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Image-guided percutaneous interventions have successfully replaced invasive surgical methods in some cardiologic practice, where the use of 3D
reconstructed cardiac images generated by Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) plays an important role. To conduct
computer-aided catheter ablation of atrial fibrillation accurately, multi-modal information integration with electroanatomic mapping (EAM) data and
MRI/CT images is considered in this work. Specifically, we propose a variational formulation for surface reconstruction and incorporate the prior shape
knowledge, which results in a level set method. The proposed method enables simultaneous reconstruction and registration under non-rigid deformation.
Promising experimental results show the potential of the proposed approach.

1 INTRODUCTION

Current treatment of cardiac arrhythmias ranges from non-
invasive strategies such as pharmacological therapy, to mini-
mally invasive techniques such as catheter-based ablation, and
to open surgical techniques. While medical therapy can miti-
gate the occurrence of arrhythmias, these treatments may have
significant side effects since most drugs used have some tox-
icity that is not suitable for long-term therapy. The catheter-
based procedure is proven to be an effective method in treat-
ing patients with certain cardiac arrhythmias [26]. It is much
less invasive and more established. It also demands shorter
recovery time than the surgical approach. Thus, catheter-
based radio frequency (RF) ablation has become a widely ac-
cepted method in the treatment of cardiac arrhythmias, includ-
ing Atrial Fibrillation (AF) and Ventricular Tachycardia (VT).
These arrhythmias affect a large number of people and result
in significant morbidity and mortality.

AF is the most common sustained cardiac arrhythmia en-
countered in clinical practice. In the United States alone,
there are over 3.5 million patients with this disorder [17]. AF
can result in serious complications, including congestive heart
failure and thromboembolism. Despite recent advances, drug
therapy to control this disease is still unsatisfactory. As an

alternative, a non-pharmacological, interventional approach
based on creating percutaneous catheter-based lesion inside
the heart has been developed. Lesions are delivered in the left
atrial-pulmonary vein junction with an aim to electrically iso-
late these veins from the rest of the atrium. This protects the
atrium from fast heart beating that is originated in the veins,
which initiate and perpetuate AF.

The procedure of interventional AF treatment entails map-
ping the left atrium and the attached pulmonary veins using an
electroanatomic mapping (EAM) system. This mapping infor-
mation can be used to deliver lesions as well. This electrical
approach is suitable for the heart since it is an electromechan-
ical organ, where mechanical contractions are driven by elec-
trical stimulus. However, there is an important limitation of
the EAM system. That is, it is not able to provide an accu-
rate anatomy. Typically, a virtual shell is used to represent the
atrial wall and the vein. The points on the atrial wall, where
the catheter is manually touched, are used to create this shell
[15].

The catheter-based ablation process can be greatly im-
proved if a real anatomy is used instead of the virtual shell.
To ensure safe catheter maneuverability and enable delivery
of effective lesions with minimal collateral damage and com-
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plications, it is critical to have both the anatomical information
and the electrical information available to the operator. This
is particularly important for performing ablation in a complex
structure such as the left atrium that is surrounded by impor-
tant organs, which are vulnerable to damage if lesions are not
appropriately directed with close anatomical guidance. Fur-
thermore, even the pulmonary veins themselves are liable to
be damaged with grave long-term consequences if the lesions
extend deeply into the veins instead of being restricted to the
ostia.

The employment of a multi-modal data integration pro-
cess can provide an anatomical, physiological and functional
representation. In practice, this is achieved by combining an
anatomical surface model acquired by MRI/CT images and
the localized electrical information measured by an EAM sys-
tem. In the registration process, one obvious difficulty stems
from the noise and/or outliers that are inevitably associated
with the MRI/CT imaging process and the EAM data collec-
tion procedure. Unlike other organs in the body, our heart
undergoes contractile motion, apart from respiratory motion,
thus making it unique and very challenging to register and
integrate data of different modalities. In addition to physio-
logical variations such as changes in the heart rate, the heart
rhythm and the respiratory effect, various types of heart mo-
tion are the source of outliers.

