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Abstract—This paper investigates computationally efficient sub-
optimal dynamic code assignment (DCA) schemes with call ad-
mission control (CAC) for orthogonal variable spreading factor
code-division multiple-access systems. We examine two different
approaches. The first approach reduces the complexity of the
DCA scheme by partitioning the total resource (either capacity or
service class) into several mutually exclusive subsets and assigns
each subset of resource to a group of users in proportion to
the corresponding traffic load. The second approach reduces the
complexity of the optimal CAC scheme with the Markov decision
process over an infinite time horizon by a suboptimal CAC policy,
which is designed by observing the behavior of system dynamics
over only two consecutive stages upon the arrival of a call. It is
demonstrated by numerical evaluation that the proposed schemes
achieve an average data throughput close to that of the optimal
DCA-CAC performance while demanding a much lower compu-
tational complexity in their design and implementation.

Index Terms—Call admission control (CAC), code-division mul-
tiple access (CDMA), dynamic code assignment (DCA), Markov
decision process (MDP), orthogonal variable spreading factor
(OVSF).

I. INTRODUCTION

O RTHOGONAL variable spreading factor (OVSF) codes
are employed in wideband code-division multiple-access

(CDMA) systems to support the different data rates of mul-
timedia services [1], [2]. In OVSF-CDMA systems, a set of
orthogonal codes with different lengths is generated using
different spreading factors, where a higher data rate can be
achieved by using a lower spreading factor. How to effectively
and dynamically assign OVSF codes to users to maximize the
throughput of the system or reduce the blocking probability of
users is critical to the successful deployment of OVSF-CDMA
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systems. Usually, the code assignment scheme is integrated
with a call admission control (CAC) policy to lead to a complete
solution. However, to determine the optimal code assignment
scheme with CAC is computationally expensive. Although it
can serve as a performance benchmark, the optimal scheme
is difficult to apply in practical applications. Computationally
efficient suboptimal dynamic code assignment (DCA) schemes
with CAC are the main focus of this paper.

In recent years, several construction methods for the chan-
nelization codes have been discussed in connection with the
development of CDMA-based mobile communication systems
[3]–[6]. Their research focused on the structured design of an
OVSF code tree [3]–[5] and the implementation of an efficient
code reassignment scheme [5]. In [6], Sekine et al. proposed an
algorithm to reduce the chances of code blocking. A joint de-
sign of code assignment and error control coding was proposed
by Li and Yum [7]. They tried to admit more users and achieve
higher throughput by combining code allocation and error con-
trol coding in an interference-limited situation. A DCA scheme
with a greedy CAC policy for OVSF-CDMA systems was
proposed by Minn and Siu [8]. In their scheme, a call request is
never rejected as long as the system can accommodate this new
call request in addition to calls already in progress through code
reassignment. To achieve the maximum average throughput of
DCA, an optimal CAC policy was proposed by Park and Lee [9]
using the Markov decision process (MDP). However, the opti-
mal CAC policy demands a high computational complexity in
its design and implementation due to a large number of states
associated with the MDP model. With a linearly increasing
capacity, the number of states and the resultant computational
complexity and memory requirement exponentially increase.
Although optimal fixed code assignment (FCA) schemes were
proposed in [9] as an alternative to reduce the complexity,
its performance notably degrades compared to that of optimal
DCA schemes. Generally speaking, the lack of scalability
and the difficulty of online implementation hinder the deploy-
ment of optimal solutions in practical OVSF-CDMA systems.
Here, we investigate suboptimal DCA-CAC schemes with high
throughput, which is close to the optimal solution, while the
complexity of their implementation is still manageable in real-
world OVSF-CDMA systems. In particular, we present two
approaches to deal with this problem.

The first approach is motivated by the fact that the com-
putational complexity associated with the optimal DCA is
directly proportional to the size of the corresponding MDP that

0018-9545/$25.00 © 2008 IEEE



PARK et al.: COMPUTATIONALLY EFFICIENT DCA-CAC FOR OVSF-CDMA SYSTEMS 287

exponentially grows with system capacity. Thus, we propose
partitioning-based DCA schemes by dividing the total resource
(capacity or service class) into several mutually exclusive
subsets of resource, and the calls that belong to each group
exclusively share the partial resource through the optimal DCA-
CAC. By means of resource partitioning and partial resource
sharing, we can significantly reduce the size of the MDP
and the associated computational complexity, thus achieving
good scalability of design and implementation. At the same
time, the optimal CAC policy can be applied to each group
to achieve good performance with little degradation in system
throughput.

The second approach is based on the following two obser-
vations about the optimal CAC policy. First, the impact of a
CAC decision made upon the arrival of a call on the resultant
throughput rapidly decreases as time evolves. Second, the de-
liberate rejection of a call request in the presence of sufficient
resource for better long-term throughput only occurs in a few
states of the MDP. As a result, we develop a suboptimal CAC
scheme that considers the throughput performance with respect
to a few stages ahead (instead of the infinite time horizon). For
example, when a new call request arrives, we may evaluate
and compare the expected throughput based on the system
dynamics of two consecutive stages under the accept decision
and the reject decision and accordingly choose the decision
that results in a higher throughput. Due to the above two
observations, the long-term average throughput of the proposed
suboptimal CAC policy is expected to be close to that of the
optimal CAC policy. The proposed suboptimal CAC policy can
be implemented and operated online as the CAC decision is
instantaneously made upon the arrival of a call request.

