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T
he basic structural units of the genome are
nucleotides. There are four nucleobases: guanine
(G), Adenine (A), Thymine (T), and Cytosine (C). A
single nucleotide polymorphism (SNP) is a mutation
at a single nucleotide position, where a possible

nucleotide type is called an allele. For example, there are two
nucleotides in the following two DNA fragments in the fourth
position: CCACGTT and CCATGTT. In this case, we say that the
SNP has two alleles, C and T. Although the polymorphism may
consist of two, three, or four alleles, the triallelic and tetraallelic
SNPs are extremely rare. Thus, the SNP is generally referred to
as the bi-allelic polymorphism with the minor allele frequency
(MAF) being larger than 1%. A locus is the location for a SNP
(or gene) on a chromosome. It is called homozygous when two
alleles are the same and heterozygous when they are different.
The most frequent allele in a locus is called the wildtype while
the second most frequent is the mutant allele.

Although more than 99% of human DNA sequences are the
same across the population, the rest less-than-1% DNA varia-
tions can have a major impact on how humans respond to dis-
ease, environmental insults, drugs, and other therapies. SNPs
make up 90% of all human genetic variations, and SNPs with a
MAF at least 1% occur once every 100–300 bases along the
human genome. SNPs may give clues as to why some subpopu-
lations are more likely to have certain diseases than others, and
why some drugs work in some subpopulations and not in oth-

ers. This makes SNPs of great value for biomedical research and
for developing pharmaceutical products or medical diagnostics.
SNPs can also help identify multiple genes associated with com-
plex diseases such as cancer and diabetes. Because a single
altered gene may only contribute a little to a complex disease,
these associations are difficult to establish with conventional
gene-hunting methods.

We discuss several major problems in SNP data analysis and
review some existing solutions in this work. Generally speaking,
SNP data analysis is an emerging research field, and we foresee a
rich set of SNP analysis problems to be cast in the signal pro-
cessing framework. Our objective is to offer a state-of-the-art
review on this topic from a signal processing viewpoint so that
researchers in the signal processing field can grasp the impor-
tant domain knowledge to overcome the barrier between the
two fields.

DEFINITIONS AND BACKGROUND

GENOTYPE AND HAPLOTYPE
Human chromosomes appear in pairs. One of them is from the
father, and the other is from the mother. The set of alleles that a
person has on a pair of chromosomes is called a genotype. The
term genotype can include the SNP alleles that a person has at a
particular SNP location or many SNPs across the genome. A set
of associated SNP alleles on the same chromosome is called a
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haplotype. Genotyping is the method that discovers the geno-
type of a person.

The most accurate genotyping method is to apply the poly-
merase chain reaction (PCR) process, which is a technology that
makes multiple copies of a DNA sequence, to the region where
SNPs are located and then sequence the region directly.
However, the PCR process cannot distinguish one chromosome
from the other because they are almost identical (>99% simi-
lar). As a result, SNPs on both chromosomes will be amplified
and sequenced, and their associations with the two chromo-
somes are lost in this process. In general, obtaining haplotype
data through experiments is more difficult since it has to sepa-
rate and purify a pair of almost identical chromosomes from
human cells. In a population, most short chromosome regions
have only a few common haplotypes, which account for most of
the variations among people. Even though there may be many
SNPs in such a chromosome region, the pattern of the haplo-
type variations in this region can be represented by a few select-
ed SNPs, called tag SNPs. 

A raw genotype data obtained from experiments is a
sequence of SNP pairs, which is also called unphased SNPs. We
use a simple example to illustrate the haplotype inference prob-
lem. Consider an individual A that has 00, 01, 01, 11, and 01 in
five SNP locations in the genotype, where 0 represents the wild-
type and 1 the mutant. Then, there are four possible configura-
tions of haplotypes: (00010,01111), (00011,01110),
(00110,01011) and (00111,01010). Additional information is
needed to determine which one is more likely to happen.
Suppose that we observe another genotype as 00, 00, 00, 11, and
00 in the corresponding five SNP locations, indicating two iden-
tical haplotypes of (00010). Thus, the haplotype configuration of
individual A is more likely to be (00010,01111).

