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Blind Recursive Tracking of Carrier Frequency
Offset (CFO) Vector in MC-CDMA Systems

Feng-Tsun Chien, Member, IEEE, and C.-C. Jay Kuo, Fellow, IEEE

Abstract— A recursive algorithm for estimating and updat-
ing the effective carrier frequency offset (CFO) vector in a
multicarrier code-division multiple-access (MC-CDMA) system
is proposed in this work. The recursive relation is derived
based on the expectation maximization (EM) algorithm with a
quadratic constraint. This new approach enables the use of linear
estimation theory to tackle the CFO estimation problem with or
without training data, which leads to an analytic CFO estimate in
closed form. Furthermore, the multiple access interference (MAI)
is mitigated using the second order statistics of the interference-
plus-noise vector, which is updated in a recursive manner under
the EM formulation, too. When reaching a converged estimate,
a fixed-norm quadratic constraint is imposed so that the final
CFO estimate is robust to an imprecise covariance matrix
estimate caused by insufficient data samples. It is demonstrated
by computer simulation that the performance of an MC-CDMA
system without the CFO information can be restored by the
proposed scheme in the sense that its bit error probability (BEP)
performance is close to that with perfect CFO knowledge.

Index Terms— Code division multiple access (CDMA), multi-
carrier CDMA, carrier frequency offset (CFO), recursive EM
algorithm, quadratic constraint.

I. INTRODUCTION

W ITH the success of the code-division multiple-access
(CDMA) and the multicarrier modulation systems, the

idea to integrate merits from both techniques has stimulated a
large amount of research during the past decade. In particular,
the multicarrier-CDMA (MC-CDMA) system is a potential
candidate for the fourth generation (4G) wireless standard
thanks to a number of promising features such as robustness
to frequency selective fading channels, immunity to inter-
symbol interference (ISI) by adding/removing the cyclic prefix
and flexibility in allowing multiple access [1]. However,
multicarrier systems, including orthogonal frequency division
multiplexing (OFDM) and MC-CDMA, are sensitive to the
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carrier frequency offset (CFO) effect. A prominent CFO
destroys the orthogonality between sub-carriers, causing the
undesirable inter-carrier interference (ICI) and dramatically
deteriorating the system performance.

The range of CFO, which may come from mismatches be-
tween local oscillators and/or from mobility induced Doppler
shifts, in practical multicarrier applications is often too large
to be acceptable. For example, the frequency accuracy 25 parts
per million (ppm) specified in IEEE 802.11g can be translated
to 2.4 GHz×25 ppm = 60 KHz frequency shift. Compared
to the sub-carrier spacing 312.5 KHz, the normalized CFO is
0.192, which is well above the 0.01 threshold in maintaining a
tolerable bit error probability (BEP) performance [2] and must
be compensated by means of signal processing techniques in
a later stage. It is expected that, when projected into 4G
applications where the MC-CDMA system may come into
play, there will be an even larger normalized CFO due to
reduced subchannel bandwidth.

Motivated by the above observation, there have been a
number of studies dedicated to the development of effective
algorithms for CFO estimation in the OFDM system [2]–
[8]. However, all these schemes cannot be directly applied
to the MC-CDMA system due to the presence of multiple
access interference (MAI). In addition to the MAI problem,
the underlying nonlinear structure makes the CFO estimation a
challenging issue in the receiver design for MC-CDMA. Only
a limited amount of research in the literature can be found in
this regard. A block-based joint CFO and channel estimation
scheme for single carrier CDMA systems was considered in
[9] based on the subspace projection and the polynomial root-
finding algorithms. A blind channel-independent block-based
approach, which is similar to [9], was developed in [10] to
find a CFO estimate for MC-CDMA systems, wherein each
user’s channel impulse response was implicitly assumed to be
orthogonal. In [11], an iterative receiver structure for MC-
CDMA was developed using the technique of generalized
sidelobe cancellation, where an estimate of CFO was obtained
relying on exhaustive search.

On the other hand, the application of the expectation max-
imization (EM) algorithm to parameter estimation for OFDM
systems has been extensively studied recently, thanks to its
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power in dealing with a broad range of estimation problems
with incomplete observations [12], [13]. Estimation of the
symbol arrival time and the carrier phase was considered
in [14] with the transmitted symbol being treated as the
missing data. A blind CFO estimation scheme in MC-CDMA
systems using the EM algorithm was studied in [15], where
the gradient decent technique was proposed to deal with the
nonlinear optimization problem in the CFO estimate. However,
since there exist multiple local optima in the cost function,
the solution is sensitive to the initialization of the optimiza-
tion process, which could be problematic for a hill-climbing
adaptive algorithm. Besides, all these schemes were operated
in a block-based manner assuming that the target parameters
were time invariant inside this time block. However, timely
updates of system parameters would be more desirable in real
time applications, which motivates the development of online
algorithms to track possibly time-varying unknowns.