The rest of this paper is organized as follows: In Section II,
the system model is presented, the optimal DCA and FCA
code assignment schemes are briefly reviewed, and their perfor-
mance and complexity are analyzed. In Section III, two hybrid
DCA schemes (i.e., capacity-partitioning and class-partitioning
schemes) are proposed, and their complexity is analyzed. In
Section IV, the design and implementation of a suboptimal
CAC policy is discussed. The numerical results are presented
in Section V, where we compare the throughput performance
and complexity of the proposed hybrid DCA and suboptimal
CAC schemes with that of the optimal FCA and DCA. Con-
cluding remarks and future research directions are given in
Section VI.

II. OPTIMAL CODE ASSIGNMENT SCHEMES

A. System Model

Let us consider M classes of calls arriving according to
independent Poisson processes. Calls of class-k requesting
the transmission rate of 2kR arrive at the rate of λk, k =
0, 1, 2, . . . ,M − 1, where R is the basic data transmission rate
(or the codes with the highest spreading factor in the OVSF
code tree), and k indicates the service class that corresponds to
the transmission rate of 2kR. The call duration for all classes is
assumed to be exponentially distributed with mean 1/µ. The
load of traffic that requests the transmission rate of 2kR is

Fig. 1. DCA for Cmax = 32.

defined as ρk
∆= λk/µ. The capacity of a given OVSF code tree

Cmax is defined in the number of the leaf node code with rate R.

B. DCA With Optimal CAC Policy

The greedy call admission policy of DCA that was intro-
duced in [8] may not achieve the maximal data throughput in
the long run. For this reason, we considered a CAC that jointly
works with the code reassignment scheme used in DCA so
that the average throughput of the system is maximized. Fig. 1
illustrates the DCA for four service classes supporting the rates
of {R, 2R, 4R, 8R} and Cmax = 32. From this figure, we see
that the total resource is completely shared by all classes of
users in DCA.

We follow the same MDP formulation used in [9] to model
the time dynamics of DCA with CAC. In the system model
described in Section II-A, an action indicating accept or reject is
introduced upon each arrival of call requests in the MDP model
[10], [11].

The state space of the MDP, which is denoted by ID, is
the union of two sets, i.e., the set of states indicating that the
epoch begins with an arrival and the set of states indicating that
the epoch begins with a departure. Letting the state with the
arrival of a j-class call and the state initiated by the departure
be denoted by (k, j) and (k), respectively, then the extended
state space ID has the form of

ID(Cmax) =

{
(k, j)

∣∣∣∣∣
M−1∑
i=0

2iki ≤ Cmax, 0 ≤ j ≤ (M − 1)

}

∪
{

(k)

∣∣∣∣∣
M−1∑
i=0

2iki ≤ Cmax

}
(1)

where k
∆= (k0, k1, . . . , kM−1), with kl denoting the number of

class-l calls in progress.
The total throughput of the system at each time t’s epoch

Ωe(x(t), u(t)) can be described by the combination of the MDP
state x(t) and the action u(t) taken at the beginning of time t’s
epoch. To be more specific, u(t) is defined as follows: For time
t such that x(t) = (k, j) ∈ ID(Cmax), u(t) = a if the decision
made at the beginning of the epoch is accept, and u(t) = r if
the decision made at the beginning of the epoch is reject. For
time t such that x(t) = (k) ∈ ID(Cmax) at the beginning of its
epoch, no decision needs to be made, and thus, u(t) is null.

When action u(t) is chosen at time t(0 ≤ t < ∞), the aver-
age throughput TD(u) is the total data rate averaged over the
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entire time horizon, i.e.,

TD(u) = lim
T→∞

1
T

T∫
0

Ωe (x(t), u(t)) dt (2)

where

Ωe (x(t), u(t))

=




[(k+ej) · (1, 2, 4, 8)]×R, x(t)=(k, j), u(t)=a
[k · (1, 2, 4, 8)]×R, x(t)=(k, j), u(t)=r
[k · (1, 2, 4, 8)]×R, x(t)=(k), u(t) = Null

(3)

where · denotes the dot product and ej
∆= (e0, e1, . . ., eM−1) is

a unit vector indexed by service class j ∈ {0, 1, . . . ,M − 1},
for which eh = 1 if h = j; otherwise, eh = 0.

The optimal DCA-CAC scheme can be obtained through
linear programming. The objective is to find an action u(t) at
time t that maximizes the average throughput of the system in
the long run. The optimal DCA will be used as a building block
in the proposed hybrid DCA algorithm.

