapes. Additionally, constellations may have
regular or irregular forms. The most straightforward and
mathematically tractable forms are square M-QAM con-
stellations that result when two identical M-PAM constel-
lations are superimposed on quadrature carriers. Although
square constellations may not be optimal, they only suf-
fer mild degradation relative to optimal constellations of a
given order [11]. Note also that square M-QAM constella-
tions form the basis for previous research with respect to
multicarrier optimizations [4]- [9].

The symbol error probability for an M1/2-PAM constel-
lation with energy Eav, is [11]

P̂√
M = 2(1 − 1√

2R
)

1√
2π

∫ ∞√
6Eav

(2R−1)N0

e
−z2

2 dz. (5)

Similarly, PM for square M-QAM constellations can be de-
rived from (5), where one-half of the average energy is ap-
plied to each quadrature carrier. For all but the lowest
Eb/N0, the probability of error may be accurately approx-
imated as

PM ≈ 4(1 − 1√
2R

)Q

(√
3Eav

(2R − 1)N0

)
. (6)

We will use the above approximation in all of our optimiza-
tion results.

C. Lagrange Optimization

To find the optimum allocation using equality constraints
for an objective function [12] that is continuous in energy
and the rate, we can set up a Lagrangian cost function as

J =
1
k

Rs∑
m=1

i∈{1...M}

Pi(Ei;Ri)Wm + λ1

N∑
i=1

Ei + λ2

N∑
i=1

Ri (7)

where λ1 and λ2 are Lagrange multipliers. The solution
to this problem is obtained by taking derivatives with re-
spect to Ei and Ri. However, since DC is often a discrete
function of the rate, derivatives can only be taken with re-
spect to Ei

1. Subsequently, algorithms such as Newton’s
method cannot be used to optimize energy and the rate
jointly. Alternative rate allocation methods include full
search, greedy search, etc. Full search may be feasible if
the number of constellations is small. It was shown in [9]
that their greedy algorithm has only slightly suboptimal
performance as compared to the full search algorithm.

When the goal is to optimize energy for a fixed rate, the
dimensionality of the problem is reduced. The new cost
function becomes

J =
1
k

Rs∑
m=1

i∈{1...M}

Pi(Ei;Ri)Wm + λ

N∑
i=1

Ei. (8)

The optimal solution can be found by differentiation, which
results in a set of M independent non-linear equations in
Ei:

∂J

∂Ei
=

1
k

∂Pi(Ei;Ri)
∂Ei

W̃i + λ = 0 (9)

where W̃i represents the partial sums of Wm that result
from the mapping of bit layers to carriers. Iterative al-
gorithms such as Newton’s, bisection, and secant methods
can be used to solve the nonlinear system of equations in
(9). Specifically, they can be used to determine the optimal
energy allocation for a given rate.

1The continuity requirement applies to the objective function, in
this case DC . For other objective functions such as those that opti-
mize capacity or Ps, it is possible to differentiate with respect to the
rate and obtain an suboptimal solution, where the suboptimal nature
is due to the quantization of the rate to its nearest integer values
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III. Proposed Energy Allocation Algorithm

Our new energy allocation algorithm for multimedia data
loading is presented in this section. The significance of
this work is twofold. First, by linearizing the energy search
algorithm, we reduce the computational burden of itera-
tive algorithms significantly. Additionally, there are con-
vergence issues to be addressed in the iterative solution
approach, which are not a factor under the new algorithm.
Second, since our algorithm is highly accurate as compared
to the optimal solution and because the allocation can be
derived analytically, effects of optimal energy allocation for
multimedia sources can be well explained. It would be dif-
ficult to have such insights using simulation results alone.

Since rate is discrete, it cannot be easily optimized using
the method of Lagrange multipliers. A typical solution
procedure is to focus on either the rate or energy allocation
sequentially. For example, a rate allocation scheme is first
chosen. Then, it is followed by an optimal energy allocation
scheme. After that, the rate is updated based on the new
energy allocation result. This process continues until the
energy and rate allocation minimizes the overall distortion.
We use the same process here and assume a rate allocation
is given. Then, the Lagrangian optimization procedure can
be used to optimize the energy. This can be written as

J =
1
k

Rs∑
m=1

i∈{1...M}

Pi(Ei)Wm + λ

M∑
i=1

Ei. (10)

Next, the derivative of J(·) is taken with respect to Ei.
Since all data will be transmitted via M-QAM, we take
the derivative of (6) with respect to energy for each car-
rier that is used to transmit information. After taking the
derivatives, we have M independent non-linear equations
whose solution is the optimum energy allocation across all
carriers. These equations are independent as a result of
the simplifying assumptions made in (3). Each of these
equations has the following form:

λopt =
KR

2k
W̃i

[
e

−3Ei

(2Ri−1)N0i
3

Ei(2Ri − 1)N0i

] 1
2

(11)

where KR is the rate-dependent constant that multiplies
the integral function in (6). Note that each carrier may
have different energy, rate, and noise power which is de-
noted by i. Eq. (11) can be reduced to the form below.

eαx

βx
= C (12)

Equations of this type are called the exponential-linear
equations, for which a closed-form solution is not possible.
However, in the case of (11), we can make an approxima-
tion that proves to hold for a high degree of accuracy.

