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Techniques for Movie
Content Analysis
and Skimming

Tutorial and overview on video abstraction techniques

he use of video abstraction techniques for movie content analysis with applications in fast content

browsing, skimming, transmission, and retrieval is examined in this article. First, we provide a

tutorial on abstraction techniques for generic videos, followed by an extensive survey on state-of-

the-art techniques for feature film skimming. Then we present our recent work on the develop-

ment of a movie skimming system using audiovisual tempo analysis and specific cinematic rules.
Some preliminary experimental results are reported to validate the proposed skimming system.

Video abstraction is a technique that abstracts video content and represents it in a compact manner. There
are basically two types of video abstraction: video summarization and video skimming. Video summarization
is a process that selects a set of salient images called key frames to represent the video content. Video skim-
ming represents the original video in the form of a short video clip. Video abstraction forms a key ingredient
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in a practical video content management system, as generated
key frames and skims provide users an efficient way to browse or
search video content. With the proliferation of digital video, this
process will become an indispensable component to any practi-
cal content management system. A video summary can be dis-
played without the worry of timing issues. Moreover, extracted
key frames could be used for content indexing and retrieval.
However, from the viewpoint of user, a video skim may provide a
more attractive choice since it contains audio and motion infor-
mation that makes the abstraction more natural, interesting
and informative.

Film is an art form that offers a practical, environmental,
pictorial, dramatic, narrative, and musical medium to convey a
story [1]. Although it can be viewed as a type of generic video,
complex film editing techniques, such as the selecting, order-
ing, and timing of shots; the rate of cutting; and the editing of
soundtracks, are required to produce a successful movie.
Consequently, all of these special features need to be taken into
account for better content analysis, understanding, and man-
agement. There has been recent work on movie content
abstraction, which produces a static storyboard, a summary
sequence, or a highlight [2]. A summary sequence provides
users a small taste of the entire video, while a highlight con-
tains only the content that may appear interesting to viewers
such as the movie trailer. Despite the large amount of research
on generic video abstraction, it remains a challenge to generate
meaningful movie abstracts due to the special filming and edit-
ing characteristics.

SURVEY ON VIDEO ABSTRACTION

VIDEO SUMMARIZATION
Based on the way a key frame is extracted, existing work in this
area can be categorized into three classes: sampling based, shot
based, and segment based. Most of the earlier summarization
work belongs to the sampling-based class, where key frames
were either randomly chosen or uniformly sampled from the
original video. The video magnifier [3] and the MiniVideo [4]
systems are two examples. This approach is the simplest way to
extract key frames, yet such an arrangement may fail to capture
the real video content, especially when it is highly dynamic.
More sophisticated work has been done to extract key frames
by adapting to dynamic video content. Since a shot is defined as
a video segment taken from a continuous period, a natural and
straightforward way is to extract one or more key frames from
each shot using low-level features such as color and motion. A
typical approach was proposed in [5], where key frames were
extracted in a sequential fashion via thresholding. More sophis-
ticated schemes based on color clustering, global motion, or
gesture analysis could be found in [6]-[8]. Realizing that regular
key frames cannot represent the underlying video dynamics
effectively, researchers have looked for an alternative way to rep-
resent the shot content using a synthesized panoramic image
called the mosaic. Along this direction, various types of mosaics
such as static background mosaics and synopsis mosaics have

been proposed in [9] and [10]. An interchangeable use of regular
key frames and mosaic images has also been studied in [11].
Some other work applied mathematical tools to the summariza-
tion process. For instance, a video content could be represented
by a feature curve in a high-dimensional feature space with key
frames corresponding to the curvature points [12]. One draw-
back of the shot-based key frame extraction approach is that it
does not scale up well for long video.

More recently, efforts have been made in extracting key
frames at a higher unit level, referred to as the segment level.
Various clustering-based extraction schemes have been pro-
posed. In these schemes, segments are first generated from
frame clustering and then the frames that are closest to the cen-
troid of each qualified segment are chosen as key frames [13],
[14]. Yeung and Yeo [15] reported their work on video summa-
rization at the scene level. Based on a detected shot structure,
they classified all shots into a group of clusters using a time-
constrained clustering algorithm, and then extracted meaning-
ful story units (or scenes) such as dialogue and action. Next,
representative images (R-images) were selected for each story
unit to represent its component shot clusters. All extracted
R-images of a story unit were resized and organized into a single
regular-sized image following a predefined visual layout called
the poster. Other schemes based on sophisticated temporal
frame sampling [16], hierarchical frame clustering [17], fuzzy
classification [18], singular value decomposition, and principle
component analysis techniques have been tried with some
encouraging results.

