
www.elsevier.com/locate/jvci

J. Vis. Commun. Image R. 17 (2006) 217–242
Fast motion search with efficient
inter-prediction mode decision for H.264

Chih-Hung Kuo a, Meiyin Shen b, C.-C. Jay Kuo b,*

a Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan
b Department of Electrical Engineering and Integrated Media Systems Center,

University of Southern California, Los Angeles, CA 90089-2564, USA

Received 7 February 2004; accepted 10 May 2005
Available online 6 July 2005
Abstract

A fast inter-prediction mode decision and motion search algorithm is proposed for the
H.264 video coding standard. The multi-resolution motion estimation scheme and an adaptive
rate-distortion model are employed with early termination rules to accelerate the search pro-
cess. With the new algorithm, the amount of computation involved in the motion search can
be substantially reduced. Experimental results show that the proposed algorithm can achieve a
speed-up factor ranging from 60 to 150 times as compared to the full-search algorithm with
little quality degradation.
� 2005 Elsevier Inc. All rights reserved.

Keywords: H.264; Motion estimation; Fast motion search; Video coding
1. Introduction

H.264 is the latest video coding standard jointly developed by the ITU-T
Video Coding Experts Group (VCEG) and the ISO/IEC MPEG [1]. It is widely
regarded as the state-of-the-art video coding standard since it is able to save up
1047-3203/$ - see front matter � 2005 Elsevier Inc. All rights reserved.

doi:10.1016/j.jvcir.2005.05.001

* Corresponding author. Fax: +213 740 4651.
E-mail addresses: chkuo@ee.ncku.edu.tw (C.-H. Kuo), meiyinsh@sipi.usc.edu (M. Shen), cckuo@

sipi.usc.edu (C.-C. Jay Kuo).

mailto:chkuo@ee.ncku.edu.tw
mailto:meiyinsh@sipi.usc.edu
mailto:cckuo@ sipi.usc.edu
mailto:cckuo@ sipi.usc.edu

218 C.-H. Kuo et al. / J. Vis. Commun. Image R. 17 (2006) 217–242
to 50% in the file size (or the bandwidth consumption) while delivering the same
visual quality as compared to existing standards. The excellent coding gain of
H.264 is achieved at the expense of the high encoder complexity. How to reduce
the complexity while preserving good coding performance is an interesting re-
search problem. In this work, we will investigate methods to reduce the complex-
ity of the H.264 encoder with special attention on fast variable block-size motion
search.

As a block-based motion-compensated predictive coder, H.264 is similar to its pri-
or standards in the general framework yet with improvements on some coding mod-
ules such as variable block-size motion estimation, intra-frame prediction, in-loop
deblocking filter, and context-adaptive arithmetic coding, etc. The main reason for
H.264 to outperform other standards is that it allows the choice among multiple
modes in several coding components as long as this freedom can provide a substan-
tial coding gain. However, this freedom also implies more computation since one has
to select the best mode among all possible modes to give the best rate-distortion
tradeoff.

For inter-frame prediction, H.264 allows blocks of variable sizes and shapes.
To be more specific, seven modes of different sizes and shapes, i.e., 16 · 16,
16 · 8, 8 · 16, 8 · 8, 8 · 4, 4 · 8, and 4 · 4, are supported in H.264. Smaller
blocks, which intend to better characterize the motion behavior of a region, can
reduce the prediction error and provide better visual quality due to the less visible
blocking artifact. Besides variable block sizes and shapes, the use of higher preci-
sion in the motion vector representation also improves the coding gain. H.264
supports 1/4-pel motion accuracy. In addition, H.264 allows the use of multiple
reference frames, which is useful in dealing with periodic motion in the sequence.
To achieve the highest coding gain, an optimized H.264 encoder will estimate the
best motion vector (MV) by searching among multiple reference frames and multi-
ple block modes with 1/4-pel motion vector precision. With all these modes in
place, the computational complexity of motion estimation increases dramatically
as compared with previous standards. This is one major bottleneck for the
H.264 encoder.

Let us briefly review motion vector search algorithms. The full search algo-
rithm checks every displacement inside the designated search window. It is the
most straightforward way to find the optimal motion vector. Many sub-optimal
algorithms have been proposed to reduce the number of block matching opera-
tions in the search process. Some fast search algorithms were developed in the
past under the assumption of the unimodal error surface. They include: the
three-step search (3SS) [2], the new three-step search (N3SS) [3], the four-step
search (4SS) [4], the block-based gradient descent search (BBGS) [5], and the dia-
mond search [6]. In these algorithms, the search process is divided into several
steps, where several possible displacements were checked at each step and the
one with the minimum distortion will be picked as the center for the search at
the next step. Although the search speed can be improved, they may result in sig-
nificant quality degradation in comparison with the full search scheme at the
same bit rate.

C.-H. Kuo et al. / J. Vis. Commun. Image R. 17 (2006) 217–242 219
A better strategy to achieve fast search is to predict the good initial displace-
ment of the motion vector, and perform early termination with reliable stopping
criteria to avoid unnecessary block matching. Chalidabhongse and Jay Kuo [7] first
investigated a fast search algorithm that predicts initial motion vectors from neigh-
boring MBs in both multiresolution and spatial–temporal dimensions. Although
the scanning order of macroblocks may be non-causal, their proposed algorithm
can speed-up by a factor of 100–300 with little quality degradation due to better
prediction of the initial motion vector. Recently, two fast motion estimation algo-
rithms, i.e., the Motion Vector Field Adaptive Search Technique (MVFAST) [8]
and the Predictive Motion Vector Field Adaptive Search Technique (PMVFAST)
[9] were adopted by MPEG-4 Part-7 as an optimization model [10]. They both
attempted to exploit more correlations from spatial–temporal neighboring macro-
blocks. The basic ideas of these two algorithms are: (i) select initial MV predictors
from spatially and temporally adjacent blocks to perform the diamond search
(DS); (ii) adaptively choose small or large diamonds as the search pattern based
on the local motion activity; (iii) apply the early termination principle to avoid
inefficient SAD matching operations. These two algorithms provide a significant
improvement over traditional fast search algorithms in terms of visual quality
and complexity reduction. The obtained visual quality from MVFAST and PMV-
FAST is very similar to that obtained by the full search scheme. However, it con-
siders motion search for a fixed-size block only.