We examine the computational complexity based on the
size of the state space of the MDP model. The number of
states in the corresponding MDP model exponentially increases
with the capacity C (= 2i, i ≥ 0) of a given OVSF code tree.
Let S be the set of all service classes supported by system
capacity C. Then, we have S = {s1, s2, . . . , sL}, where si ∈
{0, 1, . . . , log2 C − 1}. With S and C of a given OVSF code
tree, we can approximate the number of states |ID| of the
corresponding MDP by evaluating the volume under the plane
formed by (Cs1 , Cs2 , . . . , CsL

) in the L-dimensional Cartesian
coordinate, where Csi

is the total number of available OVSF
codes in class si. Considering the action set incorporated into
the MDP formulation, we can approximate the actual number
of linear equations Λ(S,C) required to solve the MDP using
the linear programming solution method as

Λ(S,C)= (no. of states w/o arrival)+(no. of states w/ arrival)

= (no. of states w/o arrival) + (no. of classes)

× (no. of actions) × (no. of states w/o arrival)

∼ 1
L

Cs1Cs2 . . . CsL+ 2L · 1
L

Cs1Cs2 . . . CsL. (4)

For example, Λ({0, 1, 2, 3}, 16) ∼ 2304, and Λ({0, 2}, 8) ∼
40. The linear programming that corresponds to the MDP
with the number of variables Λ requires O(Λ) iterations and
a total computational complexity of O(Λ3) when the simplex
algorithm is used to find an optimal solution [12]. Therefore,
it is reasonable to roughly view Λ(S,C)3 as the computational
complexity associated with DCA-CAC. From the implementa-
tion viewpoint, the number of states determines the size of the
table that holds all state–action pairs.

C. FCA With Fixed Set Partitioning

From the above analysis, the complexity associated with
the optimal DCA-CAC scheme exponentially increases as the

TABLE I
NUMERICAL EVALUATION OF Θ(M, Cmax)

Fig. 2. FCA with fixed set partitioning, partition number M = 4, and
maximum capacity Cmax = 32.

depth of the OVSF code tree becomes larger. To mitigate its
complexity, we proposed an alternative approach of FCA to-
gether with fixed set partitioning in [9]. This scheme partitions
the whole set of OVSF codes into mutually exclusive groups
of codes and uniquely assigns a group to each service class.
The number of codes for each class is fixed in this way, and
as a result, code reassignment can be avoided. To make its
throughput comparable with that of DCA, we also determined
the optimal partition of codes such that the average throughput
of the system is maximized.

For the system model described in Section II-A, we use Gk

to denote the total number of codes in a group that supports
the data rate of class k. Each group of codes is uniquely
assigned to one of the service classes. Then, there exists a
finite number of code partitioning, which is represented by

G
∆= (G0, G1, . . . , GM−1), that satisfies the maximum capac-

ity constraint G0 + 2G1 + 4G2 + · · · + 2M−1GM−1 = Cmax.
The number of all possible partitions Θ(M,Cmax) can be
evaluated by

Θ(M,Cmax) =

∣∣∣∣∣
{

(k)

∣∣∣∣∣
M−1∑
i=0

2iki = Cmax

}∣∣∣∣∣ . (5)

Table I shows the numerical evaluation of Θ(M,Cmax)
with different M and Cmax. Note that Θ(M,Cmax) is
obviously much less than Λ(S,Cmax). Based on the
statistics of incoming traffic, we find the optimal partition
G∗ = (G∗

0, G
∗
1, . . . , G

∗
M−1) that maximizes the average

throughput. Fig. 2 illustrates an FCA for four service classes
(M = 4) that support the rates of {R, 2R, 4R, 8R} and
Cmax = 32. From the figure, we see that FCA completely
partitions the total resource among each class of users.

The average throughput TF (G) of the entire system with a
fixed set partition G = (G0, G1, . . . , GM−1) is

TF (G) =
M−1∑
k=0

(1 − Pk)
λk

µ
(2kR) (6)
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Fig. 3. Capacity-partitioning DCA scheme for the maximum capacity Cmax.

where λ = λ0 + λ1 + · · · + λM−1, and Pk is the blocking
probability of the code group corresponding to class-k and can
be computed using Erlang’s formula [13] as

Pk =
ρGk

k /Gk!∑Gk

n=1 ρn
k/n!

. (7)

Then, an exhaustive search can be used to find the optimal
partition of the OVSF tree G∗ = (G∗

0, G
∗
1, . . . , G

∗
M−1), which

maximizes the average throughput TF as

G∗ = arg max
G

TF (G).

Once the optimal partition G∗ is determined, the number of
codes in each code group is unchanged, and each code group
serves only the corresponding class of calls independent of
one another. The code reassignment can thus be avoided. In
this way, we can design a minimal-complexity code assignment
scheme and use it as a benchmark for the performance of the
hybrid DCA schemes proposed in Section III.

In contrast with the high complexity of DCA-CAC design
associated with the linear programming of MDP, much lower
complexity is required by FCA. FCA only has to evaluate (6)
for each possible partition G, and therefore, it requires O(Θ)
iterations, where Θ is the number of possible partitions, which
is evaluated in (5), for the total capacity Cmax and M groups.

III. HYBRID DCA SCHEMES

The optimal DCA-CAC scheme in Section II-B achieves
maximum throughput at the cost of the highest complexity
through complete sharing of resources. The optimal FCA
scheme significantly reduces the complexity at the cost of a
lower throughput through complete partitioning of the total
resources. In this section, we propose hybrid schemes that
employ both resource partitioning and optimal DCA-CAC to
achieve good tradeoff between throughput and complexity
through partial sharing of the total resources.