LINKAGE
In most cases, two SNP loci share a certain amount of correla-
tion, that is, they are linked. Consider a pair of SNP loci (a, b) in
the data set. There can be either allele X or x in location a and
either allele Y or y in b. Sometimes, we are able to predict the
allele at b based on the allele at a. This happens more frequently
when positions a and b are close to each other. If the prediction
accuracy is 100%, we say that these two SNPs are fully linked.
There are also cases where a and b are independent, especially
when they are far away from each other. Then, there is no link-
age between them. More often, we have some partial information
about the allele at b given the allele knowledge at a. The phe-
nomenon is called linkage disequilibrium (LD). We address two
popular LD metrics here, since they are closely related to the
problem of disease association mapping, and the problem of tag
SNP selections. The origin of LD metrics is the independent test

D = f(XY) − f(X) f(Y),

where (X,x) and (Y,y) are alleles of two SNPs. D is not a normal-
ized measure. Lewontin [1] suggested to use the normalized one
defined as

D = D
Dmax

,

where

{
Dmax = min{ f(X) f(Y), f(x) f(y)}, if D < 0,

Dmax = min{ f(X) f(y), f(x) f(Y)}, if D ≥ 0.

Please note that |D| = 1 denotes complete LD while |D| = 0
indicates that the two SNPs are independent. Historical recom-
binations between pairs of human chromosomes result in the
decay of D toward zero. This metric has many extended versions
and they have been widely applied, such as in [2] to partition the
haplotype blocks.

Another LD metric is defined as

r2 = D2

f(X) f(x) f(Y) f(y)
,

which is also normalized. When r2 = 1, the two SNPs are in
complete LD, which means knowing one of them is directly
predictive of the other. When r2 = 0, the two SNPs are inde-
pendent. This metric has been applied in [3] to select the tag
SNPs. On the other hand, the value of r2 is inversely related to
the required sample size of association mapping, given a fixed
genetic effect. That is, if one SNP was genotyped and it has
r2 = 0.5 to another ungenotyped SNP, then the sample size
has to be doubled to provide the same statistical power for the
ungenotyped SNP as the case with r2 = 1.

RECOMBINATION
Before a single chromosome is produced, there is a process
called meiosis that is essential to the generation of either sperms
or eggs. During the meiosis, there is a small chance that a pair of
paternal chromosomes exchange a segment of DNA with each
other, called recombination. After the meiosis, these two paternal
chromosomes are duplicated and separated into four different
sperms. The same situation applies to the maternal chromo-
somes and eggs. Therefore, chromosomes are shuffled by recom-
binations, and so are haplotypes. When a recombination event
occurs between two SNPs, it reduces the LD between them.
Moreover, two SNPs close together are less likely to be affected by
the recombination than two SNPs far away.

SNP DATA ANALYSIS: DATA SETS AND CHALLENGES

SNP DATA SETS
There are some data sets widely used in the literature. Daly et al.
[2] reported the haplotype block structure in human chromo-
some 5p31, which denotes subband region 31 of the p-arm (i.e.,
the shorter arm) of chromosome 5. They released genotype data
from 129 trios (father, mother, child; a total of 387 individuals).
The amount of 103 SNPs were collected from each individual.
There are 6,764 missing values and 3,868 heterozygous SNPs
(∼ 20% unphased). The other data set is a set of haplotype data
of human chromosome 21 by Patil et al. [4]. This collection
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gathered 24,047 SNPs from each of 20 individual chromosomes.
This data set contains about 20% missing SNPs. 

The International HapMap Project focuses on the construc-
tion of a haplotype map of the human genome, the HapMap, to
reveal the common patterns of human DNA sequence variations.
The first phase of the international HapMap project [5] geno-
typed more than 1 million SNPs in 269 individuals of European,
Yoruba, Chinese, and Japanese ancestry. The density is around
one SNP per 3 kilobase. It significantly increased the number
and annotation of known SNPs in the public SNP map (dbSNP)
from 2.6 million to 9.2 million. Motivated by the allele frequen-
cy distribution of variants in the human genome, SNPs with
MAF ≥5% was targeted in HapMap. The variants of these SNPs
are referred to as common variants. The data show that the pan-
els of Yoruba individuals are more diverse than other popula-
tions. This means that we need to select more tag SNPs to
capture the same fraction of common variants for this popula-
tion. The resource offered by HapMap has been applied to vari-
ous research projects, especially the genome-wide association
studies. The second phase of HapMap attempts to genotype an
additional 4.6 million SNPs in each of the HapMap samples. This
will increase the density of genotyped SNPs to one per kilobase.