Since H.264 allows motion estimation and compensation with variable block
sizes and shapes, some research effort has to be made to enhance the efficiency
of the variable block-size motion search. Various approaches have been proposed
to speed up the decision process in the literature recently, e.g. [11–20]. For
example, some criteria for mode decision based on the texture homogeneity were
investigated to reduce the number of searching modes [11–13]. The partition type
of a MB was predicted in [14] according to the modes of its surrounding MBs. A
fixed mode was searched in advance and the preliminary distortion was computed
in [15–17] to decide the most probable modes for the following searching steps. Xu
et al. [18] integrated their own UMHexagonS algorithm with an early termination
strategy as well as some motion vector predictions to improve coding efficiency. In
[19,20], the Enhanced Predictive Zonal Search (EPZS) [21] algorithm was applied
in the context of H.264 coding with early termination criteria and motion vector
predictions.

In this work, we provide a more comprehensive scheme by introducing a rate-
model as a basis of the fast mode selection technique. The fast motion search
algorithm is integrated so that the best motion candidate can be found without
searching all modes exhaustively. Therefore, our algorithm can perform much fast-
er search than previous work and achieve up to a speed up factor of 150 as com-
pared to the full search algorithm with good implementation. The rest of this
chapter is organized as follows. An overview of H.264 motion estimation is given
in Section 2. The proposed fast searching algorithm is described in Section 3.
Experimental results are presented in Section 4. Finally, concluding remarks are
given in Section 5.

220 C.-H. Kuo et al. / J. Vis. Commun. Image R. 17 (2006) 217–242
2. Overview of H.264 motion estimation

2.1. Tree-structured motion estimation

For better adaptation to motion details, H.264 adopts a tree-based decomposition
to partition a macroblock (MB) into smaller sub-blocks of specified sizes. For exam-
ple, one MB of size 16 · 16 may be kept as is, decomposed into two rectangular
blocks of size 8 · 16 or 16 · 6, or decomposed into four square blocks of size
8 · 8. If the last case is chosen (i.e. four 8 · 8 blocks), each of the four 8 · 8 blocks
can be further split to result in more sub-macroblocks. There are four choices again,
i.e., 8 · 8, 8 · 4, 4 · 8, and 4 · 4. These partitions result in a large number of possible
block decompositions for each MB. An example of an MB with tree decomposition
is shown in Fig. 1.

If an MB is divided, each sub-macroblock inside the MB requires a separate mo-
tion vector. For example, if an MB is coded using Inter-8 · 8, and each 8 · 8 sub-
macroblock is coded using Inter-4 · 4, 16 motion vectors will be transmitted for this
MB. All motion vectors as well as the partition information should be coded and
transmitted. In general, a partition with larger block sizes requires fewer bits to rep-
resent the associated motion vectors and the partition type, but it may need more
bits to encode motion compensation residuals if encoded areas contain high motion
details. On the contrary, a partition of smaller block sizes may give smaller residuals
after motion compensation but requires more bits to represent motion vectors and
partition types. Thus, an optimal tree-structured motion compensation is to find
the best combination of partition block sizes to minimize the final coded bits for each
macroblock.
Fig. 1. Partitioning of a MB with tree-structured decomposition.

C.-H. Kuo et al. / J. Vis. Commun. Image R. 17 (2006) 217–242 221
2.2. Notations

We use P to denote the partition type of a macroblack and V the set of motion
vectors of all divided sub-blocks. Let E (MBi; P, V) represent the number of encoded
bits for the ith macroblock with partition P and V be the set of motion vectors asso-
ciated with each sub-MB. Then, the encoding process is to find the best partition P

and motion vectors V so that the bit number bi of the ith MB is minimized:

Bi ¼ min
P ;V

EðMBi;P ; V Þ.

Among the bits to encode an MB, those represent motion vectors and residual sig-
nals are most critical in the motion search component. Hence, the motion search
process is equivalent to finding

min
P ;V

EMðMBi;P ; V Þ þ ERðMBi;P ; V Þ; ð1Þ

where EM and ER denote the bit numbers required to encode the motion vectors and
residual signals, respectively. Usually, there exists a tradeoff between these two
terms. When the MB is partitioned into more smaller blocks, EM will increase while
ER will decrease. On the other hand, if the MB is not partitioned, then EM is the
smallest while ER becomes the largest. The search process is to find the best tradeoff
between these two terms to keep the best overall rate-distortion performance.

2.3. Distortion measurement for block matching

To find the optimal solution for Eq. (1), one should perform the whole encoding
process for every combination of all modes and their possible associated motion vec-
tors. This extremely large amount of computation is usually not acceptable in prac-
tice. The practical method is to search for the best displacement in prior to the
operations of DCT transform and entropy coding. Block-matching techniques that
minimize a cost function measuring the mismatch between the current block and
the candidate block within the search area are commonly adopted due to its simplic-
ity. The most widely used distortion measure is the sum of absolute difference (SAD),
which is defined as

SADðmx;myÞ ¼
XM�1

i¼0

XN�1

j¼0

jF kðxþ i; y þ jÞ � F k�1ðxþ iþ mx; y þ jþ myÞj; ð2Þ

where Fk (x,y) is the (x,y)th pixel in the current frame and Fk�1 is the reconstruction
of the previous frame, (mx,my) is the displacement relative to the block with size
M · N. In this work, the mean of absolute difference (MAD), defined as

MADðmx;myÞ ¼
SADðmx;myÞ

M � N
; ð3Þ

is adopted for the distortion measure.
Most practical motion estimation components search for an MB�s motion vector

with the smallest associated MAD. This process can be done without performing

222 C.-H. Kuo et al. / J. Vis. Commun. Image R. 17 (2006) 217–242
operations of transform and entropy coding. However, in some rare cases the
searched motion vectors with least MAD may be not exactly the same as the solution
of Eq. (1) and hence encoded bit numbers are not always optimal.