From (4), the complexity of the optimal DCA scheme is
proportional to Λ3(S,C) in the MDP and the number of classes

sharing the same resources. To reduce the complexity and
improve the scalability, we propose two hybrid schemes, i.e., a
capacity-partitioning scheme that reduces the number of states
in MDP, and a class-partitioning scheme that reduces the num-
ber of classes sharing the same resources. In the second scheme,
we further reduce the complexity by capacity partitioning based
on the class partition.

A. Capacity-Partitioning Hybrid DCA Scheme

The proposed capacity-partitioning DCA scheme first par-
titions the set of the total resource into multiple mutually
exclusive groups, thus reducing the size of the capacity of each
partition. Second, call requests are statistically divided into
multiple groups, each of which is exclusively served by the cor-
responding partition of the resource. As a result, the number of
states in each capacity partition is significantly reduced. Finally,
we apply the optimal DCA scheme described in Section II-B
to each capacity partition to achieve the maximal aver-
age throughput for the partial resource shared by each
partition. Fig. 3 illustrates the capacity-partitioning DCA
scheme.

Given an OVSF code tree with capacity C = Cmax and a set
of available classes S = {0, 1, . . . ,M − 1}, M ≤ log2 Cmax,
we partition Cmax into N mutually exclusive groups of codes
by Cmax = C1 + C2 + · · · + CN . The call requests are also
statistically divided into N groups in such a way that user
group i, 1 ≤ i ≤ N , takes the group arrival rate of λ(i),∑N

i=1 λ(i) = λ, where λ is the total arrival rate of call requests.

Then, it follows that for each group of users, λ(i) =
∑

j∈S λ
(i)
j ,

1 ≤ i ≤ N . The arrival rate λ(i) allocated to user group i is
proportionally determined by Ci as

λ(i) = λ · Ci∑N
k=1 Ck

, 1 ≤ i ≤ N. (8)

As a result, we have

λ
(i)
j = λ(i) · ρj∑

k∈S ρk
, j ∈ S, 1 ≤ i ≤ N. (9)
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Fig. 4. Class-partitioning DCA scheme for the maximum capacity Cmax.

Let us use Γ(S,Ci) to denote the maximal average through-
put generated by the OVSF code tree with (S,Ci). Then

Γ(S,Cmax)≥Γ(S,C1)+Γ(S,C2)+· · ·+Γ(S,CN ) (10)

where
∑N

i=1 Ci = Cmax. Consequently, the computational
complexity of the DCA with (S,Cmax) reduces to∑N

i=1 Λ(S,Ci) instead of Λ(S,Cmax) in the optimal DCA. It
can easily be seen that the right-hand side of (10) approaches
the optimal performance Γ(S,Cmax) associated with the entire
OVSF code tree as N becomes smaller.

B. Class-Partitioning Hybrid DCA Scheme

The proposed class-partitioning DCA scheme first partitions
the set of classes into multiple mutually exclusive groups, thus
reducing the number of classes inside each partition. Second,
the total resource capacity is divided among each class partition
according to the traffic load. As a result, the number of states in
each class partition is significantly reduced. Finally, we apply
the optimal DCA scheme described in Section II-B to each class
partition to achieve the maximal average throughput for the
partial resource shared by each partition. Fig. 4 illustrates the
class-partitioning DCA scheme.

Given an OVSF code tree with capacity C = Cmax and a set
of available classes S = {0, 1, . . . ,M − 1}, M ≤ log2 Cmax,
we partition S into N mutually exclusive groups of classes by

S = S1 ∪ S2 ∪ · · · ∪ SN , Si ∩ Sj = φ for i 
= j. (11)

Then, a partial amount Ci of the total resource is uniquely
assigned to group Si in such a way that

∑N
i=1 Ci = Cmax.

The amount Ci allocated to group Si is proportionally deter-
mined by the total traffic load generated by users that belong to
group Si. That is

Ci = Cmax ·
∑

j∈Si
ρj∑M−1

j=0 ρj

(12)

where ρj is the traffic load of class-j calls.

The maximal average throughput generated by the OVSF
code tree with (Si, Ci) is denoted by Γ(Si, Ci). Then

Γ(S,Cmax) ≥ Γ(S1, C1) + Γ(S2, C2) + · · · + Γ(SN , CN )
(13)

where
⋃N

i=1 Si = S, and
∑N

i=1 Ci = Cmax. Consequently, the
computational complexity of the DCA with (S,Cmax) reduces
to

∑N
i=1 Λ(Si, Ci) instead of Λ(S,Cmax) in the optimal DCA.

It can easily be seen that the right-hand side of (13) approaches
the optimal performance Γ(S,Cmax) associated with the entire
OVSF code tree as N becomes smaller.

IV. DCA WITH SUBOPTIMAL CAC POLICY

As an alternative approach to reduce the complexity as-
sociated with the optimal DCA-CAC scheme, we investigate
suboptimal CAC schemes for the complete sharing DCA in this
section. Based on the detailed examination of system evolution
of the MDP formulated for the DCA-CAC in Section II-B,
we propose the suboptimal CAC policy that simplifies the
evaluation of MDP reward rate upon every call arrival.

