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Abstract—Maximum-likelihood estimation of the carrier fre-
quency offset (CFO), timing error, and channel response of each
active user in the uplink of an orthogonal frequency-division
multiple-access system is investigated in this study, assuming that
a training sequence is available. The exact solution to this problem
turns out to be too complex for practical purposes as it involves
a search over a multidimensional domain. However, making use
of the alternating projection method, we replace the above search
with a sequence of mono-dimensional searches. This results in an
estimation algorithm of a reasonable complexity which is suit-
able for practical applications. As compared with other existing
semi-blind methods, the proposed algorithm requires increased
overhead but has more flexibility as it can be used with any sub-
carrier assignment scheme. Simulations indicate that the accuracy
of the CFO estimates asymptotically achieves the Cramer–Rao
bound.

Index Terms—Channel estimation, frequency synchronization,
orthogonal frequency-division multiple access (OFDMA), timing
synchronization.

I. INTRODUCTION

ORTHOGONAL frequency-division multiple access
(OFDMA) has attracted much attention in the last years

since it is widely recognized as a promising technique for
fourth-generation (4G) broadband wireless networks [1]. In an
OFDMA system, several users simultaneously transmit their
own data by modulating an exclusive set of orthogonal subcar-
riers. Two critical issues in OFDMA uplink transmissions are:
frequency/timing synchronization and channel estimation. Sim-
ilar to orthogonal frequency-division multiplexing (OFDM),
OFDMA is particularly sensitive to carrier frequency offsets
(CFOs) and timing errors. Inaccurate CFO estimation produces
intercarrier interference (ICI) due to the loss of orthogonality
among subcarriers. Timing errors result in interblock inter-
ference (IBI) between adjacent OFDMA blocks and must be
counteracted to avoid severe error rate degradation.
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In quasi-synchronous multiple-access systems, the user’s
timing is locked to a signal received from the base station
(BS) through a downlink synchronization channel. As a con-
sequence, timing offsets in the uplink are mainly due to the
propagation delay incurred by users’ signals. Depending on the
cell radius, they can be limited to a few sampling intervals and
incorporated as part of the unknown channel impulse response
(CIR). Under such a circumstance, the use of a sufficiently long
guard interval (in the form of a cyclic prefix) provides intrinsic
protection against IBI at the expense of extra overhead. In prac-
tical OFDM(A) applications, data transmission is organized
in frames, and training blocks (carrying known symbols) are
located at the beginning of each frame for synchronization
purposes. On one hand, the training blocks usually have a long
cyclic prefix (CP) that comprises both the channel delay spread
and the propagation delay [1], [2]. On the other hand, the CP
of data blocks should be made just greater than the CIR length
to minimize the system overhead. Thus, accurate estimation of
timing offsets in the uplink training period is desired so that we
can align all users in time and avoid IBI over the data section
of the frame. Finally, estimating the channel response of each
user is indispensable for coherent detection of transmitted data.
The above synchronization and channel estimation tasks are
particularly challenging in the uplink of an OFDMA system
where each user has his/her own CFO, timing error, and channel
response.

Frequency and timing estimation for OFDMA uplink appli-
cations has recently received some attention and several solu-
tions are now available. For example, the method proposed in
[3] exploits redundancy offered by the CP while frequency and
timing estimates are computed in [4] by looking for the posi-
tion of null (virtual) subcarriers within the signal bandwidth.
Both methods produce excellent results. However, they are only
suitable for a subband-based carrier assignment scheme (CAS),
where a group of adjacent subcarriers is allocated to one user
so that signals from different users can be easily separated at
the BS through a filter bank. A frequency estimation scheme
for OFDMA transmissions with interleaved CAS (ICAS) is de-
scribed in [5]. It is a subspace approach, which exploits the pe-
riodic structure of the signals transmitted by each user. Despite
their good performance, all of the above-mentioned schemes
cannot be used in OFDMA systems employing generalized CAS
(GCAS), where each user can select the best available subcar-
riers (i.e., those with the largest channel gains) [2]. Since there
is no strict association between subcarriers and users, the GCAS
allows dynamic resource allocation and provides more flexi-
bility than subband-based or interleaved schemes [6]. A method
for estimating the CFO and the timing offset of a new user en-
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Fig. 1. Discrete-time model of the baseband OFDMA system.

tering an OFDMA system with GCAS was proposed in [7]. This
scheme has good performance but assumes that all existing users
have already been synchronized, which may be an issue of con-
cern in practical applications.