The main contribution of this work is to provide enhanced
imaging of the anatomical heart surface from sparse and noisy
EAM data as well as a heart shape model obtained from
MRI/CT reconstruction as a prior. For 3D surface reconstruc-
tion, we adopt the level set method, which is a numerical pro-
cedure derived from the variational principle. The level set
method can provide an implicit and topology free shape rep-
resentation. By leveraging the 3D heart shape model, we can
compensate incomplete EAM data, thereby representing the
anatomical heart more accurately. The proposed method has
two important advantages. First, it is robust against non-rigid
deformation caused by cardiac motion and noise. Second, it
can construct the optimal surface without an explicit corre-
spondence between the MRI/CT surface and EAM data due to
the implicit surface representation.

The rest of this paper is organized as follows. Previous re-
lated work is reviewed in Sec. 2. The proposed multi-modal
data integration method for computer-aided ablation of atrial
fibrillation is presented in Sec. 3. Both synthetic and real
data are tested to demonstrate the efficiency of the proposed
method in Sec. 4. Concluding remarks and future work are
given in Sec. 5.

2 REVIEW OF RELATED WORK

Developing a computer-guided system for ablative heart
surgery involves image registration or integration techniques.
They are usually performed under a rigid transformation
between pre-operative MRI/CT reconstruction and intra-

operative EAM data points [8, 18]. Among various registra-
tion algorithms, the Iterative Closest Point (ICP) method and
its variants have been widely used for this application due to
their computational efficiency [12].

The ICP algorithm begins with two meshes and an ini-
tial guess for their relative rigid-body transform. It refines
the transform iteratively by generating pairs of corresponding
points on the meshes and minimizing an error metric repeat-
edly [2]. However, the standard ICP algorithm does not take
noise and outliers into account. Since noise and outliers may
affect the ICP performance substantially, several ICP variants
have been proposed in [20] to mitigate this problem. One pop-
ular approach to identify outliers is to use a threshold, includ-
ing a certain constant, a fraction of a sorted distance and some
multiple of the standard deviation of a distance [4, 13, 16].
Even with these variants, it is still challenging to deal with
non-rigid deformation and differentiate inliers from outliers.

Most of previous schemes used an ICP-based method
without addressing the above-mentioned problem. Instead,
they focused on clinical registration. For example, Reddy et
al. [12, 18] showed the feasibility of combining MRI with
CARTO-XP in a porcine model of myocardial infarction (MI).
They used the mICP (modified Iterative Closest Point) scheme
for registration, but did not address the outlier problem. The
modification is to adopt hierarchical registration by adding
the class information in the algorithm. A clinical registration
strategy that combines landmarks and surface registration was
proposed in [8]. This study assessed the accuracy for each car-
diac chamber using a different clinical registration method. It
was observed in [10] that the size of the left atrium affects the
accuracy. The patient who has a bigger chamber volume tends
to have more ablation errors.

The rigid transformation assumption made by existing
schemes is simple yet deficient. It often yields unsatisfactory
results since a non-rigid deformation is involved between the
anatomical heart model reconstructed by MRI/CT images and
temporal instances of the heart at the collection of EAM data
points. This physiological and anatomical variation that oc-
curs in the formation of the heart surface model and the collec-
tion of EAM data points demands a non-rigid transformation
(or equivalently diffeomorphism) between the model and the
data. Woo et al. proposed a novel image integration technique
by incorporating non-rigid deformation using level set method
in [22].

To overcome the limitation of the traditional registration
approach based on the rigid-transformation assumption, we
formulate this problem as a 3D surface reconstruction prob-
lem from EAM data points with a given surface prior. A sim-
ilar context arises in surface reconstruction from point clouds
in a scanned noisy image. Surface reconstruction using an
explicit representation has been considered by researchers,
e.g., [5, 19]. Typically, this approach needs to parameterize
a large point set that could be difficult to manipulate. An-
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other approach was proposed in [1, 9] to construct triangulated
surfaces using Delaunay triangulations and Voronoi diagrams.
It has to determine the right connection among points in the
point set, which could be challenging in handling noisy and
unorganized point data.