A. MDP Analysis of CAC for Code Assignment

We recall the MDP with the state space ID formulated
in Section II-B. For a given CAC policy π = {ν0, ν1, . . .}
of our interest with νn(i) ∈ D(i) = {a, r}, for all i ∈ ID

and n, where n is the time index discretized by uniformiza-
tion of the continuous-time MDP, the average throughput per
stage Jπ is

Jπ(x0) = lim
N→∞

1
N

E

{
N−1∑
n=0

g (xn, vn(xn))

}
(14)

for an initial state x0 ∈ ID, where g(i, u) is the expected
throughput when the system is in state i, and action u is applied
in (15), shown at the bottom of the next page. Note here that
the throughput assigned to xn = (k, j) depends on the decision
made at stage n.
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The optimal policy π∗ = {ν∗
0, ν

∗
1, . . .} maximizes (14) for

any initial state x0 and is obtained from the following
optimization:

max
νn(xn)∈D(xn)

E {gn (xn, νn(xn)) + Jn+1 (fn (xn, νn(xn)))}
(16)

where Jn+1 is the average throughput achieved from stage
n + 1 to ∞, and fn(·) is a function of state transition from stage
n to n + 1 with control νn(xn), i.e., xn+1 = fn(xn, νn(xn)).
The simplest solution for the above optimization is derived
by the linear programming technique, as shown in [9], [14],
and [15].

The greedy policy πg = {νg
0 , νg

1 , . . .} employed in DCA [8]
takes a call request as long as it does not violate the capacity
constraint

∑M−1
i=0 2i ki ≤ Cmax and can be described by

νg
n(xn)=




a, xn = (k, j) and k+ ej ∈ ID

r, xn = (k, j) and k+ ej 
∈ ID

no action, xn = (k)
(17)

for all n.
Once any stationary CAC policy π = {ν(x)|x ∈ ID} is de-

termined, the average throughput of the entire system can be
evaluated by Markovian analysis. We use p(s, t; d) to denote the
transition probability from state s to t with decision d = ν(s),
d ∈ D(s). Then, all possible transition probabilities of the cor-
responding Markov process are described as follows. For states
s = (k, j) ∈ ID with ν(s) = a for j ∈ {0, 1, . . . ,M − 1},
we have

p(s, t; a)=




λζ · η, t= (k+ej , ζ)
kξµ · η, t= (k+ej−eξ)

1−
(∑

n
λn+µ

∑
m∈B(k)

km

)
· η, t= (k+ej)

0, otherwise
(18)

where i ∈ ID, ζ, ξ ∈ {0, 1, . . . ,M − 1}, and B(k) = {m|k +
ej − em ∈ ID)}. For states s = (k) taking no action and s =
(k, j) ∈ ID with ν(s) = r for j ∈ {0, 1, . . . ,M − 1}, we have

p(s, t; r) =




λζ · η, t = (k, ζ)
kξµ · η, t = (k − eξ)

1−
(∑

n
λn+µ

∑
m∈B(k)

km

)
· η, t = (k)

0, otherwise
(19)

where i ∈ ID, ζ, ξ ∈ {0, 1, . . . ,M − 1}, and B(k) = {m|k −
em ∈ ID}.

The average throughput per stage Jπ under a stationary CAC
policy π can be rewritten by

Jπ = lim
T→∞

1
T

∑
s∈ID

g (s, ν(s)) τ(T, s)

=
∑
s∈ID

g(s)
(s), with probability 1 (20)

where τ(T, s) is the total time that the system spends in state
s up to time T , and 
(s) is the steady-state probability of
the Markov chain, i.e., the fraction of time spent in state s
in the long run. Note that Jπ becomes independent of an
initial state x0 under any stationary CAC policy. By solving the
linear equations �Q = 0 with constraint

∑
s∈ID


(s) = 1, we
can find the steady-state distribution � and, consequently, the
average throughput Jπ as well.

B. One-Stage Lookahead Policy

An effective way to reduce the computation required by the
MDP is to truncate the time horizon and make a decision at
each stage based on the lookahead result in a small number
of stages [14]. The simplest choice is the one-stage lookahead
policy, which uses the control νn(xn) at stage n and state xn to
achieve the following objective:

max
νn(xn)∈D(xn)

E

{
gn (xn, νn(xn))+J̃n+1 (fn (xn, νn(xn)))

}
(21)

where J̃n+1 is an approximation of the expected throughput
Jn+1 generated over the infinite time horizon starting from
xn+1 = fn(xn, νn(xn)). Fig. 5 illustrates the time dynamics
when the system is in stage n, and two different decisions
(i.e., accept and reject) are made at stage n. Depending on
the decision made at stage n, the system shows a different
state evolution and, as a result, generates a different average
throughput at stages n and n + 1. Jn+1 is the actual average
throughput generated from stage n + 1 to ∞ when an optimal
decision is made at stage n.