VIDEO SKIMMING

A three-layer system diagram for video skimming is shown in
Figure 1. In this system, low-level features are extracted and
preprocessing tasks (such as commercial break and/or shot
detection) are performed at the first layer. At the second layer,
mid- to high-level semantic features are derived, which can be
accomplished using techniques such as face detection, audio
classification, video text recognition, and scene or event detec-
tion. The third layer assembles clips that possess user-desired
length and content into the final abstract.

Previous work on video skimming can be classified into two
categories: summary oriented and highlight oriented. A
summary-oriented skim keeps the essential part of the original
video and provides users a summarized version [19]. In contrast,
the highlight-oriented skim only comprises a few interesting
parts of the original video. Movie trailers and highlights of
sports are examples of this skim type [20].

Defining which video segments to be highlighted is a subjec-
tive and difficult process. It is also challenging to map human
perception into an automated abstraction process. Hence, most
current video skimming work is summary-oriented. One
straightforward approach is to compress the original video by
speeding up the playback. As pointed out by Omoigui et al. [21],
a video program could be watched in a fast playback mode with-
out distinct pitch distortion using a time compression technology.
Similar work was also reported by Amir et al. [22], where an
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audio time-scale modification scheme was applied. However,
these techniques only allow a maximum time compression of
1.5-2.5 depending on the rate of speech. Once the compression
factor goes beyond this range, the speech quality becomes quite
poor. Targeting at generating short synopses for generic video,
the Informedia Project [23] concatenates audio and video seg-
ments that contain preextracted text keywords to form the skim.
Special attention was also given to predefined events such as the
presence of human faces and camera motion. Without relying
on text cues, Nam and Tewfik [24] generated skims based on a
dynamic sampling scheme. Specifically, a video source was first
decomposed into a sequence of subshots. Each subshot was then
assigned a motion intensity index. Next, all indices were quan-
tized into predefined bins, where each bin possessed a unique
sampling rate. Finally, key frames were sampled from each sub-
shot based on the assigned rate. During the skim playback, lin-
ear interpolation was performed to provide users a moving
storyboard. Similar constructions of skims based on pregenerat-
ed key frames was also presented in [25] and [26].

More recently, research on generating skims for domain-
specific video data has been reported using some special features.
For example, the VidSum project [27] applied a presentation struc-
ture, which was designed for their regular weekly forum, to assist
in mapping low-level signal events to semantically meaningful
events. These events were then assembled to form the summary.
He et al. [28] reported their summarization work on talks. Special
knowledge of the presentation was utilized, which included the
pitch and the pause information, the slide transition points, as well
as the information on access patterns of previous users. A detailed
user study showed that most of informative parts of original pre-
sentations have been well preserved although computer-generated
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[FIG1] A three-layer system diagram for video abstraction.

summaries were less coherent than manually generated ones. In
[19], a skimming system for broadcast news was presented by
exploiting its hierarchical content structure. Given a news video, it
filtered out commercials using audio cues, and then detected
anchor persons using Gaussian mixture models. Next, since a
news story is usually led and summarized by an anchor person, the
skim can be constructed by gluing all video parts that contain
anchor persons. Finally, there have been some research efforts on
generating skims for sports videos based on the identification of
exciting highlights such as football touchdowns and soccer goals.

RECENT DEVELOPMENT ON MOVIE

SKIMMING TECHNIQUES

Since a video skim appears more natural and attractive to view-
ers, most recent work on movie abstraction focuses on the gen-
eration of a short synopsis of a long feature film. Nevertheless,
most existing skimming systems that are built upon key frame-
based summarization have two drawbacks: the discontinuity of
embedded semantics and the lack of audio content. Moreover,
the movie structural information and its distinct storyline have
not been well exploited in most previous work. This important
context information should help generate more meaningful
skims. In this section, a brief introduction to the fundamental
story structure of movies is given. The state-of-the-art work in
movie content skimming will be described as well.

FUNDAMENTAL STRUCTURE OF MOVIES

Most feature films consist of three distinct parts: the beginning
(exposition), the middle (conflict), and the end (resolution). The
beginning introduces basic facts such as main characters and their
relationships, which are needed to establish the story. Then, the
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[TABLE1] TYPICAL STORY UNITS OF A MOVIE.