In this paper, we address the problem of jointly estimating
CFOs, timing offsets, and channel responses of all active users
in the uplink communication of an OFDMA system. It is as-
sumed that each user transmits a training block (carrying known
symbols) at the beginning of the uplink frame. We consider a
quasi-synchronous system, where the CP of a training block is
sufficiently long to comprise both the channel delay spread and
propagation delays incurred by users’ signals. As mentioned be-
fore, in this case, accurate timing estimation is used to reduce
the length of the CP during the data section of the frame. The
exact maximum-likelihood (ML) solution to this problem is pro-
hibitively complex since it demands a search over a multidimen-
sional space. To overcome this difficulty, we resort to the alter-
nating-projection algorithm [8] and propose a simpler scheme,
in which CFOs are estimated sequentially instead of jointly. This
reduces the multidimensional search problem to a sequence of
simple one-dimensional (1-D) searches. The CFO estimates are
then exploited to recover both the timing offset and the channel
response of each user. The resulting scheme is suitable for any
CAS and can be used in all practical communication systems,
including IEEE802.16, where each user selects the best subcar-
riers in a decreasing order of channel gains. This advantage is
achieved at the price of a higher computational complexity as
compared to methods in [3]–[5]. The need for a training block
at the beginning of each frame also leads to an increased system
overhead. However, this should not be a serious concern since
training blocks are specified in the frame structure of many stan-
dardized multicarrier systems [2].

The remainder of this paper is organized as follows. Section II
presents the signal model for OFDMA uplink transmissions. We
propose a method for estimating the CFOs of all active users in

Section III and address the problem of timing and channel esti-
mation in Section IV. The Cramer–Rao bound (CRB) is derived
in Section V to characterize the accuracy of frequency estimates.
Simulation results are given in Section VI, and, finally, some
conclusions are drawn in Section VII.

II. SIGNAL MODELS FOR OFDMA UPLINK TRANSMISSIONS

We consider the uplink of an OFDMA network in which
active users simultaneously communicate with the BS as de-
picted in Fig. 1. We use to denote the total number of subcar-
riers and the th block of frequency-domain symbols sent
by the th user, where . In the sequel to this
study, we concentrate on a single block and omit the temporal
index for notational simplicity. The th entry of , say ,
is nonzero if and only if the th subcarrier is modulated by the

th user, with . This means that has
only nonzero elements, where is the number of subcar-
riers assigned to the th user. The corresponding time-domain
vector is given by

(1)

where is the -point discrete Fourier transform (DFT) matrix
with entries for ,

, and the superscript denotes the Hermitian
transpose. A CP of length is appended in front of to
eliminate IBI. The resulting vector of length

is then transmitted over the channel. Calling the dis-
crete-time composite channel impulse response of the th user
(encompassing the transmit/receive filters and the transmission
medium), the corresponding channel response vector can be
written as , where
is the transpose operator and is the channel order. Since
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is usually unknown, in practice, we replace by an -dimen-
sional vector

(2)

where is a design parameter that depends on

the duration of the transmit/receive filters and on the maximum
expected channel delay spread.

The waveform arriving at the BS is given by the superposition
of the signals from all active users. In the presence of both CFOs
and timing errors, the discrete-time output of the BS receive
filter is given by

(3)
where

, where is the th CFO
normalized to the subcarrier spacing;

is the timing error of the th user expressed in
sampling intervals (as done in [7], the fractional
part of the timing error is incorporated into the
channel impulse response);

is the noise contribution and it is modeled as a
circularly symmetric white Gaussian process with
variance , where is the two-sided
power spectral density of the thermal noise.