2.4. Fast full search in H.264

In the motion estimation for H.264, there are total seven possible block sizes to be
searched for each MB. Following the naming convention of the reference software,
we let modes 1–7 denote block sizes of 16 · 16, 16 · 8, 8 · 16, 8 · 8, 8 · 4, 4 · 8, and
4 · 4, respectively. The most straightforward way to find the optimal motion vectors
of an MB is to use the full search (FS) over all seven modes. The FS algorithm, which
evaluates MAD at all locations of a given search window, requires a large amount of
computation. Therefore, in the reference software of H.264, an alternative imple-
mentation of the FS algorithm is provided.

The idea to speed up the full search algorithm is to use the bottom-up merge pro-
cess. First, an FS is performed for all 4 · 4 partitions. The corresponding MADs and
motion vectors are stored for later used. Then, the MAD of a larger partition (e.g.,
4 · 8, 8 · 4, or higher) can be obtained simply by averaging the MADs of all 4 · 4
sub-blocks inside this partition. With this approach, block-matching operations
for larger partitions can be saved. The search result is the same as exhaustively
searching all seven modes while the amount of MAD computation can be reduced
to 1/7. The major drawback of this method is the MADs for all displacements of
all 4 · 4 blocks need to be stored in calculating the MAD of a larger partition. There-
fore, it cannot take advantage of many fast search algorithms developed in the past,
which reduce the number of search positions but cannot guarantee the global min-
imum MAD. The MAD values of some displacements of 4 · 4 blocks may be not
available in the fast algorithms. As a result, this bottom-up merge process still de-
mands a considerable amount of computation and memory storage in finding
MAD of the displacements which are not yet visited.

Another way to speed up the motion search of H.264 is directly applying a fast
search algorithm to each mode. This approach will sacrifice some coding perfor-
mance since most fast search algorithms only find sub-optimal solutions to trade
for more computational saving. However, these fast search algorithms cannot be
as effective for H.264 as in prior standards because of more modes. For example,
in prior coding standards, the MVFAST algorithm can achieve a speed-up factor
of around 100 as compared to the FS algorithm. However, in H.264, this method
can only speed up by a factor of 14. The speed-up factor is reduced to 1/7 since there
are seven times of locations to be searched in this fast algorithm.
3. The proposed algorithm

Fig. 2 depicts the block diagram of the proposed algorithm. First, the original im-
age frame is low-pass filtered and sub-sampled to get a lower resolution image. Then,
motion estimation is performed on the lower resolution image, and the result is used

Fig. 2. The block-diagram of the proposed motion search algorithm.

C.-H. Kuo et al. / J. Vis. Commun. Image R. 17 (2006) 217–242 223
to predict the initial motion vector and the mean of absolute differences (MADs) of
the corresponding MB in the original image. With the MAD information, an initial
search mode (of a certain block size) is determined using the estimated encoded bits
and some predefined threshold. After the initialization, the motion vector of an MB
in the original resolution image is refined by performing fast motion search with the
initial block size. The number of encoded bits is then estimated again using the MAD
of the refined motion vector. The updated encoded bits are used to verify the mode
decision and determine the next mode to search. In addition, motion search will be
terminated if the number of estimated encoded bits is smaller than an adaptive
threshold. As a result, by reducing number of modes to be searched, the amount
of computation can be saved remarkably. In the following, we will describe each
component of our algorithm in detail.

3.1. Estimation of bits for residual coding

In the reference software of H.264, the encoder finds the best MB partition by
minimizing the cost function:

J mode ¼ SADþ kmotion � R; ð4Þ
where R represents the bits used to encode the motion information, kmotion is the
Lagrangian multiplier set according to the quantization step [22]. In spite of its sim-
ple computation, this model is found not accurate enough for our fast mode decision
algorithm. It is necessary to develop a more elaborated rate-distortion model to esti-
mate the number of bits ER (MBi;P,V) for the residual signal coding based on the
pixel variance information in an MB. As a matter of fact, several rate-distortion
models have been proposed for the frame level, e.g. [23,24]. In the current context,
we are concerned with the coding at the MB level and the distortion will be about
the same with respect to the same quantization step. The rate-distortion optimization
process can be greatly simplified since we only have to minimize the encoding bit
rates.

224 C.-H. Kuo et al. / J. Vis. Commun. Image R. 17 (2006) 217–242
The estimation of encoded bits is derived with the assumption that the residual
signal is a zero-mean i.i.d source with the Laplacian distribution. The entropy of a
pixel can be obtained explicitly via [23]

BðQ; rÞ ¼ H 2ð
ffiffiffi
c
p Þ þ ffiffiffi

c
p

1þ H 2ðcÞ
1� c

� �
; ð5Þ

where the binary entropy function H2 (y) = �y log2 y � (1 � y) log2 (1 � y) and
c = e�aQ, where Q is the quantization step and r is the variance of pixels in an
MB. The entropy B (Q,r) can be viewed as the average bits to represent a symbol
if a perfect entropy encoder is applied. In later sections, we will use it to estimate
the encoded bit number E (MBi;P,V) for the MB residual provided that the variance
r and quantization step Q is known.

In Fig. 3, examples are given with various quantization steps. The solid curve is
the theoretical result computed from Eq. (5) while small dots represent actual exper-
imental results conducted by encoding a 300-frame CIF video �Forman� with H.264
JM software. Since the practical real-world encoder may not be an ideal entropy cod-
er and signals inside a single MB may have a wide distribution, it is reasonable that
the number of bits to represent an MB may deviate from the theoretical model value.
Fig. 3. Bits per pixel vs MAD with quantization steps 8, 16, 32, and 128 using H.264 quantization
parameters QP = 22, 28, 34, and 46, respectively.

C.-H. Kuo et al. / J. Vis. Commun. Image R. 17 (2006) 217–242 225
However, these figures indicate that the derived theoretical curves fit the general
trend of experimental results well. Since we only use this model for mode selection,
it is accurate enough for this purpose. In the practical implementation, the values of
B (Q,r) can be computed off-line and stored in a lookup table. The estimated bits
can be simply found from the lookup table after finding the nearest index of the
value Q/r.