Since it cannot be evaluated by observing only two stages n
and n + 1, we try to approximate Jn+1 to J̃n+1 in designing
a suboptimal CAC policy. The accuracy of the approximation
method significantly affects the resulting overall performance
of the designed CAC policy. In our design, we choose

J̃n+1 (xn, νn(xn)) = E
[
gn+1

(
xn+1, ν

g
n+1(xn+1)

)]
· δ (xn, νn(xn)) (22)

g (xn, νn(xn)) =




[
(k + ej) · (1, 2, . . . , 2M−1)

]
× R, xn = (k, j), νn(xn) = a[

k · (1, 2, . . . , 2M−1)
]
× R, xn = (k, j), νn(xn) = r[

k · (1, 2, . . . , 2M−1)
]
× R, xn = (k), νn(xn) = Null

(15)
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Fig. 5. System dynamics and throughput at stage n and n + 1 depending on a different decision at stage n.

where δ(xn, νn(xn)) is a gain factor to reflect the actual
effect of a decision at stage n propagating over the infinite
time horizon. The next subsection describes in detail how to
choose δ(·).

For each state xn = (k, j) with an arrival of class-j at stage
n, the average throughput in the next stage n + 1 upon a
decision of accept at stage n is evaluated as

Γa
n+1

∆= E
[
gn+1

(
xn+1, ν

g
n+1(xn+1)

)
|xn =(k, j), νn(xn)=a

]
=

∑
ζ

λζ

η
·
[
(k + ej + eζ) · (1, 2, . . . , 2M−1)

]
× R

+
∑

ξ

kξµ

η
·
[
(k + ej − eξ) · (1, 2, . . . , 2M−1)

]
× R

+


1 −

∑
ζ

λζ

η
−

∑
ξ

kξµ

η




·
[
(k + ej) · (1, 2, . . . , 2M−1)

]
× R (23)

and the average throughput in the next stage n + 1 upon a
decision of reject at stage n is computed as

Γr
n+1

∆= E
[
gn+1

(
xn+1, ν

g
n+1(xn+1)

)
|xn =(k, j), νn(xn)=r

]
=

∑
ζ

λζ

η
·
[
(k + eζ) · (1, 2, . . . , 2M−1)

]
× R

+
∑

ξ

kξµ

η
·
[
(k − eξ) · (1, 2, . . . , 2M−1)

]
× R

+


1−

∑
ζ

λζ

η
−

∑
ξ

kξµ

η


·

[
(k) · (1, 2, . . . , 2M−1)

]
×R

(24)

where η
∆=

∑
λj + Cmaxµ. Then, the case-by-case derivation

of (Γa
n+1 − Γr

n+1) is listed in (25), shown at the bottom of the
page, where each case is defined by the following:

Case I: (k + ej) ∈ ID, (k + ej + eζ) ∈ ID, and (k +
ej − eξ) ∈ ID;

Case II: (k + ej) ∈ ID, (k + ej + eζ) 
∈ ID, and (k +
ej − eξ) 
∈ ID;

Γa
n+1 − Γr

n+1 =




∑
ζ

λζ

η 2jR +
∑
ξ

kξµ
η 2jR +

[
1 −

∑
ζ

λζ

η −
∑
ξ

kξµ
η

]
2jR, Case I

∑
ζ

λζ

η (2j − 2ζ)R +
∑
ξ

kξµ
η (2j + 2ξ)R +

[
1 −

∑
ζ

λζ

η −
∑
ξ

kξµ
η

]
2jR, Case II

∑
ζ

λζ

η 2jR +
∑
ξ

kξµ
η (2j + 2ξ)R +

[
1 −

∑
ζ

λζ

η −
∑
ξ

kξµ
η

]
2jR, Case III

∑
ζ

λζ

η (2j − 2ζ)R +
∑
ξ

kξµ
η 2jR +

[
1 −

∑
ζ

λζ

η −
∑
ξ

kξµ
η

]
2jR, Case IV

0, Case V

(25)
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Fig. 6. Comparison of ∆((k, 1)) and ∆((k, 2)) for Cmax = 16, ρ = 16,
and TP = (0.1, 0.1, 0.4, 0.4).

Case III: (k + ej) ∈ ID, (k + ej + eζ) ∈ ID, and (k +
ej − eξ) 
∈ ID;

Case IV: (k + ej) ∈ ID, (k + ej + eζ) 
∈ ID, and (k +
ej − eξ) ∈ ID;

Case V: (k + ej) 
∈ ID.

Based on the above derivation, the proposed suboptimal CAC
policy π̃ is determined as follows. For state xn, ν̃n(xn) = a if

∆n(xn) ∆=
[
gn(xn, νn(xn)=a)+Γa

n+1 · δ (xn, νn(xn)=a)
]

−
[
gn(xn, νn(xn)=r)+Γr

n+1 · δ (xn, νn(xn)=r)
]
>0.

Otherwise, ν̃n(xn) = r. Note that it is a stationary policy that
only depends on the states but not on the time stage.

C. Discussion on δ(·)
In summary, the proposed suboptimal CAC policy focuses

on the average throughput at stages n and n + 1 to make a
decision at stage n. However, it is observed that, for a particular
group of system states, ∆n(xn) > 0 becomes noticeably small
compared to that of other states when δ(xn, νn(xn)) = 1. This
property can be observed in Figs. 6 and 7, which show ∆n(xn)
that was evaluated for an arrival of class R and 2R at ρ = 2, 16,
respectively. The states are sorted on the order of g̃(k) = k ·
(1, 2, . . . , 2M−1), which represents how much resource is being
used in state k.