Samples are divided into adjacent segments of length
, each corresponding to a received OFDMA block in the BS

time reference. As shown in Fig. 1, the samples belonging to
a given block are serial-to-parallel (S/P) converted to form .
Next, the cyclic prefix is removed and the remaining samples
are collected into the -dimensional vector . We consider a
quasi-synchronous system where each user achieves timing ac-
quisition through a downlink synchronization channel before
initiating the uplink transmission [7]. In this way, the timing er-
rors in the uplink are only due to the (two-way) line-of-sight
propagation delay and are limited to , where

is the cell radius and is the speed of light. The OFDMA
blocks are organized in frames and each user transmits pilot
symbols over its preassigned subcarriers during a training block
located at the beginning of each frame (corresponding to ).
In the following, we concentrate on the training block and let

, so that vector is not affected by IBI (as men-
tioned earlier, this assumption is not restrictive since training
blocks are usually preceded by long CPs in practical applica-
tions). Then, from (3), it follows that can be written as

(4)

or equivalently

(5)

where we have defined the following quantities:

(6)

(7)

(8)

(9)

In the above equations, denotes the th entry of for
, and the modulo- operation means that

is reduced to the interval .
The major difference between (4) and (5) lies in the way

the timing errors ’s appear in the signal model. In the first
case, is embedded into , while in (5) it is incorporated
into . Since we are interested in the estimation of , ,
and for each active user, in principle, we could exploit the
signal model in (5) to jointly estimate ,

, and by
means of ML reasoning. This approach, however, would
lead to a complex optimization problem over the -di-
mensional space spanned by . In an attempt to reduce
the system complexity, in the following, we first use the
signal model in (4) to perform joint ML estimation of and

. After obtaining the CFO estimates, the
model in (5) is exploited to estimate and . In this way the
estimation of the CFOs is decoupled from the estimation of the
timing errors and the original optimization problem is split into
two simpler optimizations over the -dimensional domains
spanned by and . Note that, in our scheme, timing estimation
is performed after CFO recovery while in conventional OFDM
systems it typically precedes the frequency estimation task. As
discussed previously, this is possible since we are considering
a quasi-synchronous network where timing errors in the uplink
are relatively small and a long CP is appended in front of the
training block. In this respect, the estimation of in the uplink
can be seen as a fine timing adjustment that only serves to
reduce the length of the CP during the data section of the frame.

III. CFO ESTIMATION

A. ML Estimation

We begin by rewriting (4) into the following equivalent form:

(10)

where

(11)

Recalling that the entries of are independent Gaussian
random variables with zero mean and variance , the log-
likelihood function for the unknown parameters and takes
the form

(12)

where and are trial values of and , respectively, while
is the Euclidean norm of the enclosed vector . The joint ML
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estimates of and are obtained by searching for the maximum
of . To do so, we keep fixed and let vary in the

-dimensional space . Then, we see that is
maximum when

(13)

Next, substituting (13) back into (12) and maximizing with
respect to , we obtain

(14)

where .
The following remarks are of interest.

1) It is shown in the Appendix that a necessary condition
for the existence of is that
for all users. Since , we conclude that
the maximum number of users that the system can sup-
port is , where is the integer
part of . It is also clear that reduces to the
identity matrix when , since, in that case,

is a square matrix and, accordingly,
. Under these

circumstances, becomes independent of
and the CFOs cannot be estimated. In summary, it follows
from the above discussion that and
are necessary conditions for the joint ML estimation of
and .