In this work, we address the blind CFO estimation problem
in MC-CDMA systems using the sequential EM algorithm
[16], [17] and the constrained optimization technique. The
EM algorithm provides an iterative procedure to find the
maximum likelihood (ML) estimates of target parameters
with appropriate initializations. It allows us to treat the CFO
estimation problem blindly, i.e. without the aid of training
data. The algorithm in the training mode is a direct extension
from the blind mode. Specifically, rather than finding CFO
directly, we derive a recursive relation of the estimate of
a time-varying vector consisting of the exponentials of the
desired user’s CFO, which is referred to as the CFO vector
in the sequel. By doing so, the nonlinear CFO estimation
problem can be avoided. That is, the resultant cost function
in the E-step is quadratic with respect to this CFO vector,
which makes the M-step easier to cope with and leads to an
analytically tractable estimate for the CFO vector and, hence,
a closed-form solution for the CFO itself. We find that no
performance loss in terms of the system bit error probability
is observed by examining the CFO vector and then estimating
the offset. Furthermore, the joint effect of MAI and AWGN
is modeled by a colored Gaussian vector and its effect is
whitened using the inverse of its covariance matrix [18]–
[20]. This covariance matrix can also be updated using the
recursive EM formulation. The computational cost associated
with matrix inversion is reduced using the matrix inversion
lemma. Finally, the performance of the proposed estimator is
demonstrated by computer simulations.

The rest of this paper is organized as follows. The system
model of an MC-CDMA system is provided and the problem
is formulated in Sec. II. The developed recursive algorithm
with a quadratic constraint is discussed in Sec. III. Numerical
simulations are presented in Sec. IV. Finally, concluding
remarks are given in Sec. V.

II. SYSTEM MODEL

A. Continuous-Time Signal Model

Consider an MC-CDMA system with N sub-carriers and
bandwidth W . The transmitted signal of user k after perform-
ing the inverse discrete Fourier transform (IDFT) and adding

the cyclic prefix can be represented as

dk(t) =
∞∑

m=−∞
bk[m]

N−1∑
n=−NG

pk,nψ(t−mTs − nT ), (1)

where bk[m] is the transmitted symbol of user k at the mth
symbol block, NG is the number of samples employed in the
cyclic prefix, Ts = (NG +N) · T is the time span of the mth
transmitted symbol block with T = 1/W being the duration
of each time-domain chip pk,n, ψ(t) is the pulse-shaping
waveform assumed to be rectangular of unity amplitude and
duration T in this paper and

pk,n =
1
N

N−1∑
i=0

ck,ie
j 2π

N in

is the nth IDFT output of the signature sequence ck =
[ck,0, ck,1 · · · ck,N−1]T of user k with ck,i ∈ {−1,+1} for
0 ≤ i ≤ N − 1. Note that we will use sm to represent b1[m]
in the sequel for notational convenience.

It is assumed that the system experiences a frequency
selective fading channel and the following tapped-delay line
model is adopted for the channel impulse response [21]

hk,m(τ) =
L∑

l=0

hk,m[l] · δ(τ − l

W
),

where hk,m[l] is the fading coefficient of user k on the lth path
at the mth symbol block, δ(t) is the Kronecker delta function
and L is the order of the channel depending on the maximum
multipath delay spread of the channel. The fading gain hk,m[l]
is modeled as a zero mean complex-valued Gaussian random
process. Then, the received signal for user k in the absence
of ambient noise is given by

rk(t) = dk(t) � hk(τ)

=
∞∑

m=−∞
bk[m]

N−1∑
n=−NG

L∑
l=0

pk,nhk,m[l]

× ψ(t−mTs − nT − lT ),

where � is the convolution operation. Note that the received
signal rk(t) has been derived above in the absence of CFO. A
more realistic model which encompasses the CFO effect will
be considered in Section II-C.

B. Discrete-Time Signal Model

At the receiver, after passing through the matched filter with
a sampling rate 1/T , the discrete time signal observed at the
mth symbol block and the gth chip interval for user k can be
written as

rk,m[g] =
1
T

∫ mTs+(g+1)T

mTs+gT

rk(t)ψ(t −mTs − gT )dt, (2)

for −NG ≤ g ≤ N − 1. The above matched filtering only
involves the following integration
∫ mTs+(g+1)T

mTs+gT

ψ(t−mTs − nT − lT )ψ(t−mTs − gT )dt,
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which takes nonzero values when g = n+ l. This yields

rk,m[g] = bk[m]
∑

n+l=g

pk,nhk,m[l],

which is equivalent to the result of performing discrete-
time convolution between the channel coefficient hk,m =
[hk,m[0], hk,m[1] · · ·hk,m[L]]T and the time domain signature
sequence pk = [pk,0, pk,1 · · · pk,N−1]T . After removing the
cyclic prefix, the received signal vector at the mth symbol
block is equal to

rk,m = [rk,m[0], rk,m[1] · · · rk,m[N − 1]]T = Hk,mpk · bk[m]

=
1
N

WH
NΛk,mck · bk[m]

where Hk,m is the N × N right circular matrix with
[hk,m[0], hk,m[1] · · ·hk,m[L], 0 · · ·0]T being its first column
and superscript H denotes the Hermitian transposition. It is
easy to see that Hk,m = 1

N WH
NΛk,mWN , where WN is

the standard DFT matrix with its (m,n)th element equal to
e−j 2π

N (m−1)(n−1) and Λk,m is the diagonal matrix composed
of the N-point DFT of hk,m. The discrete-time model for
the received signal with K active users in the system can be
represented by

rm =
1
N

K∑
k=1

WH
NΛk,mck · bk[m] + wm,

where wm is a complex additive white Gaussian noise
(AWGN) vector with zero mean and covariance matrix
E[wmwH

m] = σ2I. Note that, for Hk,m to be a circular
matrix, the length of the cyclic prefix should be no less than
the channel order. More generally, the length of the cyclic
prefix is designed to absorb both the channel order as well as
the residual timing delay estimation errors to avoid ISI. Here,
we take the minimum value for NG, i.e. NG = L. In other
words, we do not consider asynchronous transmission delays.
Furthermore, we assume perfect channel knowledge in this
work.