CHALLENGES OF SNP DATA ANALYSIS

HAPLOTYPE INFERENCE
Genotype data can be less costly collected than haplotype data.
However, haplotypes are still the desired data format ultimately.
The problem of haplotype inference is to convert the genotype
data into haplotypes. The phase of SNPs can be either homozy-
gous, where both of the haplotypes have the same SNP, or het-
erozygous, where two haplotypes have different SNPs.
Techniques in haplotype inference use the partial knowledge
from the genotype source to infer the missing parts of the com-
plete haplotype data. The inference processes are generally time
consuming. As a result, precision and efficiency are both crucial
in the context of haplotype inference. 

HAPLOTYPE BLOCK PARTITIONING
Although the recombination process disturbs the genome, a
large portion of DNA bases are still conserved. As a result,
each SNP is somehow related to its neighboring SNPs. The
linkage metric provides a measure to quantify the correlation
between SNPs. When two SNPs have high correlation, they
are closely linked. According to the recombination model,
SNPs within a short genomic distance tend to be linked with
each other. This phenomenon results in a block structure in
the haplotype data. Haplotype blocks are also observed experi-
mentally. The objective of haplotype block partitioning is to
reduce the complexity of association mapping by using haplo-
types rather than individual SNPs. On the other hand, recom-
bination hot spots are likely to be located at the boundaries of
haplotype blocks. These hot spots have significant impact on
the population structure. Since every partitioning method
gives a partition result, one challenging issue is to evaluate

the performance of each block partitioning method in terms
of power of association. Potential problems encountered in
block partitioning are that sometimes boundaries between
blocks are not clearly defined, and that SNPs in different par-
titioned blocks may still be linked to a certain degree.

TAG SNP SELECTION
The large number of SNPs makes SNP-based disease studies
difficult, since we need to collect SNPs from hundreds to
thousands of patients. It is however possible to collect a small
set of representative SNPs, called tag SNPs, and use them to
infer remaining SNPs. The intuition of the tag SNP selection
comes from the LD among the SNP data. When a representa-
tive SNP is closely linked to a group of SNPs, it can be chosen
to be a tag SNP for this group. Efforts have been made on
selecting as few tag SNPs as possible for a data set. This set of
tag SNPs can predict the remainder of the data set with a high
precision. There are further issues on tag SNP selection. First,
the selected tag SNPs cannot be better than the original set of
SNPs in terms of representability. Thus, it is important to
screen the SNP data and determine how well tag SNPs can
catch the variation among individuals. Second, the LD
observed from a sample set can be faulty if the sample size is
too small. Finally, since most SNPs in the public databases
have been discovered in a small sample of individuals, the
ascertainment bias of SNPs in the initial set has to be consid-
ered. Despite the above challenges, the tag SNP selection
problem still plays an essential role in SNP data analysis,
since the cost and complexity of experiments can be signifi-
cantly reduced. Recent studies on disease association are
closely tied with tag SNP selection techniques.

MISSING DATA
Collected raw data often contain missing spots due to imper-
fect experiments. The portion of missing data indicates the
quality of the data set. A missing SNP can be inferred using
the information of its neighboring SNPs by exploiting the LD
property. It is obvious that a properly partitioned block struc-
ture helps to infer missing SNPs more accurately. The distri-
bution of missing locations is not uniform, i.e., some
locations are more likely than others. Some missing data may
be of the form of a short missing segment. These make the
missing data inference problem more challenging.

SOLUTION TECHNIQUES TO SNP
DATA PROCESSING PROBLEMS

HAPLOTYPE INFERENCE
Although preliminary haplotype inference methods were
developed in 1990s, rapid movements on SNP analysis have
been driven by the accessibility to human SNP data sets
recently. There have been several individual SNP data sets
available since 2001. Furthermore, the International
HapMap Project has also delivered the first phase data in late
2005. The real data facilitate the development of more
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efficient data processing methods, which in turn refines
experimental techniques in data acquisition.