2) The maximization in (14) requires a grid-search over the
multidimensional domain spanned by , which may be
too cumbersome in practice. A viable method to reduce
the system complexity consists of separating the users’
signals at the BS before estimating their CFOs. This ap-
proach has been adopted in [3], [4], where users’ separation
is accomplished by means of a filter bank assuming that
a group of adjacent subcarriers are assigned to each user
(subband CAS). Alternatively, the subspace-based method
in [5] can be used in conjunction with ICAS to estimate
all of the CFOs through a mono-dimensional search. The
above schemes are much simpler than the ML solution in
(14) but, unfortunately, they are not suited for GCAS. In-
tuitively, we expect that the synchronization task may be
somewhat complicated by GCAS. However, it is likely that
this technique will be widely used in future wireless trans-
missions due to its potential advantages in terms of dy-
namic resource allocation among the active users. In this
respect, it makes sense to look for synchronization schemes
of affordable complexity and suited for GCAS. In the fol-
lowing, we address this problem and propose a solution
based on alternating projection techniques. In this way,
the multidimensional maximization problem in (14) is split
into a series of simpler 1-D searches. The resulting scheme
operates in an iterative fashion and can be used with any
CAS.

B. Iterative Estimation via Alternating Projection

The alternating projection algorithm [8] is an iterative method
for the solution of a multidimensional optimization problem. As
mentioned previously, this technique is now exploited to reduce
the -dimensional maximization in (14) into a series of 1-D
maximization problems. The resulting procedure consists of cy-
cles and steps. A cycle is made of steps, and each step updates
the CFO of a single user while keeping the other CFOs con-
stant at their most updated values. Without loss of generality,
we follow the natural ordering in updating the
users’ CFOs. Also, we denote the estimate of at the th
cycle and define the -dimensional vector as

(15)

At the th step of the th cycle, the alternating projection
algorithm updates the estimate of by solving the following
1-D maximization problem:

(16)

where is used to indicate the functional depen-
dence of on . We

proceed in this way until the computation of , which con-
cludes the th cycle. The results gathered so far are further
refined in the th cycle, where is employed to com-
pute for . Multiple cycles are performed
until the CFO estimates converge to a stable solution.

Even though it is possible that the solution converges to a
local maximum of depending on the particular ini-
tialization [8], in all of our experiments the method converged
to the true CFOs in a few cycles. Two specific implementations
of the alternating projection algorithm are described in the next
two subsections.

C. Alternating-Projection Frequency Estimator (APFE)

In practice, the maximization problem in (16) is solved via an
exhaustive grid search over the interval spanned by . However,
computing requires a matrix inversion of order

for each value of , which may be too cumbersome for
practical implementation. Fortunately, the complexity involved
in the matrix inversion can be significantly reduced based on the
following observations. First, we notice that most of the columns
of are fixed while updating . Thus, we can split

into two parts: 1) , containing all columns
related to , and 2) , containing all of the remaining
columns of (i.e., those not related to ). For
example, for , matrix can be written as

(17)
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Next, by exploiting the special structure of ,
we can decompose into two parts: 1) ,
which performs the orthogonal projection onto the subspace
spanned by the columns of , and 2) ,
which performs the residual projection onto the subspace
spanned by the columns of

, where is the identity matrix of order
. The idea behind this decomposition is similar to the Gram–

Schmidt procedure, and it is mathematically expressed as

(18)

where

(19)

and

(20)

Since is independent of , we may rewrite (16) as

(21)

Note that computing demands the inversion of
a matrix of dimension , which is significantly smaller
than that required to compute . In the sequel, the
estimator in (21) is referred to as the APFE.

As it is intuitively clear, the APFE has a higher chance to con-
verge to the global maximum of the likelihood function if accu-
rate estimates are used for initialization. Two methods can
be used to obtain . The first possibility consists of simply
initializing the CFO estimate with the expected value of , i.e.,

, since is typically modeled as a zero-mean random
variable. Alternatively, can be taken as the output of the
frequency estimator proposed in [9]. Note that the scheme in [9]
was originally developed for a single-user system and, accord-
ingly, it is not resistant to multiple-access interference (MAI).
However, simulations indicate that it provides better initializa-
tion values and results in a faster convergence rate than simply
setting .