UNIT TYPICAL DEFINITION
LENGTH

BROAD SCENE ~ 10-15MIN  COMPRISES SHOTS WITHIN THE SAME
THEME (LARGE STORY ELEMENT)

NARROW SCENE ~ 2-5 MIN COMPRISES SHOTS THAT ARE TEMPO-
RALLY ADJACENT OR UNDER THE SAME
PHYSICAL SETTING (SMALL STORY
UNIT)

SHOT 3-10S A CONTINUOUS RECORD

FRAME 130 S ONE STILL IMAGE

story develops when conflicts among main characters occur, which
are usually expressed in the form of an external action or an inter-
nal emotional struggle. A conflict could be plotted through several
larger narrative elements, where each element creates a local cli-
max to maintain audience’s attention. Finally, the resolution
resolves the conflict by wrapping up all incomplete story elements.
A movie story could be structured narratively via several large
narrative elements. Correspondingly, directors will design appro-
priate shooting scripts that define necessary scenes (a smaller story
unit) to present these elements. As a result, a typical movie could
be sectioned at different resolution levels corresponding to differ-
ent story units. To present a story well, the director, the cine-
matographer, and the editor need to carefully structure the
building blocks of the following four filming elements: 1) the plots,
characters, and dialogues in a script; 2) the instruments, notes,
and melody in music; 3) the volume, bass, tremble, and sound
effects; and 4) the basic visual components (visual effects). It is
thus possible to represent a movie in a tree structure that compris-
es its building components (units) at different resolution levels.
Table 1 shows a list of such units, which are constantly referred to
by various researchers, with their typical lengths and definitions.

UTILITY FUNCTION-BASED SKIMMING

The VAbstract system [29] is probably the earliest movie skim-
ming system that identifies characteristic video segments such as
those containing leading actors, dialog, gunfire, and explosions to
form a movie trailer. In this system, a movie was first partitioned

[FIG2] Representing a movie segment using the scene transition graph. “Legends of the Fall,
1994 TriStar Pictures Inc. All rights reserved. Courtesy of Sony Pictures Entertainment.

into segments of equal length and then one scene (such as the
one with dialog, high motion, or high contrast) was extracted
from each segment except for the last part of the movie. Finally,
all selected scenes were organized in their original temporal
order to reduce the possibility of a misleading context change.

Luo and Fan [30] proposed a method that first identified
salient objects and mapped principal video shots to certain med-
ical concepts. Next, each principal video shot was given a weight
based on its structure (the elements of the shot), assigned med-
ical concept (e.g., lecture or surgery), contained salient objects,
and length. Finally, the skim was formed by selecting shots with
the highest weight to the one with the lowest weight until their
total length reaches the expected length.

One way to determine the important part of a video object is
to exploit user attention models as done in [31]. Various visual
attention models were built to capture features such as motion,
face, and camera attention. For instance, the motion attention
model was used to capture human motion, while the static
attention model was for measuring the attention on a static
background region. Several patterns involving camera motion
were also investigated and used to build the camera attention
model. Furthermore, two audio attention models (i.e., the audio
saliency model and the speech/music model) were adopted. The
extracted attention information was then exploited to identify
important shots that form the final video summary.

Another idea, presented in [32], was to segment the video
into computable scenes that exhibited consistency in chromatic-
ity, lighting, and sound. The Kolmogorov complexity of a shot
that gave the minimum time required for its comprehension
was measured. Finally, the beginning and the ending parts of a
scene were selected to form the skim as they contained most of
its essential information according to the film grammar.

STRUCTURE-BASED SKIMMING

Although a skim could be easily constructed using a predefined
utility function, its result is unpredictable. To address this issue,
another skimming approach exploring
the hierarchical story structure of
movies has been investigated. The
resulting methods can be categorized
into two classes: skimming by the edit-
ing style and skimming by multilevel
tempo analysis.

The hierarchical story structure of a
movie in the form of frames, shots,
scenes, acts, or events can be extracted
to serve as a basis for skimming. Shot
detection has been extensively studied
for more than a decade, and many algo-
rithms have been reported [33]. The
concept of a scene refers to a relatively
complete video paragraph with coher-
ent semantic meaning. Scene detection
demands the integration of multiple
media sources. For example, visually

IEEE SIGNAL PROCESSING MAGAZINE [82] MARCH 2006



similar and temporally adjacent shots
were first clustered into scenes, and
then organized into a scene transition
graph (STG) in [34]. An example of STG
is shown in Figure 2, which is con-
structed from a partial segment of the
movie The Legends of the Fall.