The optimum value of λ, denoted by λopt, is a constant
for each independent equation of the form in (11). There-
fore, setting two of the equations equal to each other and

applying some elementary algebra, we can obtain the dif-
ference in carrier energy between carriers i and j as

Ei

ηi
− Ej

ηj
= −1

3

ln

(W̃jKRj

W̃iKRi

)2

(
ηi

ηj
)

+ ln

[
Ei

Ej

]
(13)

where
ηi = (2Ri − 1)N0i

. (14)

We split the right hand side of (13) into two terms: one
that is related to the source parameters, rate allocation,
and noise power, and the other that is referred to as the
”error” term. Specifically, we have

βij = −1
3
ln

(W̃jKRj

W̃iKRi

)2

(
ηi

ηj
)

 (15)

and

εij = −1
3
ln

[
Ei

Ej

]
. (16)

The error term is a scaled value of the natural logarithm
of the ratio of the optimal energy values for the two car-
riers. The performance of the algorithm is aided by the
logarithm which lowers the carrier energy ratio. Although
this error may be significant at low ET , we will show that
it approaches 0 with increasing energy for ηi = ηj . Then,
we obtain

lim
εij→0

(
Ei

ηi
− Ej

ηj

)
= βij (17)

where εij → 0 as Ei/Ej → 1. We will show that the effects
of this term are negligible at moderate and even low Eb/N0,
and are highly dependent on source parameters. For cases
with ηi �= ηj (e.g. non-uniform noise or rates), it can be
shown that

lim
ET →∞

εij = −1
3
ln

(
1 + ηi/ηj

1 + ηj/ηi

)
. (18)

As shown in (15), βij results from three parameters,
source coding, rate allocation between carriers, and noise
power in each carrier. With respect to energy allocation, it
is a constant. Therefore, we see that the resultant energy
difference equations form a set of (M −1) linear equations.
When combined with the energy constraint

M∑
i=1

Ei = ET (19)

we obtain a set of M linear equations in M unknowns which
leads to a unique set of Ei. These equations can be ex-
pressed in matrix form as

1
η1

1
η2

0 . . . 0
0 1

η2

1
η3

. . . 0
...

. . . . . .
0 . . . 1

ηM−1

1
ηM

1 1 1 . . . 1




E1

E2

...
EM−1

EM

 =


β12

β23

...
β(M−1)M

ET

 .

(20)
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Using vector and matrix notation with A as a square ma-
trix, we can take the inverse of A to obtain the optimal
energy allocation as

e = A−1b. (21)

For highly distorted channels, the dimensionality of the
problem can be reduced by simply removing those channels
from the matrix equation in (21).

IV. Asymptotic Energy and Rate Analysis

A. Asymptotic Energy Analysis

It is important to understand the behavior of the carrier
energy allocation as energy is increased. Based on (20),
we gain insights into how and why energy is allocated in a
specific manner. We will perform this analysis for the two
carrier case below. This analysis extends easily to a larger
number of carriers.

We begin by computing the optimal energy allocation
for each carrier. This allocation is calculated from (21) for
a given rate allocation. After some algebra, we can show
that

E∗
1 =

η1η2

η1 + η2

(
ET

η2
+ β1

)
E∗

2 =
η1η2

η1 + η2

(
ET

η1
− β1

)
(22)

where ∗ denotes optimal energy allocation at a specific rate.
From these equations, we see that the optimal energy is es-
sentially a trade-off of the normalized ET and the term
driven by the rate allocation and source parameters, e.g.
β12. Also included in this term are the channel noise pow-
ers, which are fixed.

To understand how energy is distributed between carri-
ers, we compute the ratio of these energies and take the
limit as ET → ∞. This yields

γ
.= lim

ET →∞
E∗

1

E∗
2

=
(2R1 − 1)N01

(2R2 − 1)N02

(23)

where γ is the ratio of the carrier energies as ET → ∞.
Then, at high SNR, the carrier energies become

E∞
1 = ET

γ

1 + γ

E∞
2 = ET

1
1 + γ

. (24)

By examining (22)-(24), we see that, for large ET , the ef-
fects of source parameters, specifically multimedia bit lay-
ering is reduced. As showed previously, the bit layer im-
portance manifests itself via W̃i, of which β12 is a function.
Since β12 is divided by ET when computing the ratio of
carrier energy, its importance is reduced as ET increases.