D. Approximate APFE (AAPFE)

Inspection of (20) reveals that computing still
requires a matrix inversion of dimension for each value
of . Since is independent of , we

can approximate the quantity using the von
Neumann series truncated to the th order term [10], i.e.,

(22)

where

(23)

Note that computing the right-hand-side (rhs) of (22) requires
the inversion of , which is independent of . This leads
to a significant reduction of the system complexity, since we
only need one matrix inversion for each user, irrespective of the
cycle number, while APFE requires a new matrix inversion for
each value of at each cycle. The estimator based on (22) is
called the AAPFE. The initialization of AAPFE can be done
exactly in the same way as for APFE.

IV. ESTIMATION OF THE TIMING OFFSETS

AND CHANNEL RESPONSES

As mentioned earlier, in practical OFDMA systems, the
training blocks have a long CP that comprises both the channel
response duration and the two-way propagation delay to prevent
IBI. On the other hand, it is desirable that data blocks have a
shorter CP (of the order of the channel response duration) to
reduce unnecessary overhead. For example, in the IEEE802.16a
standard, the CP during the training period is two times longer
than that of data blocks [1], [2]. Under these circumstances,
users’ signals arriving at the BS must be properly aligned
in time to avoid IBI over the data section of the frame. As
discussed in [7], timing and frequency compensation cannot be
accomplished at the BS, as the correction of one user’s offsets
would misalign the other users. In practice, the BS computes
the frequency and timing estimates, which are then returned
back on a downlink control channel and exploited by the users
to adjust their transmitter clock and carrier frequency.

The goal of this section is the joint estimation of the timing
errors and channel responses

of all active users. To this end, we resort
to an ML-based scheme and exploit the CFO estimate pro-
vided by either APFE or AAPFE. We begin by rewriting (5) as

(24)

where

(25)
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If the frequency offsets were perfectly known, from (24),
it follows that the ML estimates of and could be obtained
by searching for the minimum of

(26)

with respect to and . In practice, is unknown, and we can
replace it by its estimate . In other words, in (26) is
replaced by .

To proceed further, we first minimize with respect
to , which leads to

(27)

Then, substituting (27) back into (26) and minimizing with re-
spect to , we obtain

(28)

where

(29)
The multidimensional maximization problem in (28) can

be efficiently solved by resorting to the alternating-projection
technique illustrated in Section III. This results in a scheme
called the alternating-projection timing estimator (APTE).
Again, APTE requires an initial estimate of , say . The
latter can be computed as follows. First, the estimates ,

, are obtained by segmenting into blocks,
each of size . Then, exploiting the specific structure of
given in (8), we take as the index of the first significant
element of .

After is computed using APTE, it is employed in (27) to
estimate the users’ channel responses as

(30)

V. CRB ANALYSIS

In this section, we derive the CRB for the joint estimation of
and based on the model in (4). Let and be the real

and imaginary parts of and be the set of
the unknown parameters. For simplicity, we omit the functional
dependence on and use as a shorthand notation for
in subsequent derivations. Thus, we can rewrite (4) as

(31)

where is a zero-mean Gaussian vector with covariance matrix
. The components of the Fisher Information Matrix (FIM)

are given by

(32)
where is the th entry of and is the probability den-
sity function of , which reads

(33)

Substituting (33) into (32) yields

(34)

where is given in (11), and are the real and imagi-
nary parts of , respectively, and we have defined the following
quantities:

(35)

(36)

(37)

Finally, the CRB for the estimation of is given by

(38)

The rhs of (38) can be rewritten in a more convenient form
using arguments similar to those employed in [11]. Skipping the
details, it is found that

(39)

where and with
. Finally, since , we have

(40)

As indicated in (40), depends on the specific
channel realization. Since we are interested in the average per-
formance of the proposed CFO estimators, the rhs of (40) is nu-
merically averaged over all channel realizations, and the result
is taken as a baseline in the following section.