A set of heuristic rules was devel-
oped by Li and Kuo [2] to detect movie
scenes using audio classification and
visual analysis tools. For example, tem-
porally adjacent shots should be
grouped into one scene if they share
the same background music or have
the same level of background noise.
Certain film editing rules learned from
[35] were adopted to identify dialog
scenes. Two dialog models are shown
in Figure 3, where each node represents a shot containing the
indicated speakers, and arrows are used to denote the transi-
tions between shots. These models can be used to recognize the
two-speaker and multispeaker scenes by identifying specific shot
repetition patterns.

Similar work employing audio and visual cues to detect
scenes was reported in [36], where two types of computable
scenes (i.e., N-type and M-type) were extracted. The N-type
scenes were characterized by consistency of both audio and visu-
al information while the M-type scenes were characterized by
consistency in audio but dynamics in visual information. The N-
type scenes can be further classified into pure dialog, progres-
sive and hybrid categories.

PROPOSED MOVIE SKIMMING SYSTEM

SYSTEM OVERVIEW
According to [37], the audiovisual structure of a movie is related to
its story structure through its intensity map owing to the princi-
ple of contrast and affinity. That is, the greater the
contrast/affinity in a visual component, the more the visual inten-
sity increases or decreases. Consequently, the director carefully
constructs the intensity map to match the storyline. Because this
principle applies to different levels of a movie structure, it can be
used to detect story units at different scales based on tempo analy-
sis. A typical story intensity map of a movie is shown in Figure 4.
Adams et al. [38] proposed a scheme to analyze the scene
content such as the dialog or the chase by extracting film
rhythms based on the extracted video tempo. The tempo was
measured in terms of the motion information and the shot
length [39]. This scheme was however too simple to be generally
applicable. A more sophisticated scheme should employ multi-
ple media cues for tempo extraction, subsequently identify all
story units at various resolution levels, and organize important
or user-desired ones into a skim. This idea has motivated our
research on an intelligent movie skimming system as depicted
in Figure 5. This movie skimming system is able to generate a

[FIG3] (a) The two-speaker dialog model (speakers A and B) and
(b) the multiple-speaker dialog model (speakers A, B, and C).
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[FIG4] A typical story intensity map of a movie.
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[FIG5] The proposed movie skimming system.
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user-preferred skim based on extracted movie story structures
via audiovisual tempo analysis. With any given feature film,
long-term and short-term video tempo analysis tasks are per-
formed to extract large and small story units. Substories are
identified from each small story unit based on the scene transi-
tion graph. Finally, the skim is generated based on a set of
authoring criteria as well as user requests.

500
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AUDIO AND VISUAL FEATURE EXTRACTION
Two audio features, namely, short-term energy and frequency of
onset, which indicates the arrival of a note or syllable, are extracted
to measure a movie’s audio tempo. Figure 6 gives an example of
detected onsets for a music signal. Since a movie consists of various
types of sounds from different sources, the proposed audio tempo
analysis is first performed in each individual frequency band. The
extracted features are then normalized
and averaged among all frequency
bands to obtain the desired audio
tempo feature for each audio frame.
Three motion features are used to
measure a movie’s visual tempo: cam-
era motion, object motion, and
motion variance. Object motion is

the average magnitude of motion
vectors after compensating the cam-
era motion while motion variance
indicates the complexity of an object’s
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[FIG6] (a) A music signal and (b) its detected onsets.

activity. Moreover, higher weights are
assigned to regions of interest, which
correspond to extracted human faces
and bodies, for object motion calcula-
tion. All three features are normal-
ized and averaged to form the visual
tempo feature for each video frame.

LONG-TERM AUDIOVISUAL
TEMPO ANALYSIS

As discussed previously, a typical
movie story is structured into three
parts: exposition, conflict, and resolu-
tion. Under this framework, a movie

can be decomposed into three large
story elements corresponding to each
of these three parts, or multiple yet
smaller story units at a finer granu-
larity since each element may have
its own local climax as well. A large
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story unit usually covers a relatively
complete thematic topic and spans
10-15 min in length. Large story
units could be extracted via long-
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[FIG7] (a) The long-term visual tempo and (b) the long-term audio tempo for movie Die

Another Day.

of its highest histogram peak. The
visual tempo curve obtained from a
test video sequence is shown in the
upper subfigure of Figure 7(a). This
curve is then carefully smoothed via
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a three-minute long window and plotted in its lower subfig-
ure. Finally, a median filter is applied to remove local instan-
taneous fluctuations, and all local minima of the curve are
identified as large story boundaries. For this example, all
detected story boundaries have been marked by vertical lines
that are superimposed on the figure.