Haplotype inference is an essential step towards the process-
ing of genotype data collected from experiments. It deals with
incomplete data and attempts to infer missing data based on
observed ones. The intuition of inference is to use homozygous
locations in some individuals to predict SNPs at the same loca-
tions, but heterozygous in other individuals. Another useful
information for haplotype inference is the neighboring SNPs
due to the conservation of SNP patterns in a short range. The
pioneering work of Clark [6] attempted to minimize the total
number of different haplotypes. Clark’s algorithm starts with the
first haplotype and uses it to infer other genotypes. This process
continues as more haplotypes are inferred from genotypes and
stops until every genotype is resolved. The result of Clark’s algo-
rithm depends on the first haplotype to start with. Different
starting haplotypes may result in different set of haplotypes.
Sometimes this algorithm may not find any haplotype to start
with. Moreover, genotype vectors that no compatible haplotypes
are found in the solved set are left unresolved. 

An expectation-maximization (EM) method for haplotype
inference was proposed by Excoffier and Slatkin [7]. It is
assumed that m different genotypes, with counts n1, n2, . . . nm,
from n individuals are observed. The number of possible combi-
nations of haplotype pairs leading to the jth genotype is

cj =
{

2sj−1, if sj > 0,

1, if sj = 0,

where sj is the number of heterozygous loci. Under the assump-
tion of random mating, the probability Pj of the jth genotype is
given by the sum of the probabilities of each of the possible cj

haplotype combinations as

Pj =
cj∑

i=1

P(ith haplotype combination) =
cj∑

i=1

P(hkhl),

where P(hkhl) is the probability of the ith genotype made up of
haplotypes k and l. P(hkhl) = p2

k if k = l and P(hkhl) = 2pk pl if
k �= l, where pk and pl are the population frequencies of the kth
and the lth haplotypes, respectively.

The algorithm begins with the initial guess of haplotype fre-
quencies. In the E-step, the haplotype frequencies are used to
estimate the genotype frequencies. In the gth iteration, the hap-
lotype frequencies in the previous iteration is used to calculate
the probability of resolving each genotype into the different pos-
sible haplotype combinations

Pj (hkhl)
(g) = nj

n
P(hkhl)

(g)

P (g)
j

,

These expected genotype frequencies in turn estimate the haplo-
type frequencies in the M-step, where the haplotype frequencies
are computed using a procedure equivalent to the gene-count-
ing method

p̂(g+1)
t = 1

2

m∑
j=1

cj∑
i=1

δitPj(hkhl)
(g),

where δit is an indicator variable that gives the number of hap-
lotype t is present in haplotype combination i. The E- and M-
steps are performed iteratively until the haplotype frequencies
converge, i.e., their change number is smaller than a threshold.

Nowadays, there are several commonly used tools for hap-
lotype inference, including HAPLOTYPER [8], PHASE
[9]–[11], SDPHapInfer [12], PPH [13], and HAP [14]. HAPLO-
TYPER adopts a Bayesian procedure that imposes no assump-
tions on the population evolution history using the Dirchlet
prior. Their Gibbs sampling algorithm iterates between the
following steps.

1) Conditioned on the Dirchlet prior, sample a pair of compat-
ible haplotypes for each subject according to the candidate
haplotypes’ portion in current samples.

2) Conditioned on current samples, update the prior by a ran-
dom draw from the posterior distribution modified by the
sample counts.

Afterwards, two novel techniques, partition ligation (PL) and
prior annealing, are used to solve the haplotype inference prob-
lem in a divide-and-conquer fashion. This procedure becomes a
popular approach in haplotype inference research for lowering
the computational cost. A direct derivative from HAPLOTYPER
is the PL-EM algorithm [15], which uses EM instead of the
Gibbs sampler for haplotype inference.

[FIG1] Illustration of the recombination process: (a) after meiotic
replication and before cross over, (b) a cross over between two
chromatids, (c) before meiotic divisions, and (d) after two meiotic
divisions, which results in two recombinant and two non-
recombinant chromatids.