VI. SIMULATION RESULTS

The performance of the proposed synchronization and
channel estimation algorithms has been assessed by computer
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simulation and compared to the relevant CRB. Without loss of
generality, only the results for user#1 are illustrated.

A. System Setup

The simulated OFDMA system has subcarriers and
operates in the 5-GHz frequency band. The signal bandwidth
is 20 MHz, corresponding to an intercarrier spacing of 156.25
kHz. The channel response of each user is generated according
to the HIPERLAN/2 channel model with eight paths .
In particular, the channel coefficients are modeled as indepen-
dent and complex-valued Gaussian random variables with zero
mean and an exponential power delay profile

(41)

The constant is chosen such that the signal power of user#1
is normalized to unity, i.e., , where is
the channel frequency response of user#1 over the th subcarrier
and expressed as

(42)

Parameters (with ) affect the signal-to-interference
ratio (SIR), and their values are varied in the simulation to as-
sess their impact on the system performance. Transmitted sym-
bols belong to a quaternary phase-shift keying (QPSK) constel-
lation. Since and , we have

, where is the average energy per re-
ceived bit. The overall instability of the transmit/receive oscilla-
tors is 10 parts per million (ppm), corresponding to a maximum
CFO of 50 kHz. This is tantamount to setting ,
where is the frequency offset normalized to the intercar-
rier spacing.

The cell radius is 150 m so that the (two-way) maximum prop-
agation delay is s. Since the sampling period is

s, the maximum of is equal to 20
and the grid search in (28) can be limited to . The
training blocks have a CP of length to accommodate
both the channel response duration and the maximum propaga-
tion delay. To reduce the system overhead, a shorter CP of length

is employed during the data section of the frame. This
means that IBI occurs in the data blocks if . To meet
the constraint , each user transmits data over 32 dis-
tinct subcarriers. In this way, the maximum number of users the
system can support is . Unless otherwise
specified, the subcarriers are randomly assigned to each user in
order to demonstrate the applicability of the proposed estima-
tors in conjunction with any subcarrier allocation strategy.

As mentioned earlier, in our scheme, the BS performs fre-
quency and timing estimation, whereas the adjustment of the
synchronization parameters is made at the user’s side based on
instructions transmitted via the control channel. To take this into
account, during the data section of the frame, we replace and

by the corresponding residual errors and ,
respectively.

Fig. 2. Convergence rate of APFE and AAPFE.

Fig. 3. Average frequency estimates versus �f .

B. Performance Assessment

Case 1: Convergence Rate and Acquisition Range of the CFO
Estimators: An important design parameter for the proposed
CFO estimators is the number of cycles needed to achieve
convergence. Fig. 2 shows the mean square error (MSE) of the
normalized frequency estimates provided by APFE and AAPFE
as a function of for and . All users have equal
power with dB. The AAPFE is based on the
first-order approximation of , meaning that is set
to unity in (22). The CFOs are uniformly distributed over the
interval [ 0.32,0.32]. We see that both estimators achieve con-
vergence in two cycles and no significant gains are observed
with . For this reason, we set in all subsequent
simulations. Fig. 3 illustrates the average frequency estimates
versus assuming that two users are active in the system.
The ideal line is also drawn for comparison.
We see that both APFE and AAPFE provide unbiased estimates
over the range .
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Fig. 4. Accuracy of the various frequency estimators versus E =N .

Case 2: System Performance in the Presence of Two Users
With Equal Power: In this experiment, we assess the accuracy of
the proposed frequency and timing estimators in the presence of
two users with equal power. Fig. 4 illustrates the frequency MSE
as a function of . The CRB is also shown as a benchmark.
The simulation setup is the same as in Fig. 2, except that now
we adopt an interleaved CAS to make comparisons with the
frequency estimator proposed by Cao et al. (CTYFE) in [5].
We see that APFE approaches the CRB for dB,
while AAPFE exhibits a floor that worsens as decreases. As
for CTYFE, its accuracy is satisfactory at high signal-to-noise
ratios (SNRs), but significant degradations are observed with
respect to APFE and AAPFE for dB.