C. Problem Formulation

In the presence of carrier frequency offset, the received
signal for user k needs to be modified by a phase shift as
rk(t)ej2πΔfkt, where Δfk is the CFO of user k. The matched
filter output for is therefore given by

1
T

∫ mTs+(g+1)T

mTs+gT

ψ(t−mTs − nT − lT )

× ψ(t−mTs − gT ) · ej2πΔfktdt

= ρk · ej 2π
N (m(NG+N)+ 1

2 +g)εk for g = n+ l, (3)

where εk = Δfk/(W/N) denotes the kth user’s normalized
CFO, which is a relative measure of the amount of CFO
in Hertz compared to the sub-carrier spacing W/N and is
assumed to be deterministic as well as time-invariant, and
ρk = sincπ( εk

N ), which is approximately equal to one with
a large number of sub-carriers. It is assumed that the absolute
value of the normalized CFO is no larger than one half of
the sub-carrier spacing, i.e. |εk| < 0.5. For a large number
of sub-carriers and the assumption |εk| < 0.5, we have scalar

ρk ≈ 1. The approximated result ej 2π
N (m(NG+N)+ 1

2 +g)εk in
(3) is a time-varying scalar reflecting the effect caused by the
CFO, which not only rotates the symbol constellation by a
different amount at different symbol timing block m, but also
ruins the orthogonality between sub-carriers.

The received signal vector rm of the MC-CDMA system
in the presence of CFO observed at the mth symbol block
after removing the cyclic prefix of a length equal to L can be
expressed by

rm =
1
N

K∑
k=1

Fk,mWH
NΛk,mck · bk[m] + wm, (4)

where the effect of CFO for the kth user is modeled by the
diagonal matrix

Fk,m = κk,m ·diag
{
1, ej2πεk/N , · · · , ej2π(N−1)εk/N

}
, (5)

where κk,m = ej 2π
N (m(NG+N)+ 1

2 )εk is the scale factor (which
is a function of timing index m). Apparently, the orthogonality
between sub-carriers has been ruined due to the presence of
Fk,m, i.e.

WNFk,mWH
N �= N · I,

where the resulting off-diagonal terms characterize the ICI
for all sub-carrier pairs. Therefore, before facilitating the
DFT operation in the receiver, this residual CFO needs to be
compensated. Without loss of generality, we assume the first
user to be the user of interest and its signal component can
be written as dm = Gm · fm, where

Gm = diag{ 1
N

WH
NΛ1,mc1 · sm}

is a diagonal matrix describing the system structure with sm =
b1[m] corresponding to the scalar transmitted symbol at the
mth symbol block, and

fm = κk,m ·
[
1, ej2πεk/N , · · · , ej2π(N−1)εk/N

]T

is the CFO vector consisting of the diagonal entries of F1,m.
The matrix Gm collects all the parameters other than CFO,
and is generally unknown to the receiver. The signal compo-
nents from all interfering users and the AWGN are modeled by
a colored Gaussian vector nm = 1

N

∑K
k=2 Fk,mWH

NΛk,mck ·
bk[m] + wm with covariance matrix

R = E
[
nmnH

m

]
.

Therefore, we have a generic received signal model for the
mth time interval

rm = Gm · fm + nm. (6)

It is clear from (5) that the CFO vector fm satisfies the
following dynamic evolution relation

fm = E · fm−1, (7)

where E = ej2π(1+NG/N)ε1I. This dynamic evolution plays an
important role in the derivation of the recursive EM algorithm
for updating fm.

In this work, rather than obtaining a direct inference to
ε1, we develop a recursive procedure to find an estimate
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for the CFO vector fm. In a practical scenario, system para-
meters, including CFO’s, channel impulse responses and the
interference-plus-noise vector correlation matrix, are generally
unknown to the receiver. For the sake of clarity and brevity of
the presentation, only the estimates for the CFO vector fm as
well as the interference-plus-noise vector correlation matrix R
are considered. In other words, along with the assumption of
synchronous transmission, we also assume perfect knowledge
of the channel impulse response here. Our objective is the
joint estimation of fm and correlation matrix R in a recursive
manner based on all received signals up to time m without
the aid of the training sequences. The maximum a posteriori
(MAP) symbol detection can also be achieved at each EM
iteration.

It is however worthwhile to emphasize that the estimation
of possibly time-varying channel impulse responses can be
incorporated in the iterative procedure using the expectation
conditional maximization (ECM) algorithm [22]. Performance
loss is expected due to possible phase ambiguity in the esti-
mation of channel coefficients [23]. Besides, the convergence
rate is likely to slow down with more unknown parameters
included in the ECM iterations [22]. On the other hand, when
considering timing synchronization errors, the received signal
with ISI under timing inaccuracy can still be modeled by the
generic representation in (6), which implies that the proposed
algorithm for the CFO vector update can work as well with
timing inaccuracy. Under such circumstances, system matrix
Gm needs be modified to encapsulate the effects of ISI,
channel impulse responses and timing errors [24, eq. (10)],
and should be updated using the ECM algorithm.