To analyze the long-term audio tempo, four audio features
are first extracted from every 3-min window: energy, energy
dynamic, onsets, and silence ratio. They are then fused into one
single tempo feature. For the example above, the audio tempo
feature curve is shown in Figure 7(b). We see that most of the
story boundaries prederived from visual cues match with its
local minima. This confirms the claim that a movie producer
employs both audio and visual elements to achieve the desired
story structure.

SHORT-TERM AUDIOVISUAL TEMPO ANALYSIS

The short-term tempo analysis module extracts small story
units that constitute large video story elements. To achieve
this task, short-term audio tempo analysis is first conducted
to extract audio tempo fea-

tures and generates a

1 N
no = < ; W(n — i) * M(n) )

is the mean of the tempo. The story boundaries are identified
from the smoothed feature curve by locating its local minima.
This process is demonstrated in Figure 9. The visual tempo
curve for the same video clip as the one used in Figure 8 is shown
in Figure 9(a). The smoothed curve after the use of morphological
filtering, which is used to detect valleys and implemented as a
maximize operation followed by a minimize operation, is given in
Figure 9(b). The gradient curve whose edge points divide stories
into smaller units is plotted in Figure 9(c). Again, vertical lines
are used to mark potential story boundaries. Finally, the two
boundary sets, obtained from the audio and visual tempo analysis,
respectively, are integrated to obtain the final story list.

SKIM AUTHORING
In this module, the user-desired skim is generated according to
the extracted story structure. Following the criteria defined
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effect, the visual tempo
may fluctuate from one
shot to another even when
both shots are within the
same story unit. However, the variance of the tempo remains
relatively stable. To characterize the short-term visual tempo,
we define the motion variance as

N
o) =Y Wn—dMn) — pml, 0]
n=1

where W(n) is a window of length N, M(n) is the basic visual
tempo for each shot, 7 is shot index and

[FIG8] Short-term audio tempo analysis for a test video.

above, a skim should preserve the continuous flow of the original
video in a succinct manner. Moreover, it should appear natural
while complying with the strict time constraint. The proposed
skim authoring scheme contains the following four steps.
1) Construct a STG [40] for every small story unit of each
large story element and extract its independent substo-
ries. Specifically, an STG graph describes the story flow
within a narrowly defined scene, where each node repre-
sents one representative shot. A scene may further consist of
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EXPERIMENTAL RESULTS

To evaluate the performance of
the proposed movie skimming
system, a preliminary experi-
ment was conducted on two
movies, each of which is of
two-hour duration. The first

movie is an action movie called
Die Another Day, and the sec-

ond one is a romance called
The Legends of the Fall. The
shot detection algorithm used
in this experiment is described
in [2]. It applies an adaptive

| £ j i
0 50 100 150 200 250 |

color histogram differencing
scheme to detect abrupt as well
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as gradual content changes.
Figure 7 shows the results
of the long-term visual and

audio tempo analysis for the
first movie. This movie opens
up the plot with a secret mis-
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[FIG9] Short-term visual tempo analysis for a test video.

multiple substories where each substory focuses on a rela-
tively independent topic and involves a set of specific casts.
Substory boundaries could be detected from STG by identi-
fying the transitions that switch from a set of repetitive
nodes to another.

2) Distribute the user-desired skim duration among all large,
small, and substory units in proportion with their respective
length.

3) Choose important shots from substory units to abstract the
story. These shots must meet the following three criteria: a)
temporal consecutiveness, b) covering as many nodes in STG
as possible, and ¢) compliance with the respective time budg-
et. Moreover, to ensure that the skim covers as many contents
as possible, the display time of each shot is limited to 1.5 s.
When a shot has a longer duration, a frame subsampling
scheme will be adopted.

4) Choose a few progressive shots to bridge individual sub-
stories into a semantically coherent scene and construct
the final skim by gluing them together with previously
selected shots.

[TABLE2] PERFORMANCE OF THE PROPOSED SMALL STORY
EXTRACTION METHOD.

MOVIE HIT  MISS FALSE ALARM  PRECISION RECALL
MOVIE | 59 " 37 61.5% 84.3%
MOVIE Il 31 20 10 75.6% 60.8%

300 350 400 sion and ends up with a fierce
fight scene. This flow coin-
cides with the analysis curve
where the first and last seg-
ment corresponds to the
beginning and the end.
Moreover, every segment in the second curve of Figure 7(a)
corresponds to a large story unit. Since the large story unit is
vaguely defined, it is not easy to evaluate the detection per-
formance. Generally speaking, the detected results are consis-
tent with our experience in watching the movie.