Surface reconstruction based on an implicit shape repre-
sentation using the level set technique has been studied for al-
most two decades by applied mathematicians, e.g., [6, 7, 14].
The non-parametric (or implicit) surface representation has an
advantage in dealing with arbitrary topology change and de-
formation. Hoppe et al. [11] proposed an algorithm in recon-
structing a surface using the signed distance function from un-
organized points. Zhao et al. [25] proposed another algorithm
using the unsigned distance function and the weighted min-
imal energy to reconstruct the surface. These algorithms are
however restricted to situations where the population of points
is dense enough to characterize the target surface. They are
not applicable to our application where EAM data points are
sparse and insufficient.

The problem of insufficient EAM data encountered in the
3D heart surface construction (including the left Atrium and
its pulmonary veins) can be mitigated by incorporating a heart
shape prior offered by MRI/CT imaging. Then, the optimal
surface can be obtained by minimizing the energy functional
that consists of a data fitting term and a prior knowledge term
as detailed in the next section.

3 MULTI-MODAL DATA INTEGRATION FOR SIMULTA-
NEOUS SURFACE RECONSTRUCTION AND REGIS-
TRATION

In this section, we present a multi-modal data integration
algorithm for simultaneous surface reconstruction and regis-
tration. This algorithm reconstructs the heart surface from
measured EAM data points and a heart shape prior obtained
by MRI/CT imaging using a level set method.

3.1 Surface Reconstruction and Registration

Under the level set framework [21], a curve in the 2D space
(or a surface in the 3D space) can be represented by the zero
level set of a higher dimensional embedding function φ(x).
That is, surface S(x) is given implicitly by

S = {x ∈ Ω | φ(x) = 0},
interior(S) = {x ∈ Ω | φ(x) > 0},
exterior(S) = {x ∈ Ω | φ(x) < 0},

(1)

where Ω ⊂ Rn and φ(x) : Ω → R. The shape of surface S(x)
is defined by the region occupied by the union of S and its in-
terior, denoted by S̄. We can define the heaviside function H
and Dirac measure δ as

H(x) =
{

1, x ≥ 0
0, x < 0 , δ (x) =

d
dx

H(x). (2)

Then, the shape of S is equal to S̄(x) = H(φ(x)). Similarly,
surface M(x) for a surface model obtained from MRI/CT im-
ages can be represented implicitly via

M = {x ∈ Ω | ψ(x) = 0},
interior(M) = {x ∈ Ω | ψ(x) > 0},
exterior(M) = {x ∈ Ω | ψ(x) < 0},

(3)

where ψ(x) is another embedding function and its shape is
given by M̄(x) = H(ψ(x)). We denote the set of measured
EAM data points by

D = {p1, p2, . . . , pn} ⊂ R3, (4)

where n is the number of data points.
Surface S to reconstruct is likely to be close to prior sur-

face model M and it is also attracted towards data points in
D. Thus, surface S can be obtained by minimizing an en-
ergy functional that consists of a data fitting term and a prior
knowledge term. Our goal is to find the embedding function
φ associated with surface S that minimizes the following cost
functional:

E(φ) = Epoint(φ ,D)+αEprior(φ). (5)

3.2 Derivation of Energy Terms

The energy functional in (5) consists of two terms. The
first term measures how well the surface is fit to measured
points based on the distance between the surface and these
points. The second term measures how plausible the surface
is in terms of the prior knowledge of the target surface. Pa-
rameter α ≥ 0 is a weight that adjusts the importance of these
two factors.