Furthermore, we improve the model to make it an adaptive one so that it can ad-
just to the encoding context. The adaptive model for rate control in the frame level
has been studied by researchers. For example, Lee et al. [25] proposed a second order
polynomial for the rate model, and its coefficients are updated by linear regression.
However, we observe that the polynomial of order 2 is not enough for the MB-level
rate approximation. It demands a third-order polynomial to approximate Eq. (5), i.e.

BðcÞ ¼ w0 þ w1cþ w2c
2 þ w3c

3 þ oðc4Þ;
where o(c4) represents negligible higher-order terms. Fig. 4 shows the theoretical
curve as well as the second-order and the third-order approximations as a function
of c. We see that when c approaches one, which corresponds to the case of higher
MAD values, the second-order curve deviates a lot from the theoretical one. The
proposed third-order polynomial provides a better estimation.

To be adaptive to the context of the encoding process, the coefficients of the poly-
nomial are updated after the encoding of each MB. We use the least mean square
(LMS) algorithm to update the coefficients after the nth MB is encoded:
Fig. 4. The approximate bit number vs c = e�aQ.

226 C.-H. Kuo et al. / J. Vis. Commun. Image R. 17 (2006) 217–242
wiðnþ 1Þ ¼ wiðnÞ þ lcðnÞieðnÞ; i ¼ 0; 1; 2; 3;

where l is the weighting parameter and

eðnÞ ¼ RðnÞ �
Xi¼3

i¼0

wiðnÞcðnÞi

is the prediction error. The LMS algorithm is a well-known technique for adaptive
filtering. It is simple and robust and we find it suitable for the MB level adaptation.

In the simulation, we use the coefficients of the Taylor series expansion of Eq. (5)
as initial values, and set weighting parameter l to be as small as 0.001. It is confirmed
by experimental results, as compared to the fixed model, the adaptive scheme
achieves more stable performance under various quantization steps.

3.2. Multiresolution motion search

Before motion search is applied to the full resolution video, the MAD of an MB is
estimated using a multi-resolution approach as shown in Fig. 5 in the proposed algo-
rithm. This approach can help predict the initial motion vector as a starting point for
the search in the full resolution.

First, we represent the original image frame with two resolutions: the original one
and the lower resolution one. The lower resolution image is obtained by averaging
4 · 4 pixels and performing the 4 · 4 to 1 · 1 down-sampling. Thus, each MB in
the original frame becomes a block of size 4 · 4 in the low resolution frame. A dia-
mond search is then performed to find the motion vector and MAD of each 4 · 4
block in the low resolution level. The motion vector of an MB in the original level
can be predicted by an interpolation technique to be detailed in the next section.

The multiresolution motion search does not cost much computation, since the
block-size and the search range are scaled down greatly in the lower resolution level.
Besides, the search at the lower resolution level only has to be done once for each
frame. The information of motion vectors and MAD can be stored for initial esti-
mates of motion vectors in the original resolution level.
Fig. 5. Multi-resolution motion search.

C.-H. Kuo et al. / J. Vis. Commun. Image R. 17 (2006) 217–242 227
3.3. Prediction of motion vectors

A quadratic model is used to predict the motion vector in the original resolution
video from the low resolution video. The model was first proposed in [26] for the
sub-pixel motion vector interpolation from integer-pixel motion vectors. We modi-
fied it for the prediction of motion vectors in the full resolution from those in the
coarse resolution.

Let v = (px,py) be the motion vector of some MB in the original resolution video.
To predict v, we first model the SAD in the low resolution level, denoted as S (x,y),
as a second-order polynomial of the motion vector in the original resolution:

Sðx; yÞ ¼ k1 x� px

4

� �2

þ k2 y �
py

4

� �2

þ k3; ð6Þ

where k1, k2, and k3 are characteristic parameters of the SAD function. Let
v0 = (vx,vy) be the motion vector of the corresponding 4 · 4 block in the coarse res-
olution with minimum SAD denoted as S0. The minimum SADs of its four neigh-
boring motion vectors (vx,vy � 1), (vx + 1,vy), (vx,vy + 1), and (vx � 1, vy) in the
coarse level are denoted by S1, S2, S3, and S4, respectively. By substituting five
known SADs, S0, . . . ,S4, into Eq. (6), the optimum predicted MV (px,py) can be
solved by

px ¼ Round 4� vx þ
S4 � S2

2ðS2 þ S4 � 2S0Þ

� �� �
;

py ¼ Round 4� vy þ
S1 � S3

2ðS1 þ S3 � 2S0Þ

� �� �
.

For boundary MBs, where some of SADs may not be available, we can simply
choose (4vx, 4vy) as the prediction in the full-resolution video.

This model is different from that given in [26] since we predict motion vectors
from the coarse level to the full-resolution level (rather than from the integral pixel
level to the fractional pixel level). The accuracy of our model depends on the sub-
sampling operation, while that of [26] depends on the interpolation operation. Thus,
our model may not be as accurate as the original scheme in [26] since some details
could be lost in the down-sampling process. Note that macroblocks with smoother
contents can be better predicted more accurately than those with complicated
textures.

The motion vector predicted by this model only serves as a rough initial candi-
date. It should be compared with other candidates obtained using different predic-
tion methods. Only the winner will serve as the start point in the diamond search
process. When early termination conditions are not met, the prediction error will
be corrected by the refinement provided by the diamond search.

3.4. Prediction of residual variance from coarse level

In the proposed approach, we use the MAD information in the full resolution to
estimate the number of bits required to encode an MB. In this subsection, we show

228 C.-H. Kuo et al. / J. Vis. Commun. Image R. 17 (2006) 217–242
that the value MADfull of an MB in the full resolution level can also be predicted
from MADlev2 in the coarse level by a simple relation

MADfull ¼ c�MADlev2; ð7Þ
where c is a constant.

It is assumed that the distribution of predicted residual signals of an MB can be
approximated by the Laplacian distribution with zero mean and a separable
covariance

Rðm; nÞ ¼ r2
f rjmjrjnj;

where m and n are the horizontal and vertical distances between two pixels, respec-
tively, r2

f is the variance of these pixel values, and r is the correlation coefficient. Un-
der the assumption of Laplacian distribution, the variance of residual signals in the
compensated blocks can be approximated by

rf �
ffiffiffi
2
p
�MADfull.