The performance of the timing estimator is assessed in terms
of the average IBI power due to imperfect estimates of . For
a fixed error and a channel response ,
the IBI power is given by [12]

(43)

where

if
if
otherwise.

(44)

Fig. 5 shows the average IBI power versus for APTE
assuming ideal frequency estimation, i.e., . The iterations
with APTE are stopped at the end of the second cycle .

The overall system performance has been computed in terms
of uncoded bit error rate (BER). Fig. 6 illustrates the BER of
a coherent QPSK system employing the proposed frequency
and timing estimators. Channel estimates are computed from
(30) and used to perform channel equalization according to the
zero-forcing (ZF) criterion. To show the impact of the subcar-
rier allocation strategy on the system performance, we consider

Fig. 5. Average IBI power versus E =N due to timing errors.

Fig. 6. BER performance with uncoded QPSK.

two different scenarios. In the first one, we adopt an interleaved
CAS (ICAS) and we use the frequency estimates provided by
either APFE, CTYFE, or AAPFE (with ). In the second
scenario, the subcarriers are dynamically assigned to the active
users according to the rate-craving greedy (RCG) algorithm,
which was proposed in [13] to maximize the transmission rate of
an OFDMA system. In the latter case, only APFE and AAPFE
are considered, since CTYFE can be only used with ICAS. The
curves labeled “Ideal” are obtained with perfect knowledge of
the channel and synchronization parameters ( , ,
and ) and are shown as benchmarks. We see that APFE
and AAPFE have similar performance, irrespective of the sub-
carrier allocation scheme. Results obtained with CTYFE are
only marginally worse. As expected, the RCG algorithm leads to
a dramatic improvement of the error rate performance as com-
pared with ICAS. The reason for this is that dynamic subcarrier
allocation provides the system with some form of multiuser di-
versity [14], which increases the asymptotic slope of the BER
curves.



734 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 54, NO. 4, APRIL 2006

Fig. 7. Accuracy of the various frequency estimators in the presence of near–far
effects.

Fig. 8. Accuracy of APFE versus E =N with K = 2, 3, and 4.

Case 3: Resistance to the Near-Far Effect: Next, we inves-
tigate the resistance of the various frequency estimators to the
near–far effect. For this purpose, we use the simulation setup
of the previous experiment except that the power of the inter-
fering user is now 6 dB higher than that of user#1. This can be
easily achieved by setting in (41). Fig. 7 shows the
frequency MSE versus as obtained with APFE, CTYFE,
and AAPFE (with ). Comparing Figs. 4 and 7, we
see that the accuracy of all of the considered schemes is only
marginally affected by the near–far problem.

Case 4: Impact of on the Accuracy of the CFO Estimates:
The impact of on the accuracy of APFE is investigated in
Fig. 8, where the frequency MSE is shown as a function of

for and , assuming that all users have the
same average power (i.e., for ). The relevant
CRBs are also shown for comparison. As expected, the estima-
tion accuracy degrades as grows large. In particular, the fre-
quency MSE increases by approximately 7 dB in passing from

to 4. In the latter case, the MSE is 1 dB from the corre-
sponding CRB.

C. Computational Complexity

We now assess the complexity of the proposed frequency and
timing estimation schemes. We begin with the computation of
the APFE metric on the rhs of (21). From
(20), we see that the crux in the calculations is the inversion
of a matrix of dimensions , which requires approx-
imately operations. Since a new metric must be com-
puted at each cycle for all users, it follows that the complexity of
APFE is , where is the number of -values

over which is evaluated. Some computa-
tional saving is possible by resorting to AAPFE. In this case,
the metric is calculated as shown in (22) and (23) with approx-
imately operations, leading to an overall complexity

. As for APTE, it operates exactly in the same
manner as APFE, except that computing the timing metric re-
quires the inversion of a matrix of dimensions rather
than . Accordingly, the overall complexity of APTE
is , where represents the uncertainty
range of .