The data fitting term can be written as

Epoint(φ |D) =
n

∑
i=1

∫
Ω

|φ(x) ·δ (x− pi)|2 dx, (6)

which sums up the Euclidean distance between point pi and
φ . Recall that φ is a signed distance function. To impose
the prior knowledge on the target surface, S should be close
to prior surface model M with a smooth surface assumption.
In other words, we penalize any abrupt change of the surface
gradient. Here, we use two terms to represent the prior knowl-
edge; i.e.,

Eprior(φ) = Ereg(φ)+Eshape(φ |ψ), (7)

where Ereg(φ) is the smoothness regularization term in the
form of

Ereg(φ) =
∫

Ω

|∇H(φ(x))|dx. (8)

and Eshape(φ |ψ) is the shape dissimilarity term of the follow-
ing form

Eshape(φ |ψ) =
∫

Ω

|H(φ(x))−H(ψ(T (x)))|2dx, (9)
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and where T (x) is a rigid transformation resulting from scal-
ing, rotation and translation. Please note that the smoothness
regularization term measures the length of the 2D curve (or
the area of a 3D surface) while the shape dissimilarity term
measures the symmetric difference between H(φ) and H(ψ)
under a rigid transformation.

By combining (5)-(9), we can obtain the complete energy
functional E(φ) as

E(φ) = Epoint(φ |D)+α (Ereg(φ)+Eshape(φ |ψ)). (10)

Then, surface reconstruction can be formulated using the en-
ergy minimization principle as

φ
∗ = argmin

φ
E(φ) (11)

under constraint |∇φ | = 1, which is a property of a signed
distance function. Instead of adopting the same weight α for
Ereg and Eshape as shown in (10), it is possible to use different
weights for them.

3.3 Numerical Implementation

For numerical implementation, we use the following ap-
proximations for the heaviside function and the Dirac delta
function [3, 24]:

δ (z) =


0, if |z|> ε

1
2ε

[
1+ cos(

πz
ε

)
]
, if |z| ≤ ε

(12)

and

H(z) =


1, ifz > ε

0, if z <−ε

1
2

[
1+

z
ε

+
1
π

sin(
πz
ε

)
]
, if |z| ≤ ε

(13)

The energy functional in (11) can be minimized with re-
spect to φ(x) using the Euler-Lagrange equation. Finally,
the gradient descent method is applied to the resultant Euler-
Lagrange equation, which leads to

∂φ

∂ t
=−2

n

∑
i=1

φ(x)δ (x− pi)+α[δ (φ)div(
∇φ

|∇φ |
)

−2
∫

Ω

(H(φ)−H(ψ))δ (φ)dx]
(14)

To solve the above partial differential equations numeri-
cally is challenging since the time step should be constrained
to a small value in maintaining numerical stability. Besides, it
is computationally expensive to find a high dimensional sur-
face. Here, we employ a multi-grid scheme that adopts a hier-
archical representation of the data in multiple scales and prop-
agates the solution from the coarse scale to the fine scale to
achieve computational efficiency.

3.4 Relationship between Variational Formulation and
Bayesian Inference

This variational approach presented in Secs. 3.1 and 3.2
can be interpreted from the interpretation of Bayesian infer-
ence under a probabilistic framework. This relationship is pre-
sented in this subsection. The target surface S can obtained by
maximizing the following posterior probability:

P(S|D) =
P(D|S)P(S)

P(D)
(15)

where P(D|S) is the likelihood function, P(S) is the prior prob-
ability of the surface. Maximizing this conditional probability
with data points D for surface S is equivalent to minimizing its
negative logarithm:

− log(P(S|D)) =− log(P(D|S))− log(P(S))+ c, (16)

where c is a constant. Thus, by setting

Epoint(φ ,D) =− log(P(D|S)),

and
αEprior(φ) =− log(P(S)),

we can convert Eq. (16) to Eq. (5).