(a) (b)

(c) (d)
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Another system using the Bayesian approach is PHASE, which
appears to be the most accurate haplotype inference tool. The first
version of PHASE [9] employs the Gibbs sampler with a prior
approximating the coalescent (see [16] for a review). The approxi-
mation considers the distribution of the genealogy-related yet
randomly sampled individuals as described by coalescence,
which helps predict how similar a future-sampled chromosome
and a previously sampled chromosome are likely to be.
Moreover, future-sampled chromosomes tend to be more similar
to previously sampled chromosomes as the sample size increas-
es and as the mutation rate decreases. Coalescence theory is
strongly supported by collected evolutional data. This is the
main reason that PHASE infers the haplotype with higher accu-
racy than other methods.

The main shortcoming of the first version of PHASE is its
long computational time, which has been significantly short-
ened in PHASE 2.0 [10] that applies the divide-and-conquer
technique similar to PL in HAPLOTYPER. The fundamental dif-
ference between HAPLOTYPER and PHASE is their prior mod-
els. The Dirichlet prior used in HAPLOTYPER is suitable for the
parent-independent mutation model. That is, the genetic
sequence of a mutant offspring does not depend on the progeni-
tor sequence. This model is however unrealistic for longer SNP
sequences. We verify their accuracies on inferring the transmit-
ted haplotypes of first 70 families in [2]. PHASE and HAPLO-
TYPER yield an error rate of 1.85% and 4.31%, respectively.
However, the running time of PHASE is much longer than that
of HAPLOTYPER.

PHH and HAP took a different approach from the Bayesian
approach used in HAPLOTYPER and PHASE. They exploits ideas
from a perfect phylogeny model. In such a model, no recombi-
nation is allowed and the site mutation is infinite. However,
each SNP site can mutate only once, and the mutation lasts for-
ever (namely, it cannot mutate back). Even though the perfect
phylogeny model is not realistic in real data modeling, it does
limit the diversity of haplotypes. A relaxed model, called imper-
fect phylogeny, is implemented in HAP. The system first picks
“common” haplotypes from either perfect or imperfect phyloge-
ny with enough evidence. Afterwards, it attempts to infer haplo-
types from genotype data. Another program SDPHapInfer aimed
to find the minimum subset of haplotypes that can resolve all
the genotypes. It was shown in [12] that its result is within a fac-
tor of O(log n) away from the optimal solution, where n is the
number of genotypes.

The running time of the HAP system is noticeably shorter
than the PHASE system when the number of SNPs is small.
The result obtained from HAP is comparable to that from
PHASE. On the other hand, the running time for PHH is also
linear in its later version. The performance of SDPHapInfer is
similar to HAPLOTYPER for a small number of SNPs. We
compare the popular PHASE, HAPLOTYPER and HAP in
Table 1. It is worthwhile to point out that most of the haplo-
type inference algorithms produce different results in differ-
ent runs. The final result is often the consensus of multiple
runs of the same algorithm. 

HAPLOTYPE BLOCK PARTITIONING
The study of haplotype block partitioning was pioneered by Daly
et al. [2] and Patil et al. [4], each offering a human SNP data set.
The most important observation on these data sets is the exis-
tence of low-diversity regions, which are called haplotype
blocks. Normally, there are two possible nucleotides in each
SNP location. With a haplotype block spanning ten SNPs, it can
have 210 haplotypes. However, the actual number of haplotypes
within this block is far less than that, say, ten. The problem to
partition the data set into low-diversity haplotype blocks is
called haplotype block partitioning.

Daly et al. [2] adopted a hidden Markov model (HMM) for
haplotype block partitioning, where the transition probabili-
ties between states at adjacent SNPs are related to the decay of
LD and measured by a statistical value of D. Their method
used several heuristics, including the window size to cover
the local SNP information, the threshold of minority SNP fre-
quencies, and the model itself. They developed a partitioning
method and collected data of the trio format, which includes
SNPs from fathers, mothers, and their children. They parti-
tioned this data set into 11 inconsecutive blocks, which are
generally referred to as the ground truth of this data set.
Their partitioned haplotype blocks span up to 100 kb and con-
tain five or more common SNPs. The blocks have only a few
(two to four) major haplotype patterns. For example, the first
haplotype block containing eight SNPs observed in two major
patterns, GGACAACC and AATTCGGG. These patterns account
for 95% of observed chromosomes. Another 3.8% of chromo-
somes match either of the two patterns at all alleles except
one. This may be due to gene conversion or an undetected
genotyping error.