Similarly, the variance of residual signals in the coarse level can be approximated
by rlev2 �

ffiffiffi
2
p
�MADlev2. We observe that each pixel in the coarse level is the aver-

age of all 4 · 4 pixels in the original level. Therefore, it is actually the DC value of the
4 · 4 DCT transform in the original level. Since we have modeled the image to have
correlation coefficients r, the variance of the (u,v)th component of DCT coefficients
in the transform domain can be derived as [27]

r2
Fðu; vÞ ¼ r2

f ½ARAT�u;u½ARAT�v;v;

where R is the correlation matrix with coefficients r, A is 4 · 4 DCT transformation
matrix, and the operation [Æ]u, v means the (u,v)th component of a matrix. Hence
r2

lev2 ¼ r2
Fð1; 1Þ. Let the ratio of r2

Fðu; vÞ=r2
f be denoted by W (u,v). By using the ener-

gy conservation property, we obtain

r2
f ¼ r2

lev2 �
P

u;vW ðu; vÞ
W ð1; 1Þ .

Take the correlation factor r = 0.6 as an example, which was investigated in [27]
to be a good approximation for most pictures. By applying the transformation and
the quantizer of H.264 to the above equations, the variance of residual signals can be
approximated by

rf �
ffiffiffi
2
p
�MADlev2 � 1.689. ð8Þ

Therefore, the constant c in Eq. (7) can be set to 1.689.
In this model, the matched block in the reference frame at the coarse level is

assumed to have the scaled version of the motion vector searched in the full-reso-
lution level, and residual signals in the coarse level are approximately the same as
the down-sampled versions of residual signals in the full-resolution image. In prac-
tice, this approximation may be not accurate, since many details are lost in the
sub-sampling process. Thus, it is better to update constant c after the motion
search of each macroblock. In addition, the correlation factor r may change from

C.-H. Kuo et al. / J. Vis. Commun. Image R. 17 (2006) 217–242 229
frame to frame, and consequently, the value of c may vary with the picture. In
other words, we can replace the constant c to be a function of the form c (k), where
k denotes the kth MB. The value of c (k) is updated right after the encoding of an
MB by

cðkÞ ¼ AfðkÞ
A2ðkÞ

;

where Af (k) and A2 (k) are averaged MADs from the full and the coarse resolutions.
They are estimated, respectively, by

AfðkÞ ¼bAfðk � 1Þ þ ð1� bÞMADfullðkÞ;
A2ðkÞ ¼bA2ðk � 1Þ þ ð1� bÞMADlev2ðkÞ;

where b is a forgetting parameter with a value between [0,1].
This approximation can help make the initial mode decision for an MB, and it is

used before any motion search in the original level. After mode selection, a fast mo-
tion search is applied to the original level with the selected mode to obtain a more
reliable MADnew, and the estimated variance can be updated to

ffiffiffi
2
p
�MADnew.

3.5. Search with fast mode detection

Since motion search in a low resolution frame is done before the actual encoding
of any MB in the full-resolution frame, the estimated motion vector and MAD are
both available for initial mode decision of each MB. Furthermore, the predicted bit
number bi of the ith MB can be estimated from Eq. (5).

From extensive experimental results, we find some empirical rules for mode selec-
tion in H.264. For example, mode 1 (of size 16 · 16) is the most popular one among
all modes. Therefore, this should be the first one to search if the predicted MAD and
estimated encoded bits bi are both small.

Since large MAD will result in large bi, we can simply use bi for mode decision. If
the estimated number of coding bits bi is much greater than �b, which represents the
average bits to code an MB, it is probable that the MB should be further decom-
posed into smaller partitions so that they can be searched in different directions
to reduce the motion compensation residual and, therefore, the number of bits re-
quired to encode the residual. On the other hand, if bi is small enough to meet a
distortion criterion, there is no need to do further search. This early termination
rule will reduce the number of modes to be searched with little performance
degradation.

In the reference software of H.264, there is a fixed search pattern to follow for
partitions of all modes. In the proposed algorithm, we start the search with the initial
mode predicted by bi. Fig. 6 illustrates the flowchart of the proposed mode decision
process. The initial modes are chosen between two levels of square partitions, i.e.,
16 · 16 and 8 · 8. For a smaller number of bi, the mode with block 16 · 16 is used.
if bi is greater than the threshold h1, then an MB is split into four smaller blocks of
size 8 · 8.

Fig. 6. The flowchart of 2-level mode decision.

230 C.-H. Kuo et al. / J. Vis. Commun. Image R. 17 (2006) 217–242
After the initial mode is determined, motion search is performed with blocks un-
der this new partition, and MAD and bi are updated with more accurate values. If bi

meets a predefined threshold, then the search will stop immediately to save compu-
tation. Otherwise, the search should continue with other modes. In the case of using
the 16 · 16 block as an initial mode, the next search mode is the 8 · 8 block. If the
early termination criterion is still not met, we continue to check modes with rectan-
gular shapes of 16 · 8 and 8 · 16 blocks. The modes with partitions smaller than
8 · 8 would not be checked since they are less probable to happen while the value
of bi is small.

On the other hand, if the initial mode is the 8 · 8 block and the threshold is not
met, the predicted bit number bi, j is estimated for the jth 8 · 8 partition (j = 0,1,2,3)
with the same method to predict residual bits of a macroblock. The jth partition will
be split only if bi, j P h1/4. For split 8 · 8 partitions, their 4 · 4 sub-blocks will be
checked first. If the early termination condition is still not satisfied, other modes such
as 4 · 8 and 8 · 4 will be checked consequently.