III. CONSTRAINED RECURSIVE ALGORITHM

In this section, we first outline the proposed recursive blind
algorithm for fm with full knowledge of the covariance matrix
R. Then, an approach to determine the Lagrange multiplier for
a quadratically constrained optimization problem is detailed.
Finally, we relax the assumption of knowing R, and consider
joint estimation of fm and R based on the ECM algorithm.

A. Recursive EM Formulation

Let ym = [rT
1 rT

2 · · · rT
m]T be all the received signals up

to time m and θm = [fT
1 fT

2 · · · fT
m]T . Then, assuming that

covariance matrix R is available, the updated inference f (i+1)
m|m

of fm based on ym at the (i+1)th iteration can be effectively
accomplished using the EM algorithm as stated below [16],
[17]:
E-step: Find

Cm(θm, θ
(i)
m|m) � Exm

[
log p (ym,xm; θm)

∣∣ym; θ(i)m|m
]
, (8)

M-step: Solve

f (i+1)
m|m = argmax

fm
Cm(θm, θ

(i)
m|m), (9)

where θ
(i)
m|m = [f (i)T

m|m, f
(c)T

m−1|m−1 · · · f (c)T

1|1 ]T with f (c)
l|l rep-

resenting the converged estimate of fl based on yl, p(·; θ)
and Exm [·; θ] are the probability density function (pdf) and
the expectation operator averaging over xm, respectively,
parameterized by deterministic θ, xm is the vector of missing

data which is essential to characterize the incomplete-data
likelihood function p(ym; θm) and is averaged in the E-
step. The iterative procedure of the EM algorithm guarantees
convergence. With appropriate initializations, the EM iteration
will converge to the ML estimate [22]. The choice of missing
data is not unique in general. For the blind scenario considered
in this research, xm is chosen to be the transmitted signals
up to time m; i.e. xm = [s1 · · · sm]T . In contrast, in the
training mode, xm belongs to the empty set. Consequently,
in the training mode, we can remove the expectation in (8).

The complete-data, composed by the received data vector,
ym, and the unknown missing data vector, xm, the log
likelihood function of θm in (8) can be computed as

log p (ym,xm; θm) = log p
(
ym

∣∣xm; θm

)
+ log p (xm)

where log p (xm) does not depend on θm and can be discarded
in the EM iteration. Therefore, we can equivalently state the
EM iterative procedure in the following two steps:
E-step: Find

Qm(θm, θ
(i)
m|m) � Exm

[
log p

(
ym

∣∣xm; θm

) ∣∣ym; θ(i)m|m
]
,

(10)
M-step: Solve

f (i+1)
m|m = argmax

fm
Qm(θm, θ

(i)
m|m). (11)

Having reached the converged estimate f (c)
m|m, the final esti-

mate of the CFO vector at the mth symbol block becomes

f̂m|m = arg max
||fm||2=N

Qm(θm, θ
(c)
m|m), (12)

where the constant 2-norm constraint is imposed due to the
particular structure of the CFO vector; namely, each element
of fm lies on the unit circle in the complex domain. This
quadratic constraint makes the CFO vector estimate more
robust to the error of the estimated covariance matrix of the
interference-plus-noise vector [25].

Although it is feasible in finding the newly update of (11)
and the final estimate (12) at each symbol block interval m
with batch processing, a recursive structure is more desirable
for lower computational cost and real time implementations.
By applying the Taylor series expansion to Qm(θm, θ

(i)
m|m) at

f (i)
m|m, we can derive a recursive relation for the newly update

f (i+1)
m|m in (11) as [16, eq. (3.20)], [26, theorem 2]

f (i+1)
m|m = f (i)

m|m −
⎛
⎝∂2Qm(θm, θ

(i)
m|m)

∂f2
m

∣∣∣∣∣
fm=f

(i)
m|m

⎞
⎠

−1

×
⎛
⎝∂Qm(θm, θ

(i)
m|m)

∂f∗m

∣∣∣∣∣
fm=f

(i)
m|m

⎞
⎠ , (13)

where the partial derivative relative to complex variable z is
defined as ∂

∂z � 1
2

(
∂

∂�(z) − j ∂
∂�(z)

)
with �(z) and �(z)

representing the real and the imaginary parts of z, respec-
tively, and the 2nd order derivative is defined as ∂2/∂f2

m �
∂2/∂f∗m∂f

T
m with the superscript * denoting the complex

conjugate [17]. Note that (13) is an equality instead of an
approximation since Qm(θm, θ

(i)
m|m) is quadratic with respect

to fm.
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B. Blind Recursive EM Algorithm

We describe the procedure to obtain the final estimate in
(12) and the recursive update in (13) in this subsection. We
focus on the development of the recursive algorithm without
the aid of training symbols. The training data based approach
can be straightforwardly deduced by removing the expectation
operator in (10) since the set of missing data is empty. Let

Pm �
∂2Qm(θm, θ

(i)
m|m)

∂f2
m

∣∣∣∣∣
fm=f

(i)
m|m

,

where the evaluation at fm = f (i)
m|m actually has no effect on

the result of the matrix Pm due to the quadratic structure of
Qm(θm, θ

(i)
m|m) with respect to fm. It is shown in the appendix

that Pm has the following recursive structure

Pm = Pm−1 − GH
mR−1Gm. (14)