To evaluate the performance of the proposed small story
extraction approach, we adopt the precision and recall rates as
defined below:

hi
recall = — 5 1009%. 3)
hits + misses
hi
precision = its x 100%. 4)

hits + false alarms

They are measured against the manually collected ground
truth and tabulated in Table 2. It is worthwhile to mention that
the current system is not optimized, and the performance is
expected to improve if the implementation details are fine-
tuned. The main purpose of showing these preliminary results is
to demonstrate that the proposed system offers a promising
direction and worths further exploration.

The substory units extracted from the beginning part of The
Legends of the Fall, which corresponds to the first large story ele-
ment, is shown in Figure 10(a). It contains 55 shots in total, and
each shot is represented by a key frame in this figure. Totally, three
substories are detected and shown in the figure. The generated
skim of this large story unit is shown in Figure 10(b). All three
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substories have been included, and each of them is represented by
a set of consecutive shots. This provides viewers a continuous story
flow. Moreover, two progressive shots are selected in the skim so as
to make the story synopsis complete. The skimming ratio in this
example is 12.5:1.

FUTURE WORK

Currently, we are working
towards finding optimal features
for multilevel movie tempo
analysis. This is critical since
the effectiveness of selected features often varies with movie gen-
res. For instance, in a violence movie with intensive motion, the
motion feature may not serve as an useful choice for distinguish-
ing different story units. To take this into account, some existing
work proposes to assign different weights to different features.
However, the selection of proper feature weights is still an open
problem. It is desired that the weights can be automatically
determined based on the movie genre, which is our current
research focus. This idea is intuitive since different film cate-
gories possess different art forms, and certain features may work
the best for a particular genre type. Along this direction, we have
obtained some interesting results as shown in Figure 11, where

Original Video

VIDEO ABSTRACTION IS A TECHNIQUE
THAT ABSTRACTS VIDEO CONTENT AND
REPRESENTS IT IN A COMPACT MANNER.

the temporal variations of six different features (shot frequency,
motion, energy, onset, energy dynamic, and silence ratio) for a
musical movie called Moulin Rouge are given. Each subfigure
gives an individual feature analysis curve.

For this example, the mean-
shift algorithm [41] was applied
to each feature curve to seg-
ment the movie into multiple
story elements, whose bound-
aries are marked by vertical
lines. Specifically, a solid line
indicates that it coincides with the ground truth while a dashed
line means that it is a miss. False alarms are not marked. We see
from this figure that some features such as the shot change fre-
quency and motion have demonstrated much better perform-
ance than onset and silence ratio features. Since Moulin Rouge
is a musical, it contains many MTV-style scenes filled with loud
background music and singing. Thus, the silence ratio and the
onset frequency are not suitable in separating different story ele-
ments. The best feature in this case is the shot change frequen-
cy, which helps separate most of MTV-style scenes from other
scenes such as the dialog. Using the proper feature, we can
achieve precision and recall rates of 83% and 88%, respectively.

Substory 1
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[FIG10] (a) The three substory units and (b) the generated story skim for “The Legends of the Fall.” 1994 TriStar Pictures Inc. All Rights

Reserved. Courtesy of Sony Pictures Entertainment.
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[FIG11] The long-term feature analysis of Moulin Rouge.

Another movie under our test is a romantic comedy. It does
not have intensive action and/or frequent shot cuts. Instead, the
content is relaxing and joyful with occasional background music.
As a result, the energy dynamic and the silence ratio provide
desired features for content analysis. Since the movie genre infor-
mation might not always be available, automatic movie classifica-
tion is needed as a preprocessing task. Recently, there has been
some ongoing research along this direction [42]. Meanwhile, the
affective content analysis approach proposed by Hanjalic [43] in
this special issue can also be applied for this purpose.

CONCLUSION

With the proliferation of digital video, video summarization and
skimming has become an indispensable tool of any practical
video content management system. This article provided a tuto-
rial on the existing abstraction work for generic videos and pre-
sented state-of-the-art techniques for feature film skimming.
Moreover, our recent work on movie skimming using audiovisual
tempo analysis and specific cinematic rules was described. It is
our belief that, with the maturity of movie genre classification,
content understanding and video abstraction techniques, an
automatic movie content analysis system that facilitates naviga-
tion, browsing, and search of desired movie content will be
arriving in the near future.
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