For motion search under a particular partition, the MVFAST algorithm is adopt-
ed with modifications in several aspects. First, the fixed threshold is replaced by

C.-H. Kuo et al. / J. Vis. Commun. Image R. 17 (2006) 217–242 231
adaptive thresholds derived from MAD in the low resolution image. Second, the ini-
tial motion vectors to be checked are also changed. The predicted vectors in
MVFAST are taken from the neighboring MB�s motion vectors. In the proposed
algorithm, we predict the motion vector using a merge-and-split process. The merge
process means that the predicted vector of a partition are taken from its square sub-
partitions. The split process means that the predicted vector of a sub-partition are
taken from its parent square partition. These motion vectors are first checked, and
the one with the minimum SAD is examined furthermore. If the resulting bit length
does not exceed the specified threshold, the search stops immediately. Otherwise, we
will check the motion vectors in neighboring MB�s as specified by MVFAST. The
same threshold of early termination applies to these candidates, too. If the threshold
is not met, the winner among candidates is served as the new search center and a lo-
cal search of the diamond pattern is performed. In our implementation, only the
small diamond pattern is used since it works well for almost all cases tried.

The above 2-level decision process can be further enhanced by including one more
decision level. It is observed in many cases that, when the initially predicted bit number
is large, it is better to go directly to search for all 4 · 4 blocks under the search mode for
8 · 8 partitions. The flowchart of the 3-level decision process is depicted in Fig. 7.
Fig. 7. The flowchart of the 3-level mode decision.

Fig. 8. The performance comparison of the 2-level and the 3-level mode decision.

232 C.-H. Kuo et al. / J. Vis. Commun. Image R. 17 (2006) 217–242
Fig. 8 shows a comparison for the two proposed schemes by encoding test CIF
sequence �Foreman.� We see that the 3-level decision scheme is always faster than
the 2-level one. The 3-level algorithm is 13% faster than the 2-level one. However,
the coding rate may increase a little bit since the mode of 8 · 8 partitions may be
omitted. When compared to the 2-level algorithm, the bit rate of the 3-level algo-
rithm increase by 0.8% while the PSNR quality remains about the same in this exam-
ple. One may make a tradeoff between the coding bit rate and the speed-up factor by
selecting the 2-level or the 3-level decision process adaptively. In the following sim-
ulation results, the 3-level scheme is adopted since it is much faster while the in-
creased bit rate is insignificant.

3.6. Thresholds setting

Here, we provide more details about the principle in setting the thresholds. Sup-
pose that the variance rf of the motion compensated residual in one MB has been
predicted from motion vectors in the coarse resolution by Eq. (8). Then, we can
determine the averaged MAD �rf of frame residuals over all MB�s rf. The bit number
to represent a single motion vector l�mv can also be estimated by averaging the bits

C.-H. Kuo et al. / J. Vis. Commun. Image R. 17 (2006) 217–242 233
representing the motion vectors of all MBs in the previous frame. From Eq. (5), the
average bit number to encode an MB�s residual signal is about �b ¼ 256BðQ; �rfÞ.

Let rf,i be the MAD for the ith MB and, consequently, the bit number bi can be
approximated by bi = 256B(Q,rf,i). The values of l�mv and bi can be viewed as initial
estimations of EM (MBi;P,V) and ER (MBi;P,V) in Eq. (1), respectively. In other
words, the total number of bits to represent an MB can be approximately by bi + l�mv,
where the header bits are excluded. It is expected that bi should be close to the aver-
age number �b. If bi is much larger than the average bit number, then it is likely that a
further partition into smaller blocks may help reduce the number of coding bits, and
the minimum of Eq. (1) can be approached.

In the threshold selection for the proposed mode decision process, one may trade
the computational complexity for coding efficiency. If the threshold is set in favor of
coarser modes, it is less likely for a macroblock to be split into partitions to search
for individual motion vectors, thus requiring less SAD operations and resulting in a
lower computational complexity. On the other hand, this threshold reduces the prob-
ability of finding the correct mode in the search process, thus leading to larger resid-
ual signals.

Fig. 9 gives an example of the trade-off by encoding the CIF �Foreman� sequence
with reference software JM 4.0d. The horizontal axis indicates the ratio
q ¼ ðh� �bÞ=�lmv, where h is the threshold for the predicted bit number bi to determine
Fig. 9. Percentile of increased bits and split MBs for test sequence ‘‘Foreman’’ (CIF).

234 C.-H. Kuo et al. / J. Vis. Commun. Image R. 17 (2006) 217–242
whether the ith MB should be split or not. The solid curve represents the percentage
of macroblocks to be split and the split scheme needs more SAD operations than the
non-split one. The bars represent the percentages of increased bits with respect to the
one using the exhaustive search algorithm to encode a macroblock, when some
threshold h is applied for early termination. For instance, if q = 3, the bit number
is increased by 8%, while only 20% of the macroblocks are split. In this proposed
algorithm, we choose q = 3 to set the first threshold to decide whether a macroblock
should be split or not.

Alternatively, we can heuristically set thresholds in the following way. For an MB
with four 8 · 8 blocks, the expected number of bits to encode the MB is roughly
�bþ 4�lmv. Therefore, if bi > �bþ 3�lmv, the mode with four 8 · 8 blocks in one MB is
more likely to happen and should be checked before the 16x16 MB. Therefore, we
set the first threshold to

h1 ¼ �bþ 3�lmv.

In the case where bi is even larger, we set a more conservative criterion. That is, if
bi > �bþ 7�lmv, we go directly to the partition with the smallest block size 4 · 4. This
gives the second threshold

h2 ¼ �bþ 7�lmv.

After motion search in the full-resolution frame, the predicted bit number bi is re-
placed with the number estimated by the resulting MAD found in the specified
mode. It is compared with thresholds h1 and h2 for possible early termination. That
is, the search stops immediately if bi is smaller than these threshold values for the
8 · 8 and 4 · 4 cases, respectively. Otherwise, the motion search process will
continue.
4. Experimental results

We implemented the proposed algorithm and integrated it with the H.264 refer-
ence software JM4.0d. The exhaustive search (fast FS) and MVFAST search algo-
rithms were tested for comparison. The exhaustive search was executed by
enabling the option of FAST_FULL_SEARCH in reference software, which com-
puted SADs of 4 · 4 blocks first and merged SADs of larger blocks with a
bottom-up merging process as described in Section 2.4. The MVFAST algorithm
was implemented by following the description in [10]. Only the P-frame prediction
with one reference frame was tested as inter-frame prediction. The search range
was set to ±16 for all cases.