Then, carrying out the derivatives in (13) yields

f
(i+1)

m|m = f
(i)

m|m −P−1
m ·Esm

�
GH

mR−1
�
rm −Gmf

(i)

m|m
���rm; f

(i)

m|m
�
,

(15)

which is of the standard prediction and correction form. The
above recursion is initialized by f (0)

m|m, which is the maximum
likelihood prediction of fm based on ym−1, the received signal
vector up to time m− 1. It can be shown from the dynamic
evolution given in (7) that

f (0)
m|m = E · f (c)

m−1|m−1, (16)

where transition matrix E is generally unknown to the receiver
and should be estimated separately. The estimate of E, or
equivalently the estimate of ej2π(1+L/N)ε1 , at the mth time
instance can be obtained according to the previously updated
estimate f (c)

m−1|m−1 through all its elements, as will be detailed
later in subsection III-E.

Having reached the converged estimate f (c)
m|m during the mth

symbol block time interval, we employ the constrained opti-
mization in (12) to find the final estimate. With a replacement
of Qm(θm, θ

(i)
m|m) in (13) by

Jm(λm, fm) = Qm(θm, θ
(c)
m|m) + λm(||fm||2 −N), (17)

which is the cost function of the constrained optimization
problem using the Lagrangian multiplier technique and λm is
the Lagrange multiplier at the mth symbol block time interval,
we have the following prediction-correction form

f̂m|m = f (c)
m|m −

(
Pm + λmI

)−1

(18)

×
(
Esm [GH

mR−1
(
rm − Gmf (c)

m|m
)∣∣rm; f (c)

m|m] + λmf (c)
m|m

)
,

as in (15). After some algebraic manipulations, (18) is reduced
to

f̂m|m =
(
Pm + λmI

)−1

·
(
Pm−1f

(c)
m|m − Esm [GH

mR−1rm

∣∣rm; f (c)
m|m]

)
.(19)

Note that, through the manipulations from (18) to (19), the
Lagrange multiplier λm is contained only in the inverse in

(19). This rearrangement is particularly useful in determining
the Lagrange multiplier, as will be detailed in the next sub-
section. We relegate the derivation of (19) to the appendix.

C. Lagrange Multiplier

We discuss the determination of the Lagrange multiplier for
the constrained optimization in (12) for each symbol block
time interval in this subsection. More specifically, we need to
determine the Lagrange multiplier λm in (19) in order to reach
the final estimate f̂m|m that satisfies the constraint ||̂fm|m||2 =
N .

It is clear from (14) that Pm is Hermitian. Thus, it can be
decomposed as

Pm = UmΓmUH
m, (20)

where Um is an unitary matrix consisting of eigenvectors of
Pm and Γm = diag(γm,1 · · ·γm,N ) with γm,1 ≤ · · · ≤ γm,N

being the corresponding eigenvalues. The Lagrange multiplier
λm can be determined as a solution to the equation ||f̂m|m||2 =
N . Substituting (20) into (19) and taking the square of its norm
gives

g(λ) �
∣∣∣∣∣∣ (Γm + λI)−1 qm

∣∣∣∣∣∣2 =
N∑

l=1

|qm,l|2
(λ+ γm,l)

2 , (21)

where qm = UH
m

(
Pm−1f

(c)
m|m−Esm

[
GH

mR−1rm

∣∣rm; f (c)
m|m

])
with qm,l being its lth element. It was shown in [27] that
the solution to the Lagrange multiplier of the constrained
optimization problem in least squares formulation is equal to
the largest real root of g(λ) = N , and can be resorted to
root-finding algorithms for its solution. Here, we employ the
Newton method and derive the upper and lower bounds for this
optimal root. The obtained upper and lower bounds provide
insights into the determination of a good initial guess for the
Newton method.

Observing the relation in (21), it is clear that g(λ) is
monotonically decreasing in (−γm,1,∞) since g′(λ) < 0 in
this interval with g(−γm,1) → ∞ and g(∞) → 0. Therefore,
there exists an unique solution λ̄ in this interval such that
g(λ̄) = N . Apparently, this is the largest real root of g(λ) =
N and is the solution to the Lagrange multiplier, which may
take the form

λ̄ = −γm,1 + 
,
where 
 is a positive real number. Replacing γm,l in (21) by
γm,1 and γm,N , we can obtain the following upper and lower
bounds

max
{ ||qm||√

N
− (γm,N − γm,1), 0

}
≤ 
 ≤ ||qm||√

N
.

In the above interval lies a good initial guess for 
 and, hence,
λ̄. The upper bound is not a good candidate of the initial
guess λ1, since we have λ1 = −γm,1 + ||qm||/√N at this
point, where g(λ1) has a mild slope, which is likely to result
in a newly update smaller than −γm,1 and converge to an
undesired root. Therefore, it is advised to initialize the Newton
algorithm with the lower bound if it is not zero. Otherwise,
the Newton algorithm is initialized by

λ1 = −γm,1 +
||qm||
2p
√
N



CHIEN and KUO: BLIND RECURSIVE TRACKING OF CARRIER FREQUENCY OFFSET (CFO) VECTOR IN MC-CDMA SYSTEMS 1251

with a proper choice of positive integer p to set the initial
guess between the desired root and −γm,1, where the slope
of g(λ) is sharper.