It is interesting to compare the complexity of the proposed
schemes with the frequency estimator discussed in [4], which
looks for the position of null subcarriers within the signal band-
width. This requires operations for each user and
value, leading to an overall complexity . Recalling
that and , we see that the number of opera-
tions is approximately reduced by a factor of 56 with respect to
AAPFE.

VII. CONCLUSION AND FUTURE WORK

The problem of estimating the synchronization parameters
and channel responses of all active users in the uplink of an
OFDMA system was investigated in this paper. The frequency
estimates were obtained using an ML approach, and the alter-
nating-projection algorithm was employed to circumvent the
maximization of the likelihood function over a multidimen-
sional space. The CFO estimates were then exploited to recover
the timing errors and channel responses of the active users.
Compared with other existing methods, the proposed schemes
exhibit improved performance and provide more flexibility, as
they can be used in conjunction with any subcarrier allocation
strategy. It is fair to say that the above advantages are obtained
at the price of a certain increase of the system complexity.

There are several extensions of this study that can be further
explored. One possible drawback of the proposed estimators is
that the maximum number of active users is constrained to be
less than . This should not represent a serious problem
in wireless local area network applications characterized by
small cell radii and/or channel delay spreads (leading to small
values of ), while it can prevent their applicability to outdoor
OFDMA transmissions unless the block length is adequately
increased. In practical situations, however, we can reasonably
assume that only those users that are entering the system need
synchronization while the others have already been frequency-
and time-aligned to the BS reference. In this way, the number of
unknown parameters is reduced and the constraint
can be relaxed to , where is the number of
users that must be synchronized. Furthermore, throughout
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the paper, only one training block has been employed for the
synchronization purpose, whereas blocks are usually
available in practical systems. Multiple training blocks can be
exploited in different ways. For example, they can be used to
improve the estimation accuracy by averaging the frequency
and timing estimates over the available blocks. Another pos-
sibility is to allocate each training block to a different group
of users. Then, the system constraint can be further relaxed to

and, accordingly, the maximum number
of users that can enter the system at the same time is enlarged
by a factor . As a concluding remark, we observe that the
frequency/timing estimators in [3]–[5] provide estimates of the
synchronization parameters in just one OFDMA block and,
accordingly, they appear to be more advantageous for outdoor
transmissions than the proposed schemes. However, it should
be borne in mind that the problem of channel estimation (which
is indispensable for coherent data detection) is not addressed in
[3]–[5]. Intuitively, we expect that this operation may require
several training blocks when the delay spreads and/or cell radii
are relatively large due to the huge number of parameters in-
volved in the estimation process. In summary, although a single
training block is sufficient to perform frequency and/or timing
synchronization, as indicated in [3]–[5], a large overhead is
still necessary in coherent outdoor transmissions to solve the
channel estimation problem.

APPENDIX

Here, we discuss the invertibility of , where
is defined in (11). To begin with, we rewrite

as

(45)

where

(46)

Since is a full-rank matrix, it follows from (46) that
. On the other hand, we see from

(7) that consists of the first columns of a circulant matrix
with entries

(47)

Using the property of circulant matrices together with (1), we
have , where is a diagonal matrix with

on its main diagonal. Since is full rank and is the
number of nonzero entries of (i.e., the number of subcarriers
assigned to the th user), we conclude that ,
and accordingly

(48)

Now we observe that can be
inverted if and only if . Using the

general results and
[15, pp. 58–61], it follows from (45) and

(48) that

(49)

where we have taken into account that cannot ex-
ceed since has dimension . On the other hand,
since , we may rewrite (49) as

(50)

From the above equation, we conclude that
if for some values of . This means that a

necessary condition for the invertibility of is that
for .
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