Several video sequences of different formats were tested in our experiment, and 10
quantization parameters ranging from 18 to 45 were selected for each sequence to
cover a wide range of bit rates. Table 1 gives the results of the average performance
for these sequences.

We used the fast FS algorithm provided in the H.264 reference software as a
benchmark. Two fast search algorithms, including the proposed algorithm and the

Table 1
Comparison of the proposed algorithm and other algorithms for H.264 encoding

Sequence Format BPS increase(%) Speed up

New method Diamond New method Diamond

Susie D1 6.02 9.43 71.60 23.96
Footballa D1 5.20 2.90 47.01 14.71
Mobile D1 2.21 4.39 64.28 14.89
Mobile CIF 2.68 4.85 69.49 17.55
Foreman CIF 3.73 4.93 60.01 17.98
Foreman QCIF 4.77 4.47 65.88 20.71
Akiyo CIF �0.09 4.01 156.82 50.32
Akiyo QCIF 0.04 3.91 147.85 49.63
Salesman CIF 1.35 2.92 92.15 29.63
Salesman QCIF 0.80 3.01 110.51 36.94
Missam CIF 0.68 6.59 104.24 31.32
Missam QCIF 0.08 3.78 136.62 44.66
Coastguard CIF 2.66 6.11 66.65 16.98
Coastguard QCIF 3.46 6.21 79.15 23.44
Hall CIF 0.88 1.46 121.31 33.69
Hall QCIF 0.75 2.14 145.97 40.18
Flower CIF 2.14 2.19 70.67 20.79

a Interlaced coding mode is enabled.

C.-H. Kuo et al. / J. Vis. Commun. Image R. 17 (2006) 217–242 235
fast search algorithm with MVFAST directly applied to all seven modes, were com-
pared to the benchmark algorithm. In Table 1, the columns labeled by ‘‘BPS In-
crease’’ are the bit-rate increase in terms of the percentage. As expected, the fast
FS algorithm generates the lowest bit-rates in most cases. The results also show that
the proposed method has higher coding efficiency than the MVFAST algorithm in
general. This means that our algorithm can determine the proper mode and the asso-
ciated motion vector better than MVFAST. It is worth mentioning that the proposed
algorithm even outperforms fast FS in coding bit rates for the ‘‘Akiyo’’ CIF se-
quence. The reason is that, although FS can find the MV candidate with the mini-
mum SAD, the minimum SAD value does not always guarantee the smallest
number of coding bits, as stated in Section 2.3.

The right two columns of the table show the speed-up factors. The factors are
calculated by counting the number of SAD operations. In the proposed algorithm,
the counting includes the sub-sampling operation and SAD operations of motion
search in both the original and the coarse levels. The values given in the table
are ratios of the SAD operation compared to the benchmark, i.e., the fast FS algo-
rithm. It is clear that the proposed algorithm can provide a speed-up factor in the
range of 60–150. Note that the speed-up factor may vary for different bit rates even
for the same test video. Compared to MVFAST, our method can still improve the
search speed by 3–4.3 times while providing better coding efficiency in most test
sequences.

In general, the proposed algorithm has better performance in sequences with
smoother motion since fewer motion vector candidates need to checked.

Fig. 10. The performance of test sequences with a frame size of 720 · 480.

236 C.-H. Kuo et al. / J. Vis. Commun. Image R. 17 (2006) 217–242
Other video characteristics may also influence the performance of the proposed
algorithm. For example, the test sequence �football� has a lot of movement and obvi-
ously interlaced effects. If we use the frame coding mode as adopted in other test

C.-H. Kuo et al. / J. Vis. Commun. Image R. 17 (2006) 217–242 237
sequences, the coding performance of the proposed algorithm will degrade severely.
The resultant bit rate is 10% higher than the full search algorithm. In this case, the
interlaced coding option has to be turned on, and the performance becomes more
reasonable as shown in the table.
Fig. 11. The performance of test sequences of the CIF size.

Fig. 11. (continued)

238 C.-H. Kuo et al. / J. Vis. Commun. Image R. 17 (2006) 217–242
The comparison of coding performance among three codecs are shown in Figs.
10–12. The PSNR and speed-up factors vs bit rates are plotted at various quantiza-
tion steps with format D1, CIF, and QCIF, respectively. The proposed algorithm,
MVFAST, and FS are marked as �new,� �diam,� and �full� in the legend. In most cases,

C.-H. Kuo et al. / J. Vis. Commun. Image R. 17 (2006) 217–242 239
the PSNR curves of the proposed algorithm are close to those of the FS algorithm.
This means that the proposed fast algorithm has little visual quality degradation as
compared with the FS algorithm. Note that the visual quality using MVFAST de-
grades significantly in the low bit rates.
Fig. 12. The performance of test sequences of the QCIF size.

Fig. 12. (continued)

240 C.-H. Kuo et al. / J. Vis. Commun. Image R. 17 (2006) 217–242
5. Conclusion

We have developed a fast motion search algorithm for H.264 by introducing a
rate model for effective initial mode selection, a method for initial motion vector

C.-H. Kuo et al. / J. Vis. Commun. Image R. 17 (2006) 217–242 241
prediction and early termination rules to avoid unnecessary computation. Experi-
mental results were given to demonstrate that our method can speed up the search
up to a factor of 150 times with little visual quality degradation. The proposed meth-
od outperforms several fast search algorithms and provides the best tradeoff between
coding efficiency and the speed. With our approach, a real-time H.264 encoder for
high quality video becomes more feasible.
References

[1] Study of Final Committee Draft of Joint Video Specification, Joint Video Team (JVT) of ITU-T Rec.
H.264 |ISO/IEC 14496-10 AVC, February 16, 2003.

[2] T. Koga, K. Iinuma, A. Hirano, Y. Iijima, T. Ishiguro, Motion compensated interframe coding for
video conferencing, in: IEEE Proceedings of the National Telecommunication Conference, December
1981, vol. 4. pp. G5.3.1–G5.3.5.

[3] Renxiang Li, Bing Zeng, Ming L. Liou, A new three-step search algorithm for block motion
estimation, IEEE Trans. Circuits Syst. Video Technol. 4 (4) (1994) 438–442.