D. Interference-plus-Noise Correlation Matrix

In Sec. III-A, it was assumed that correlation matrix R of
the interference-plus-noise vector nm is known in the devel-
opment of the recursive algorithm for updating fm. However,
this is in general not true in practice. Here, we will show
that R can also be jointly estimated in a recursive manner
based on the ECM algorithm, which is a generalized EM algo-
rithm aiming at finding the ML estimates of multidimensional
parameters that do not have a simultaneous closed form to
maximize the obtained cost function in the E-step of the EM
algorithm [22], [28].

The ECM algorithm states that, conditioned on the previous
estimate of one parameter, it is much easier to obtain a
closed form representation of the update for another parameter.
Likewise, conditioned on this new update, we can go back
to update the original parameter. This procedure yields an
analytically tractable way to iteratively update all parameters
one by one and guarantees an increase of the likelihood as the
iteration goes on.

For the problem under consideration, the set of parameters
contains R and fm, and the ECM algorithm is applicable for
their joint estimation. More specifically, conditioned on the ith
update of R(i)

|m and f (i)
m|m, the new update f (i+1)

m|m for the CFO
vector can be derived using (13) with associated R’s being
replaced by R(i)

|m. Then, having obtained f (i+1)
m|m , the update of

the correlation matrix in a sequential form is given by

R(i+1)
|m =

(
1 − 1

m

)
R(c)

|m−1

+
1
m

Esm

[
n(i)
|mn(i)H

|m
∣∣∣rm; f (i)

m|m,R
(i)
|m

]
, (22)

where R(c)
|m−1 is the converged estimate of R based on all re-

ceived signals up to time m−1 and n(i+1)
|m = rm−Gmf (i+1)

m|m .
This recursive estimate can be initialized either by a warm-up
period of length Np, or by an identity matrix multiplied with
a small scalar. With the recursive and iterative update for the
correlation matrix R in (22), the calculation of matrix Pm in
(14) should be modified as

P(i+1)
m = P(c)

m−1 − GH
mR(i+1)

|m
−1

Gm. (23)

A final remark can be made that, by using the matrix inversion
lemma repeatedly, the inversion of R(i+1)

|m only involves a pre-
viously calculated matrix inverse and scalar inversions, which
greatly reduces the complexity of the proposed algorithm. The
computational cost mostly comes from calculating the inverse
of P(i+1)

m and the eigenvalue decomposition of P(c)
m required

at every time instance.

E. Symbol Detection

After arriving at the convergence stage with a final estimated
parameter set f (c)

m|m, the maximum a posteriori probability

... ...

......

........

rm –1

f m –1 m –1
(0)

rm

f m –1 m –1
(1)

fm –1 m –1
(c)

fm –1

f m –1

sm –1

m –1

R m –1
(0)

P m –1
(0) P m

(0)

R m
(0)

f m m
(0)

f m m
(1)

f m m
(c)

fm

fm

sm

m

^

^

^

^

^

^

Fig. 1. The update order of estimates in the proposed recursive algorithm
at each symbol block m.

(MAP) detection for sm has already been realized in the E-
step via [29]

ŝm = arg max
sm∈A

P [sm|rm; f̂ (c)
m|m,R

(c)
|m].

However, it should be noted that the EM algorithm does not
guarantee convergence to the global optimum. This effect may
lead to phase ambiguity in the CFO vector estimate in the
complex domain and results in a total erroneous decision for
symbol detection.

One way to resolve this problem is to employ the differential
encoding/decoding scheme at the cost of 3 dB performance
loss. Alternatively, thanks to the particular structure of the
CFO vector, the phase ambiguity can be resolved without
invoking differential detection, observing that the CFO vector
fm is actually a geometric sequence with a common factor
ej 2π

N ε at every symbol block m. For N ≥ 2, this common
factor can be extracted by comparing adjacent entries of the
updated CFO vector, regardless of the presence of the phase
ambiguity. Therefore, the scalar CFO can be estimated via

ε̂|m =
1

N − 1

N−1∑
l=1

N

2π
arg

[
(f̂m|m(l))∗ · f̂m|m(l + 1)

]
, (24)

from which the CFO vector can be reconstructed without the
phase ambiguity, and the transition matrix can be inferred, too.
Then, the MAP symbol detection can be realized using

ŝm = arg max
sm∈A

P [sm|rm; f̂m,R
(c)
|m], (25)

where f̂m is the reconstructed CFO vector.
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Fig. 2. The tracking behavior of the real and the imaginary parts of the first
element of f

(1)
m|m in the training mode.
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Fig. 3. The normalized CFO vector estimates as a function of tracking time
in the training mode.

F. Summary of the Algorithm

The proposed recursive algorithm is summarized below and
the order of estimates update is depicted in Fig. 1.

1) Initialize f (0)
m|m using (16) at the beginning of each mth

symbol block for m > 1.
2) Iteratively update R(i+1)

|m , P(i+1)
m , and f (i+1)

m|m using (22),
(23), and (15), respectively.

3) Impose the quadratic constraint and find f̂m|m in (19).
4) Calculate ε̂|m using (24) and reconstruct the CFO vector

f̂m using ε̂|m.
5) Perform MAP symbol detection in (25).