However, the effect β12 has on the energy distribution is
not only limited by ET . From (15), we observe the effect
of bit layering and rate on β12. Specifically, for a given
allocation, β12 will have a smaller effect as(

W̃jKRj

W̃iKRi

)2
ηi

ηj
→ 1. (25)

When this term goes to 1, γ is constant across Eb/N0 and
only becomes a function of the rate and noise power.

The rate at which the energy allocation scheme converges
to its limiting case depends upon the type of data source
that the allocation is applied to. It is also dependent upon
the noise variation of the channel and rate allocation. For
the case of uniform noise and rate, sources with a more
uniform weight vectors converge more quickly than non-
uniform ones, e.g. the Gaussian source that has a high
degree of variability in the bit layer importance. This con-
cept will be confirmed by simulation results in Sec. V.

B. Rate Analysis Under Asymptotic Energy

From the derivation of the carrier energy as ET → ∞, we
can derive the asymptotic energy effects on the rate also.
Using (24), Ps for each carrier can be calculated as

Ps,1 = 4(1 − 1√
2R1

)Q

(√
3ET

(2R1 − 1)N01 + (2R2 − 1)N02

)

Ps,2 = 4(1 − 1√
2R2

)Q

(√
3ET

(2R1 − 1)N01 + (2R2 − 1)N02

)
. (26)

We see that the there is a slight difference in these proba-
bilities due to the scaling of the Q(·) function by the cor-
responding rate. In previous work, this scaling term has
been left out. Here, we include it for completeness.

Now, we have symbol probabilities that are function of
the rate only. We attempt to optimize the rate under a
large value of ET by setting up a new Lagrange optimiza-
tion problem as

J =
W̃1

R1
Ps,1 +

W̃2

R1
Ps,1 + λ(R1 + R2). (27)

After taking derivatives with respect to rate2 and removing
terms that have little significance, we obtain

R1 − R2 ≈ log2(N02/N01). (28)

Eq. (28) implies that, unless there is a large noise power
difference between the two channels, the optimal rate allo-
cation is to split the rate evenly between the 2 carriers for
an optimal energy allocation. This may seem intuitive, but
it is not necessarily true for all energy allocation methods.
For example, a uniform energy allocation may lead to a dif-
ferent result. Also note that, because of the requirement for
even numbered bits only, it takes a large noise variation to
cause a change from the uniform rate. We will show that
this occurs for a carrier noise ratio (CNR) greater than
∼ 5.2.

Subsequent to the methodology that we used to develop
a the set of linear equations for energy allocation in (20),
we can develop a similar set of linear equations using (28)
for rate allocation at high Eb/N0. Then the optimal rate
allocation can be developed with limited computational re-
quirements.

2Unlike earlier when we could not take the derivative with respect
to the rate, terms that require derivative of partial sums drop out of
the equation here.
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Fig. 1. The Signal to Total Distortion performance as a function of
the SNR value (Eb/N0) for two carriers with uniform noise.

V. Simulation Results

Simulation results were generated from multiple sources
to show performance characteristics across a range of po-
tential data streams. These sources are meant to test the
limits of the algorithm for layered and non-layered condi-
tions. The first source considered is a typical scalar Gaus-
sian source with σs = 1. The quantization levels were
determined by the Lloyd-Max algorithm. This source tests
the convergence properties of the solution algorithm since
it provides the result of a high degree of variation in bit
layer importance. For the 8-bit source, the bit layer im-
portance is concentrated in the leading few bits, and the
remaining bit importance drops off quickly. This effect
is less severe for fewer bits. The next source is one with
uniform bit layer, or non-layered, importance that is used
as another extremum to demonstrate fast convergence. In
the region between these two sources is a vector-quantized
(VQ) Gaussian source, again with σs = 1. We obtained
these weighting coefficients from [8]. Only 2-carrier results
are demonstrated for clarity. The performance of the pro-
posed near-optimal method against the iterative Newton
method is evaluated using Matlab simulation. For a range
of Eb/N0, the speed for our algorithm was about 200 times
faster than the Newton search.