Patil et al. [4] and Zhang et al. [17] partitioned haplotype
blocks using the block diversity, which is measured by the
number of haplotype tag SNPs (htSNPs) within a block. Patil
et al. [4] determined block boundaries using a greedy algorithm
while Zhang et al. [17] proposed a dynamic programming (DP)
algorithm to find the block partition corresponding to a globally
minimal number of htSNPs. Actually, the solution of Zhang et al.
[17] was optimized for the haplotype block partitioning prob-
lem set up by Patil et al. [4].

Two haplotypes are compatible if the alleles are the same
at the loci with no missing data. A haplotype in a block is
ambiguous if it is compatible with two other incompatible
haplotypes. Let ri be a SNP locus whose value can be 0, 1,
or 2, where 0 indicates missing data, 1 and 2 are the two
alleles.  For a block (ri, . . . , rj) ,  the indicator function
b(ri, . . . , rj) = 1 if at least α percent of unambiguous haplo-
types in the block are represented more than once. Here α

PROGRAM PHASE HAPLOTYPER HAP 
STRENGTH ACCURATE FAST ACCURATE 
WEAKNESS SLOW LESS ACCURATE NO BLOCK PARTITIONING 

MECHANISM (SHORT 
BLOCKS ONLY) 

[TABLE 1]  COMPARISON ON HAPLOTYPE 
INFERENCE PROGRAMS.
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serve as a metric for diversity, where higher α implies lower
diversity. Let f(ri, . . . , rj) be the minimum number of
htSNPs required to uniquely distinguish at least α percent of
unambiguous haplotypes within the block. The minimum
total number of htSNPs needed for the first j SNPs, Sj, can be
derived from the DP formula

Sj = min{Si−1 + f(ri, . . . , rj); 1 ≤ i ≤ j, b(ri, . . . , rj) = 1}.

Although the objective function is optimized, there can be sev-
eral partitions that yield the same optimum number of htSNPs.
Then, the partition with the
minimum number of blocks is
chosen as the final partition.

Following the work of
Zhang et al.  [17], several
researchers have studied a sys-
tematic way to achieve haplo-
type block partitioning based
on the DP algorithm. For
example, the objective function in the algorithm was
replaced with the minimum description length (MDL) meas-
urements by Koivisto et al. [18] and Anderson and Novembre
[19]. Simply speaking, an MDL system selects the best model
that yields the MDL for the whole data set. There exists an
additional assumption in the MDL algorithms presented in
[18] and [19]. That is, to derive the description length of a
haplotype in a block, SNPs are assumed to be independent of
each other within a block, which is however unrealistic.
Anderson and Novembre [19] added another assumption, i.e.,
blocks follow the first-order Markovian relationship. These
two methods yield different results, since different MDL mod-
els are applied to the same data set.

Low diversity is a common feature of haplotype blocks. It is
convenient to use the entropy to measure the haplotype diversi-
ty within a block; namely, low entropy implies low diversity. Let
(i, j) denote the set of consecutive SNPs from the ith SNP to the
jth SNP. Let �(i, j) be the set of all haplotypes collected in this
interval. The block entropy in the iterative partition-inference
(IPI) system [20] is defined as

E(i, j) =
∑

φ∈�(i, j)

Pφ log P−1
φ .

A DP formula similar to that in [17] can be used for haplotype
block partitioning while minimizing the total block entropy. Let
B( j) denote the minimum total block entropy from the first
SNP to the jth SNP. The DP structure is as

B( j) = min
1≤i≤ j

{B(i − 1) + E(i, j); for E(i, j) ≤ T}. (1)

The condition E(i, j) ≤ T in (1) defines a block, where T is a
threshold on the maximum entropy allowed for a block. With
proper choice of T, the partition algorithm yields similar parti-
tion result as in [2], which is considered as ground truth for
their released data set.