[4] Lai-Man Po, Wing-Chung Ma, A novel four-step search algorithm for fast block motion estimation,
IEEE Trans. Circuits Syst. Video Technol. 6 (3) (1996) 313–317.

[5] Lurng-Kuo Liu, Ephraim Feig, A block-based gradient descent search algorithm for block
motion estimation in video coding, IEEE Trans. Circuits Syst. Video Technol. 6 (4) (1996) 419–
422.

[6] Jo Yew Tham, Surendra Ranganath, Maitreya Ranganath, Ashraf Ali Kassim, A novel unrestricted
center-biased diamond search algorithm for block motion estimation, IEEE Trans. Circuits Syst.
Video Technol. 8 (4) (1998) 369–377.

[7] Junavit Chalidabhongse, C.-C. Jay Kuo, Fast motion vector estimation using multiresolution-spatio-
temporal correlations, IEEE Trans. Circuits Syst. Video Technol. 7 (3) (1997) 477–488.

[8] A.M. Tourapis, O.C. Au, M.L. Liou, Predictive motion vector field adaptive search technique
(PMVFAST)-enhancing block based motion estimation, in: SPIE Proceedings of the Visual Commun.
Image Proc., January 2001.

[9] Shan Zhu, Kai-Kuang Ma, A new diamond search algorithm for fast block-matching motion
estimation, IEEE Trans. Image Process. 9 (2) (2000) 287–290.

[10] Optimization Model Version 3.0, ISO/IEC JTC1/SC29/WG11 N4344, Sydney, July 2001.
[11] A.C. Yu, Efficient block-size selection algorithm for inter-frame coding in H.264/MPEG-4 AVC, in:

Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing 2004,
vol. 3, May 2004, pp. 169–172.

[12] D. Wu, S. Wu, K.P. Lim, F. Pan, Z.G. Li, X. Lin, Block inter mode decision for fast encoding of
H.264, in: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal
Processing 2004, May 2004, vol. 3, pp. 181–184.

[13] X. Jing, L.-P. Chau, Fast approach for H.264 inter mode decision, IEEE Electron. Lett. 40 (17) (2004)
1050–1052.

[14] A. Ahmad, N. Khan, S. Masud, M.A. Maud, Efficient block size selection in h.264 video coding
standard, IEEE Electron. Lett. 40 (1) (2004) 19–21.

[15] Woong Il Choi, Byeungwoo Jeon, Jechang Jeong, Fast mode estimation with modified diamond
search variable motion block sizes, in: Proceeings of the IEEE International Conference on Image
Processing 2003, September 2003, vol. 3, pp. 371–374.

[16] Andy Chang, P.H.W. Wong, Y.M. Yeung, O.C. Au, Fast multi-block selection for H.264 video
coding, in: Proceedings of the IEEE International Symposium on Circuits and Systems 2004, May
2004, vol. 3, pp. 817–820.

[17] Zhi Zhou, Ming-Ting Sun, Yuh-Feng Hsu, Fast variable block-size motion estimation algorithms
based on merge and split procedures for H.264/MPEG-4 AVC, in: Proceeings of the IEEE
International Symposium on Circuits and Systems 2004, May 2004, vol. 3, pp. 725–728.

242 C.-H. Kuo et al. / J. Vis. Commun. Image R. 17 (2006) 217–242
[18] Jianfeng Xu, Zhibo Chen, Yun He, Efficient fast ME prediction and early-termination strategy based
on H.264 statistical characters, in: Proceedings of the IEEE International Conference on Acoustics,
Speech and Signal Processing 2004, May 2004, vol. 3, pp. 181–184.

[19] Hye-Yeon Cheong Tourapis, Alexis Michael Tourapis, Fast motion estimation within the H.264
CODEC, in: Proceedings of the IEEE International Conference on Multimedia and Expo, July 2003,
vol. 3, pp. 517–520.

[20] Peng Yin, Hye-Yeon Cheong Tourapis, Alexis Michael Tourapis, Jill Boyce, Fast mode decision and
motion estimation for JVT/H.264, in: Proceedings of the IEEE International Conference on Image
Processing 2003, September 2003, vol. 2, pp. 853–856.

[21] A.M. Tourapis, Enhanced predictive zonal search for single and multiple frame motion estimation, in:
SPIE Proceedings of the Visual Comm. Image Proc., 2002.

[22] G.J. Sullivan, Thomas Wegand, Rate-distortion optimization for video compression, IEEE Signal
Process. Magazine 15 (6) (1998) 74–90.

[23] Hsueh-Ming Hang, Jiann-Jone Chen, Source model for transform video coder and its application—
part 1: fundamental theory, IEEE Trans. Circuits Syst. Video Technol. 7 (2) (1997) 287–298.

[24] E.Y. Lam, J.W. Goodman, A mathematical analysis of the DCT coefficient distributions for images,
IEEE Trans. Image Process. 9 (10) (2000) 1661–1666.

[25] Hung-Ju Lee, Tihao Chiang, Ya-Qin Zhang, Scalable rate control for MPEG-4 video, IEEE Trans.
Circuits Syst. Video Technol. 10 (6) (2000) 878–894.

[26] Xiaoming Li, Cesar Gonzales, A locally quadratic model of the motion estimation error criterion
function and its application to subpixel interpolations, IEEE Trans. Circuits Syst. Video Technol. 6
(1) (1996) 118–122.

[27] I-Ming Pao, Ming-Ting Sun, Modeling DCT coefficients for fast video encoding, IEEE Trans.
Circuits Syst. Video Technol. 9 (4) (1999) 608–616.

	Fast motion search with efficient inter-prediction mode decision for H.264
	Introduction
	Overview of H.264 motion estimation
	Tree-structured motion estimation
	Notations
	Distortion measurement for block matching
	Fast full search in H.264

	The proposed algorithm
	Estimation of bits for residual coding
	Multiresolution motion search
	Prediction of motion vectors
	Prediction of residual variance from coarse level
	Search with fast mode detection
	Thresholds setting

	Experimental results
	Conclusion
	References