In Fig. 6 (ρ = 16), we find a significant decrease of ∆n(xn)
for some group of states, and the decrease becomes more
noticeable for an arrival of low service class. Those states are
likely to make a positive effect (increasing throughput) on the
overall performance when the decision reject is made at stage n.
Hence, for those states, the system is expected to enforce a call
rejection to achieve the throughput gain over the infinite time
horizon. Thus, we set δ(xn, νn(xn)) = 1 for νn(xn) = a and
δ(xn, νn(xn)) > 1 for νn(xn) = r to obtain ∆n(xn) < 0. As
we choose a larger δ(xn, νn(xn)) for νn(xn) = r, more groups

Fig. 7. Comparison of ∆((k, 1)) and ∆((k, 2)) for Cmax = 16, ρ = 2, and
TP = (0.1, 0.1, 0.4, 0.4).

of states that show the second (the third and so on) largest
decrease of ∆n(xn) are selected for the enforcement of a call
rejection. By adjusting the gain factor, we can design a better
suboptimal CAC policy that further approaches the optimal one.

In Fig. 7 (ρ = 2), we do not find any noticeable decrease
of ∆n(xn), which means that any enforced call rejection is
likely to make a negative effect (decreasing throughput) on
the overall performance. Therefore, we merely follow a greedy
policy when the system becomes lightly loaded. For the arrival
of higher service classes 4R and 8R, all states show almost
the same value of ∆n(xn), so no rejection is enforced for
those call arrivals. As ρ is larger, the decrease of ∆n(xn) for
some group of states correspondingly becomes more notice-
able, and ∆n(xn) may go down to zero. In that case, we can
achieve ∆n(xn) < 0 even with δ(xn, νn(xn)) = 1, regardless
of νn(xn). Therefore, δ(·) plays an important role in estimating
the system behavior after stage n + 1.

D. Complexity and Implementation Issues

The optimal CAC demands a high computational complexity
in the design and implementation due to the large number of
states associated with the corresponding MDP model. With the
linearly increasing capacity, the number of states and the result-
ing computational complexity (offline) and required memory
(online) exponentially increase. The online complexity of the
MDP solution method is directly proportional to the size of the
state space. Thus, the optimal CAC policy is virtually impossi-
ble to be implemented online for a large-scale OVSF code tree
(Cmax > 32). The offline complexity is associated with the size
of storage that holds all the state–action pairs derived from any
MDP solution method. However, the proposed suboptimal pol-
icy can be implemented online since the maximization with a
given state xn and the decision set D = {a, r} is instantaneous.
When a call arrives, the system instantaneously evaluates and
compares g(xn, a) + Γa

n+1 and g(xn, r) + Γr
n+1 and makes a

decision that generates more average throughput. We do not
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TABLE II
DESCRIPTIVE COMPARISON OF COMPLEXITY AND PERFORMANCE AMONG THE PROPOSED SCHEMES WITH Cmax = 256 AND M = 4

need any offline heavy computation, as required by finding the
optimal policy through the MDP formulation.

Although the complexity of each scheme has been discussed
in the corresponding section, the comparison of all schemes in
a table provides a better demonstration of the computational
efficiency of our proposed hybrid and suboptimal schemes. It
is, however, not easy to do a fair numerical comparison on
the complexity of the proposed schemes since each of them
has its unique feature of design and operation. Thus, we give
a descriptive comparison of the proposed schemes in terms
of the design and operation type, and the computational load
and performance in Table II. Moreover, we provide the number
of states associated with the Markov chain of each scheme
to characterize the computational complexity. Note that the
suboptimal DCA examines only two stages ahead, and it does
not involve the full set of states in the computation.

For the design process, the optimal DCA and hybrid DCA
schemes require complicated offline policy computation whose
complexity relates to the number of states involved in the MDP
model. If we consider an OVSF code tree of Cmax = 256,
the optimal DCA required around 150 000 000 states involved
in the generation of an optimal policy. On the contrary, the
hybrid DCA with four capacity partitions only requires around
500 000 states involved in policy computation. The suboptimal
DCA does not require any offline MDP computation since its
policy decision is instantaneous for each call arrival. We only
have to find a reasonable value of δ(·) in the design process.
The optimal FCA involves an offline search of the optimal
partition whose complexity depends on the number of available
partitions.

For the operation process, only the suboptimal DCA scheme
involves light computation to instantaneously determine a two-
stage optimal policy for each call arrival. The other schemes
require a minimum complexity associated with table lookup
(for optimal and hybrid DCA schemes) or classification of
service classes (for the FCA scheme).

V. SIMULATION RESULTS

The numerical simulation adopts the following parameters.

• The total number of service classes is M = 4 with the
service rates equal to R, 2R, 4R, and 8R, where R is the
base transmission rate normalized to R = 1.0.

• The call arrival process is Poisson with mean arrival rate of
λ = λ0 + λ1 + λ2 + λ3 = 1, 2, . . . , 16 calls/unit of time.

• The call duration is exponentially distributed with a mean
value of 1/µ = 1 unit of time. The performance varies
with ρk = λk/µ, so setting a constant µ is reasonable.

Fig. 8. Comparison of the average throughput when Cmax = 16 and
TP = (0.4, 0.4, 0.1, 0.1).

• The traffic load is ρ = λ/µ = 1, 2, . . . , 16.
• System capacity is the total number of the leaf codes

Cmax = 16.