TAG SNP SELECTION
Recently, several large genomic regions of around 500 kb
have been comprehensively examined as part of the
Encyclopedia of DNA Elements (ENCODE) project. This proj-
ect resequenced 96 chromosomes to ascertain all common
variants and genotyped all SNPs that are either in the dbSNP
database or identified by resequencing. These studies strong-
ly confirm the patterns of long segments revealed in [21].
Therefore, most of the common SNPs in the genome have
groups of neighbors that are all in nearly perfect correlation
with each other. One SNP, the tag SNP, can thereby serve as a

proxy for many others in fur-
ther studies.

Tag SNP selection pro-
vides feedback to further
experiments in SNP collec-
tion. It  screens currently
available SNP data and yields
representative SNPs. The LD
metrics offer good measures

for tag SNP selection. Moreover, they are viewed as the hinge
to reconstruct ungenotyped SNPs from tag SNPs. In this
section, we review several tag SNP selecting systems:
HapBlock [22], ldSelect [3], and STAMPA [23]. Tag SNPs are
selected to span a large portion of samples. The cases of the
singleton, which is the single occurrence of a specific haplo-
type pattern and may come from genotyping errors, or SNPs
with low MAF (usually below 10%) tend to be uncovered.
Only selection algorithms were considered in the first two
systems. Besides the selection algorithm, STAMPA also pro-
posed a reconstruction method, which may further reduce
the number of tag SNPs while achieving the same coverage.

The problem of finding the minimum number of represen-
tative SNPs within a block to uniquely distinguish all haplo-
types is known as the minimum test set problem [17], which
was proven to be NP-complete. HapBlock is a system built
upon the extension of [17]. It uses DP for haplotype block par-
titioning and chooses the partition that has the fewest overall
tag SNPs as the desired one. Tag SNPs are selected based on
the haplotype data inferred from PL-EM. The program can
run on the genotype data input.

ldSelect adopts the LD statistics measured in the r2 met-
ric. It runs a simple greedy algorithm that selects the SNP
that is above a r2-threshold with the maximum number of
other SNPs until the selected set of tag SNPs can resolve the
portion of all existing haplotypes. The fundamental idea in
ldSelect is simple, and the greedy algorithm is considerably
faster than the DP technique used in HapBlock and STAMPA.
This attracts other researchers to follow this approach in their
system to select tag SNPs in a larger scale data set.

In STAMPA, a stronger condition is imposed. That is, any
unselected SNP should be restored using only two closest tag
SNPs to its both sides as much as possible. Three auxiliary score
functions on the prediction error are defined. DP is performed
to minimize the score under a certain prediction function. The

SNP DATA ANALYSIS IS AN EMERGING
RESEARCH FIELD, AND WE FORESEE

A RICH SET OF SNP ANALYSIS
PROBLEMS TO BE CAST IN THE

SIGNAL PROCESSING FRAMEWORK.



IEEE SIGNAL PROCESSING MAGAZINE [81] JANUARY 2007

prediction process provides an algorithm to recover non-tag
SNPs from selected tag SNPs, and phased haplotype data are
needed in the prediction.

A different approach that targets at genome-wide tag SNP
selection was proposed in [24]. It groups SNPs into segments of
low haplotype diversity and selects a subset of SNPs that can dis-
criminate all common haplotypes within blocks. While not rely-
ing on any predefined haplotype block structure, it is called a
block-free selection. HapBlock and STAMPA involve systematic
DP methods. Thus, the computation is very heavy in a genome-
wide range. Furthermore, they may lose local selectivity due to
the overall optimization.

The tag SNP selection method in [25] has the ability to dis-
tinguish haplotypes even when some tag SNPs are missing dur-
ing the experiment. These selected tag SNPs are referred to as
robust tag SNPs. Huang et al. [25] argued that finding mini-
mum robust tag SNPs is equivalent to finding minimum tag
SNPs in [17], and it is an NP-hard problem. They also proposed
three algorithms to find approximate robust tag SNPs efficiently.
Their solutions are close to the optimal solution while the geno-
typing cost can be saved by as high as 80%.

Similar to the block partitioning problem, evaluation of
selected tag SNPs can be implicit. A system can always define a
certain measure such as predictiveness, informativeness, predic-
tion errors, or block diversity and then optimizes the chosen
measure. In general, the more tag SNPs are selected, the higher
percentages of haplotypes can be represented uniquely.
Furthermore, more tag SNPs also means better protection
against missing data and genotyping errors. The initial survey
before tag SNP selection is also crucial step. If the survey is
biased due to a small sample of individuals, the selection result
will be biased as well.