IV. SIMULATION RESULTS

In this section, we verify the effectiveness of the proposed
recursive algorithm for the CFO vector estimation in the MC-
CDMA systems with computer simulations. All numerical ex-
periments were conducted under the environment of the BPSK
transmission, the equal power assumption for all users, and a

0 50 100 150 200 250 300 350 400 450 500
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100

101

102

Time (m)

M
S

E

No constraint, Np=100  
With constraint, Np=100
No constraint, Np=10   
With constraint, Np=10 

Fig. 4. The MSE of the CFO vector estimate as a function of time using the
recursive EM algorithm in the training mode with and without the quadratic
constraint.

frequency-selective fading channel model with order L = 5.
Each user’s signature sequence was randomly generated, with
a total K = 5 users in the system. The number of sub-
carriers and the desired user’s CFO were set to N = 8 and
ε1 = 0.1, respectively. All simulation tests adopted a common
set of parameters, including the channel state information,
CFO and thus the covariance matrix of MAI, all assuming
time-invariant. The Monte Carlo simulation technique was
employed to plot all simulation curves averaged over 250
realizations.

First, we demonstrate the effectiveness of the proposed
algorithm in the training mode. Fig. 2 shows the tracking
behavior of the first element of the estimated CFO vector. It
is observed that the CFO vector is successfully tracked as the
number of received signals grows. And, the behavior of the
CFO estimate itself is shown in Fig. 3, where the estimate
of the CFO itself is obtained via (24). In the presence of
MAI, we see that the algorithm requires a larger number of
samples for establishing the statistics of the interference-plus-
noise correlation matrix until a reliable estimation of the CFO
can be reached.

The effect of imposing the quadratic constraint in the
training mode with K = 5 and Eb/No = 0 dB is presented
in Fig. 4. For the two curves with a warm-up period of
Np = 10, the number of data samples is not sufficient
in the beginning stage to support a reliable estimate for
R and the recursive algorithm with the quadratic constraint
provides a more accurate estimate. This indicates that the
proposed algorithm is more robust to imprecise estimation of
the correlation matrix. A similar trend is observed in the case
when the warm-up period is 100. However, as the number of
samples grows, this discrepancy narrows down.

Next, we show the performance of the algorithm in the blind
scenario. Fig. 5 demonstrates the mean-squared error (MSE)
between the updated and true CFO vectors with respect to the
symbol block time index m in the blind case. It is observed
that there appears multiple high MSE time instances in the
figure. This is due to possible erroneous symbol detection at
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Fig. 5. The MSE of the estimate f̂m|m as a function of time for different
Eb/No in the blind scenario.
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Fig. 6. The evolution of the BEP performance of the MC-CDMA system in
the blind scenario with ε1 = 0.1, N = 8, K = 5 and L = 5.

those time instances occurring in any of the 250 realizations.
In other words, a wrong decision of a symbol results in a
common sign change to all the components of the CFO vector
estimate, which in turn affects the accuracy of the estimate of
it. Nevertheless, this effect on the estimate of CFO vector
doesn’t influence the estimate of the CFO itself, because the
CFO estimate is obtained by comparing adjacent components
of the updated CFO vector and the phase ambiguity can be
resolved in the correlation operation.

The evolution of the BEP performance of the system using
the proposed joint blind recursive estimation and detection
algorithm is presented in Fig. 6. When no CFO estimation
and compensation are employed, the system performance is
too bad to be useful. Using the proposed algorithm, we
can see from the figure that the BEP performance improves
significantly even with only 1 iteration. After 3 iterations, the
BEP performance can be recovered within a comparable level
to that of an MC-CDMA system with perfect knowledge of
CFO.
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10−2

10−1

100

E
b
/N

o

B
E

P

Tureli−Liu, block size 200
Li−Liu, block size 50     
Li−Liu, block size 200    
Li−Liu, block size 500    
Proposed, 3 iter.         

Fig. 7. The BEP performance of the MC-CDMA system in the blind scenario
employing the proposed recursive algorithm, Li-Liu’s scheme [9] and Toreli-
Liu’s scheme [10] with ε1 = 0.1, N = 8, K = 5, and L = 5.

Next, we compare the BEP performance for MC-CDMA
systems employing the proposed recursive algorithm, Tureli-
Liu’s block-based scheme [10] and Li-Liu’s block subspace
scheme [9] in Fig. 7, where the number of samples M
simulated at each point is at least 104 for each realization.
We assume that the channel is known to the receiver in
all schemes for fair comparison. Tureli-Liu’s block-based
scheme fails to provide an accurate CFO estimate due to its
unrealistic assumption on the orthogonality between channel
impulse responses of different users. Consequently, we see
an unacceptable level of BEP performance in Fig. 7. Li-Liu’s
block subspace scheme with the minimum mean squared-error
(MMSE) detection1 has performance comparable to that of the
proposed recursive algorithm when the number of samples B
in each observation block is 500, as seen in Fig. 7. When
processing delay and complexity are not of primary concern,
increasing the block size in Li-Liu’s scheme will improve the
system performance. However, there is an implicit assumption
in this scheme. That is, the channel impulse responses of
all users have to be static for the entire observation block.
This requirement can be relaxed in our proposed algorithm.
In addition, the computational cost required by the singular
value decomposition (SVD) in Li-Liu’s scheme with N = 8
and block size B = 500 is about 4N2B+13B3 ≈ 1.625×109

floating point operations (flops) using the R-SVD algorithm
[30, p.254]. In contrast, the eigenvalue decomposition in the
proposed algorithm using B samples demands about B(4N3+
13N3) ≈ 4.352 × 106 flops. It is clear that the size of
observation samples significantly impedes the efficiency of Li-
Liu’s scheme in terms of detection delay and computational
complexity.