We compare the performance of the proposed fast energy
allocation method with that of the optimal iterative allo-
cation in Fig. 1. Here the signal-to-distortion S/DT , with
DT as shown in (1), is calculated as a function of Eb/N0.
Results for quantized Gaussian sources of length 4, 6, and
8 bits are given. We show the case of uniform noise since
it is a tougher case for the fast algorithm, which can reach
better results for non-uniform noise configurations, at low
Eb/N0. As shown in the figure, the fast algorithm gener-
ates results that are almost identical with the optimal ones
over the entire range of Eb/N0. Only the case of the 8-bit
quantized source has a slight deviation from the optimal
results in the Eb/N0 range of 5-8 dB. We would expect
performance to degrade below this point. It turns out that
the fast algorithm generates negative energy results, which
are not possible. We compensate for this fact by putting
1% of the carrier energy into carriers originally allocated
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Approximation Error Performance for Multiple Sources
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Fig. 2. Error performance over the Eb/N0 range for multiple sources
with uniform noise.

negative energy. While not necessarily optimal, we observe
that it provides a good rule of thumb. When the Eb/N0

range is above 8 dB, the nearly optimal performance of the
fast algorithm is observed. The effect of the error term (16)
is negligible in this region.

Next, we examine the effects of the error term (16) in
Fig. 2. As discussed earlier, these effects are added to the
energy difference equation. For the case with uniform rate
and noise, one half of the total gets added to the first carrier
and subtracted from the second. For the non-uniform case,
weighted versions that depend on the channel noise and
rate allocation get added and subtracted. Our results verify
that as energy increases for the uniform noise and rate case,
the error term goes to zero. The largest error is shown for
the 8-bit case at low Eb/N0. We also present results for
4- and 6-bit VQ sources and the non-layered source. The
error effect is significantly worse for sources with a large
variation in bit importance, e.g. scalar Gaussian sources.
Sources such as vector quantizes, and non-layered sources,
exhibit less of an effect due the more constant nature of
Wm.

The asymptotic energy analysis is verified in Fig. 3.
Again, we use layered and non-layered sources as the limit-
ing cases. Similar to the other results presented thus far, we
demonstrate that, although both types of sources converge
in the limit, they do so at different rates. Heavily layered
sources such as the scalar source approach the asymptote at
a much slower rate than the non-layered or VQ sources. By
combining (22) and (23) and dividing by ET , we see that
the convergence performance is due to the magnitude of
β12. Smaller values of this term lead to faster convergence.
Ideally, we prefer this term to be 0 for fastest convergence.
This is precisely the case for a non-layered source with uni-
form noise and rate. Generally, this is true whenever (25)
is valid.

Our asymptotic rate analysis is verified by data in Table
I, where we compare the rate deviation, R1 − R2, for the
8-bit scalar quantized source and the 8-bit VQ source, with
our limit for two different noise conditions. We define the
CNR to be the ratio of carrier 2 to carrier 1. The first
case is for uniform noise. We expect no rate deviation at
high Eb/N0. The scalar scalar is optimized, R1 = 2 and
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R2 = 6, at low Eb/N0 and reaches the predicted limit at
Eb/N0 = 3 dB. The VQ source maintains zero deviation
from the predicted limit due to it low value of β12. The
case is similar for an CNR of 10. Here, the VQ source
quickly converges to the optimal quantized deviation of 4,
R1 = 6 and R2 = 2, whereas the scalar source requires an
Eb/N0 of 8 dB to reach the limit, once again, due to its
large value of β12.

In order determine the effects of non-uniform channels on
approximation error, we calculate (16) with varying noise
configurations. In Fig. 4, we illustrate the effects of CNR
on approximation error for a scalar 8-bit source using the
optimal energy allocation, where the error is exact and
function of (15). Two curves for different rate configu-
rations for Eb/N0 = 13 dB are given. The optimal rate
allocation changes at CNR ≈ 5.2. At this point, the error
transitions from the top curve to the bottom curve. This is
due to the fact that, in accordance with (28), higher CNR
leads to a rate allocation change, which in turn, has the
effect of equalizing η1 and η2. Subsequently, there will be a
reduction in the error as shown by (18). The rate allocation
transition not only causes a decrease in the overall distor-
tion, but also leads to a reduction in the approximation
error.

TABLE I

Differential rate results for optimal search comparison

with the calculated limit.

Eb/N0

0 1 2 3 ≥ 8
scalar -4 -4 -4 0 0

CNR = 1 VQ 0 0 0 0 0
predicted 0 0 0 0 0
scalar 0 0 0 0 4

CNR = 10 VQ 4 4 4 4 4
predicted 3.3 3.3 3.3 3.3 3.3

1 3 5 7 9 11
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Fig. 4. Carrier noise ratio effect on approximation error for 8-bit
Gaussian source at Eb/N0 = 13 dB.

VI. Conclusion

An energy allocation algorithm that yields near optimal
results across a wide range of Eb/N0 was presented. The
algorithm creates a set of linear equations whose solution
is sufficiently close to the optimal energy allocation. The
computational complexity is greatly reduced over iterative
methods to compute the allocation. Subsequently, we pro-
vide an analysis of multimedia allocation using M-QAM
via asymptotic energy and rate results and explain conver-
gence properties of different sources. Our future work will
include multiple sources with varying QoS requirements.
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