MISSING DATA
Both missing SNP inference and haplotype inference are key
problems in the processing of currently collected data. Some
haplotype inference methods, e.g., [26], [10], [14], can handle
missing SNPs. However, they are preliminary since only the
local neighboring information within a fixed range is exploited.

The IPI method proposed in [20] partitions the haplotype
globally and infers missing SNPs locally within a block. The par-
tition algorithm was discussed earlier. For the inference, a sin-
gle missing SNP is being updated under the assumption that the
inference of other missing SNPs is true. An EM-like algorithm
was employed to update the inference. The inference algorithm
in [20] was proved to lower the entropy of the block in which
the single missing SNP is located. This means that it helps
organize the block content in a more desirable manner. The
inference can further facilitate the block partitioning job for a
lower total block entropy.

For the IPI method, every missing SNP is initialized to be
the majority at its location, which is called “majority assign-
ment”. This assignment uses only the single location to com-
pute the likelihood without the help of its neighbors. Then,
the data set is partitioned into haplotype blocks under this

assignment result. After partitioning, the assignment is
updated for every missing SNP. In the next round of iteration,
the updated assignment is again employed for block partition-
ing. Both the error rate and the total block entropy are low-
ered during the iterative optimization process of IPI, until it
converges. The results of various missing rates on data in [2]
are shown in Table 2. The IPI has higher error rate when
there are more missing SNPs.

CONCLUSION AND FUTURE PERSPECTIVES
Several SNP data processing problems and their solution tech-
niques were reviewed in this work. Most of them involve statisti-
cal inference on SNP symbols (including haplotype and missing
data inference) based on partial observations and their grouping
(i.e., haplotype block partitioning) and representative selection
(i.e., tag SNPs). A common framework of various solution meth-
ods consists of the selection of a proper signal model, a proper
cost function, and an iterative optimization algorithm. This
framework has been widely applied by researchers in the signal
processing community to the analysis of speech, audio and com-
munication signals. It is our belief that SNP data analysis will
provide another excellent opportunity for signal processing
researchers to contribute in the near future.

There are several interesting applications of SNP data
analysis, which can lead to research problems in the future.
One of them is the disease mapping problem, which is also
known as the association study. The problem intends to iden-
tify the relationship between diseases and genomic data. In
the association study, a genetic variant is genotyped in a pop-
ulation for which phenotypic information, such as disease
occurrence or a range of trait values, is available. Recent
developments set up a good platform for the genome-wide
association study: the completion of the human sequence,
the deposition of millions of SNPs into public databases,
rapid improvement in genotyping techniques and the official
release of the International HapMap Project.

Traditionally, genome-wide linkage analysis is the method
used to identify disease genes. It has achieved great success
in mapping genes underlying monogenic diseases. However,
the linkage analysis is also much less powerful for identifying
common genetic variants that have modest effects on disease
(common diseases). Most common diseases and clinically
important quantitative traits have complex architecture, for
which the phenotype is determined by the sum of multiple
genetic and environmental factors, and/or the interactions

MISSING RATES 1% 5% 10%
MAJORITY ASSIGNMENT ERROR RATES 16.95% 19.01% 19.35%
FIRST ROUND 6.02% 8.51% 8.73%
SECOND ROUND 5.08% 7.75% 8.02%
THIRD ROUND 5.08% 7.38% 8.02%
FOURTH ROUND 5.08% 7.34% 7.98%
FIFTH ROUND 5.08% 7.34% 7.98%

[TABLE 2]  ERROR RATES FOR THE INFERENCE OF MISSING
SNPS ACCORDING TO DIFFERENT MISSING RATES,
USING FULL DATA IN [2].
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between them. The genome-wide association approach deals
with common diseases by surveying most of the genomes for
causal genetic variants. No assumptions are made about the
genomic location of causal variants. Thus, it is an unbiased
yet fairly comprehensive option, even in the absence of con-
vincing evidence regarding the function or the location of
causal genes. For more work on the genome-wide associa-
tion, we refer to [27] and [28] for reviews and [29] and [30]
for recent developments. 
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