On the other hand, the proposed recursive algorithm does
need a sufficient number of samples to get statistics for ac-
curate estimation for both the CFO vector and the correlation

1Due to the multiplication factors by the block size in the phase terms in
[9, eq. (26)], differential MMSE detection is employed in the simulation to
avoid magnifying the compensated residual phase.
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matrix. Fig. 8 shows that, when the total number of samples
M simulated in each realization is 200 (as opposed to 104

samples simulated in Fig. 7), the proposed recursive algorithm
does not perform as well as Li-Liu’s scheme with a block size
of 200 symbols. Nevertheless, we see a trend of performance
improvement in the proposed algorithm as the number of the
received samples increases. For practical applications such as
the IEEE 802.16 standard, the time duration for one symbol
block is 100.8 μs. It takes 1.008s to collect 104 samples,
by which a reasonably acceptable BEP performance can be
achieved as shown in Fig. 8.

V. CONCLUSION

A blind recursive CFO estimation and tracking technique
in an MC-CDMA system was proposed in this research. We
treated the problem from a new viewpoint so that techniques
from linear estimation theory can be used. A recursive relation
for the CFO vector was developed based on the EM algorithm
with a quadratic constraint. The recursive update for the
interference-plus-noise correlation matrix was also derived. It
was shown by computer simulation that the BEP of an MC-
CDMA system without CFO information can be restored to a
level comparable to that with perfect CFO knowledge using
the proposed CFO estimation and tracking algorithm.

APPENDIX

In the appendix, we provide the derivation of (14) and (19).
First, we derive the result in (14). From (10) and the fact
that each received sample rl, 1 ≤ l ≤ m, is independent
with each other at different time instants, the cost function
Qm(θm, θ

(i)
m|m) can be decomposed as

Qm(θm, θ
(i)
m|m) =

m−1∑
l=1

Esl

[
log p (rl | sl; θl)

∣∣∣ym; θ(i)m|m
]

+ Esm

[
log p(rm | sm; fm)

∣∣∣ym; θ(i)m|m
]
.(26)

The first expectation on the right hand side of (26) can be
furthermore carried out as

Esl

[
log p(rl | sl; fl)

∣∣∣ym; θ(i)m|m
]

=
|A|∑
n=1

p(sl = ξn | ym; θ(i)m|m) log p(rl | sl = ξn; fl)

=
|A|∑
n=1

p(ym | sl = ξn; θ(i)m|m)p(sl = ξn)

p(ym; θ(i)m|m)
log p(rl | sl = ξn; fl)

=
|A|∑
n=1

p(ym−1 | sl = ξn; θ(c)m−1|m−1)p(rm; f (i)
m|m)p(sl = ξn)

p(ym−1; θ
(c)
m−1|m−1)p(rm; f (i)

m|m)

× log p(rl | sl = ξn; fl)
(
since l �= m

)

= Esl

[
log p(rl | sl; fl)

∣∣∣ym−1; θ
(c)
m−1|m−1

]

For the second expectation in (26), the condition on ym can be
reduced to rm. Therefore, we can represent the decomposition
in (26) as

Qm(θm, θ
(i)
m|m) = Qm−1(θm−1, θ

(c)
m−1|m−1)

+ Esm

[
log p(rm | sm; fm)

∣∣∣rm; θ(i)m|m
]
.

With the definition of Pm, we take the 2nd order derivative
of the above and obtain

Pm =
(
∂fH

m−1

∂f∗m

)
Pm−1

(
∂fm−1

∂fT
m

)

− Esm

[
GH

mR−1Gm|rm; f (i)
m|m

]
,

where the expectation can be further removed since sm has
been cancelled out in GmR−1Gm. Also, from the dynamic
evolution in (7), it follows that ∂fm−1/∂fT

m = EH and
∂fH

m−1/∂f
∗
m = E, both of which are equivalent to mutually

conjugate complex scalars and can also be cleared. Thus, we
prove the relationship in (14). Note that Pm and Pm−1 do
not depend on any specific realizations of fm, because the
cost function Qm(θm, θ

(i)
m|m) and Qm−1(θm−1, θ

(c)
m−1|m−1)

are quadratic with respect to fm and fm−1, respectively.
Next, we show the derivation of (19). It can be easily shown

that

f̂m|m = f (c)
m|m −

(
Pm + λmI

)−1

(27)

×
(
Esm [GH

mR−1
(
rm − Gmf (c)

m|m
)∣∣rm; f (c)

m|m] + λmf (c)
m|m

)
,

which is the result from replacing Qm(θm, θ
(i)
m|m) in (13)

by Jm(θm, λm). Gathering all factors associated with f (c)
m|m

yields(
I− (

Pm + λmI
)−1( − GmR−1Gm + λmI

))
f (c)
m|m

=
(
I − (

Pm + λmI
)−1(

Pm − Pm−1 + λmI
))

f (c)
m|m

=
(
Pm + λmI

)−1

Pm−1f
(c)
m|m, (28)

where the relation in (14) is used in the derivation. Then,
plugging (28) into (27), we obtain the result in (19).
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