• The traffic profiles TP
∆= (ρ0/ρ, ρ1/ρ, ρ2/ρ, ρ3/ρ) =

(0.4, 0.4, 0.1, 0.1) and (0.1, 0.1, 0.4, 0.4) are used.
• δ(xn, νn(xn)) = 1 for νn(xn) = a. For νn(xn) = r, it is

chosen in such a way that only the group of states that
shows the first largest decrease of ∆n(xn) is selected for
call rejection.

• An ideal code-limited scenario is assumed. No
interference-limited scenario is considered to define
the system capacity.

Note that the assumption of an ideal code-limited scenario
is made in the example to obtain a fixed channel capacity
Cmax. However, the operation of the proposed schemes is not
restricted to this assumption. In a realistic interference-limited
scenario, Cmax may vary with traffic conditions. In principle,
our proposed schemes can be extended to such a scenario by
adaptively performing code assignment with an updated Cmax

and traffic profiles. However, the detailed algorithm and the
corresponding analysis go beyond the scope of this paper and
can be an interesting topic for future research.

Figs. 8 and 9 show the performance comparison of the
various code assignment schemes with different complexity.
In Fig. 8, we see that the class-partitioning DCA scheme
with the partition of [({0, 2}, 8), ({1, 3}, 8)] has an average
throughput close to that of the optimum with 20 times less
complexity. Also, the capacity-partitioning DCA scheme with
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Fig. 9. Comparison of the average throughput when Cmax = 16 and
TP = (0.1, 0.1, 0.4, 0.4).

Fig. 10. Comparison of the average throughput when Cmax = 16 and
TP = (0.4, 0.4, 0.1, 0.1).

the partition of [({0, 1, 2, 3}, 8), ({0, 1, 2, 3}, 8)] generates an
average throughput slightly higher than the previous one. We
also observe that our partitioning-based schemes outperform
the optimal FCA, which has the lowest complexity. Fig. 9 gives
the performance comparison when the high-rate call requests
become dominant. In this case, the class-partitioning DCA
scheme achieves almost the same performance as that of the op-
timal DCA. The numerical results shown here demonstrate that
our proposed hybrid DCA schemes achieve a good tradeoff be-
tween throughput performance and computational complexity.

Figs. 10 and 11 compare the average throughput of the
optimal FCA, DCA with greedy CAC policy, DCA with the
suboptimal CAC policy, and DCA with the optimal CAC policy
for two different traffic profiles. As seen in Fig. 10, the greedy
DCA shows almost the same performance as the suboptimal
DCA, which means that the greedy DCA is a good alternative
to the optimal DCA when low-rate call requests are dominant.

Fig. 11. Comparison of the average throughput when Cmax = 16 and
TP = (0.1, 0.1, 0.4, 0.4).

However, the optimal FCA does not perform well in a normal
traffic condition where low-rate call requests are dominant.

In Fig. 11, we observe that the greedy DCA is a reasonable
alternative to the optimal DCA when the traffic load is low, and
the optimal FCA can be a good replacement for the optimal
DCA when the system becomes heavily loaded. In summary,
the greedy DCA can be used as an alternative to the optimal
scheme when the traffic load is low or the traffic profile is
normal. However, when the traffic enters into an extreme con-
dition, the greedy DCA has to be replaced by better suboptimal
schemes. The proposed suboptimal CAC policy not only gener-
ates the average throughput very close to the optimum but also
offers consistent performance over the entire traffic load range.
As pointed out in the previous section, the proposed suboptimal
policy can be implemented online since the maximization with
a given state and decision set is instantaneous.

VI. CONCLUSION AND FUTURE WORK

Computationally efficient suboptimal DCA schemes with a
CAC policy for OVSF-CDMA systems have been studied in
this paper. Two hybrid DCA schemes have been proposed to
reduce the design and implementation complexity by partition-
ing the total resource into smaller groups while achieving an
average data throughput close to that of the optimal scheme
by employing optimal DCA-CAC schemes in each partition.
Numerical simulation results confirm that the two proposed
code assignment schemes achieve satisfactory suboptimal per-
formance over a wide range of traffic loads and profiles. Hence,
they can be adopted as reasonable suboptimal solutions of code
assignment for a large-scale OVSF code tree.

We have also proposed a suboptimal CAC policy for DCA.
By designing a CAC policy from the observation of the be-
havior of system dynamics over only two consecutive stages
starting from an event of call arrival, we can significantly
reduce the complexity associated with MDP over the infinite
time horizon from which the optimal policy is derived. By
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approximation to the performance over infinite time horizon,
we can achieve a high average data throughput that is close
to the optimal performance. The superior performance of the
proposed suboptimal CAC policy is presented via numerical
analysis. Moreover, the possibility of online implementation
makes it an attractive candidate in the real network environment
where the traffic situation is varying over time.

This paper has focused on the one-cell environment. That is,
given the capacity and traffic profiles of a cell, the proposed
code assignment and CAC are independently performed at each
cell. However, in a realistic network with multiple cells, there
exists an interaction between cells, such as user mobility and
interference among cells. This interaction may result in the
capacity and/or traffic profiles of a cell varying with time. The
extension of this paper to a more realistic network environment
with multiple cells is an interesting yet challenging problem
worth further investigation.
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