4 RESULTS AND DISCUSSION

We begin with simple yet illustrative examples to demon-
strate the efficiency and robustness of the proposed algorithm.
They are synthetic surfaces in the 2D space and the 3D space.
Then, we will present a real patient data for further validation.

4.1 Synthetic data
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Figure 2. Comparison of mean distances between the reconstructed sur-
face and measured data points for the 2D star example at different noise
levels using ICP and the proposed algorithm.

We first compare the proposed scheme with the ICP
scheme in registration accuracy using a synthetic 2D star
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(a) Original shape (b) ICP (2% noise) (c) ICP (6% noise) (d) ICP (10% noise)

(e) Deformed shape (f) Proposed (2% noise) (g) Proposed (6% noise) (h) Proposed (10% noise)

Figure 1. The shape reconstruction results for a synthetic 2D star shape, (a) the original shape, (b)-(d) ICP results using different Gaussian noise levels,
(e) the deformed shape, and (f)-(h) results of the proposed method using different Gaussian noise levels.

shape as shown in Fig. 1. The original 2D star shape (im-
age size: 200 × 200 pixels) is shown in Figure 1(a). It is
deformed as shown in Fig. 1(e). Furthermore, 33 noisy con-
tour points are generated by adding Gaussian noise (2%, 6%
and 10% standard deviation of contour points, respectively) to
original points. Visual results of the reconstructed shape are
shown in Fig. 1(b)-(d) for the ICP scheme and in Fig. 1(f)-(h)
for the proposed scheme. It is clear from Fig. 2 that the pro-
posed scheme outperforms ICP. For quantitative error analy-
sis, we measure the mean Euclidean distance between the re-
constructed surface and measured data points with varying de-
gree of Gaussian noise. The result is shown in Fig. 2. Again,
the proposed algorithm outperforms ICP significantly. This is
especially true when the noise level is higher.

Next, we compare the proposed scheme with ICP using a
3D synthetic jar example. Experimental results are shown in
Fig. 3, where the original and the deformed shapes are shown
in (a) and (f), respectively. Points extracted from the corrupted
surfaces with various Gaussian noise levels (3%, 6%, 9% and
12%) are used for visual evaluation. Reconstructed surfaces
based on data points at different noise levels with ICP and the
proposed algorithm are presented in Fig. 3 (b)-(e) and Fig. 3
(g)-(j), respectively. The mean distances are also measured for
accuracy comparison as shown in Fig. 4. Again, the proposed
algorithm is significantly better than the ICP scheme, which is
especially obvious at higher noise levels, as shown in Fig. 4.
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Figure 4. Comparison of mean distances between the reconstructed sur-
face and measured data points for the 3D jar example at different noise
levels using ICP and the proposed algorithm.

4.2 Patient data

The final example is a set of real patient data. 3D pre-
operative contrast-enhanced MR angiography (MRA) was
performed to delineate endocardial boundaries of the left
atrium and pulmonary veins. The voxel size was 0.78125 ×
0.78125 × 1.5mm and 45 slices were used in the experiment.
We obtained MRA and 250 EAM data points from the same
patient. The EAM data consists of the CARTO points im-
ported from the CARTO-XP, including measurement points
as well as ablation points.
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(a) Original shape (b) ICP (3% noise) (c) ICP (6% noise) (d) ICP (9% noise) (e) ICP (12% noise)

(f) Deformed shape (g) Proposed (3% noise) (h) Proposed (6% noise) (i) Proposed (9% noise) (j) Proposed (12% noise)

Figure 3. The shape reconstruction results for a synthetic 3D image: (a) the original shape, (b)-(e) ICP results using different Gaussian noise levels, (f)
the deformed shape, and (g)-(j) results of the proposed method using different Gaussian noise levels.

(a) MRA of LA (b) 3D Reconstruction

Figure 5. The 3D patient data: (a) MRA of LV and (b) 3D reconstruction
result of the given MRA.

After delineating and removing unwanted regions such as
the left ventricle (LV) and other small veins, we reconstruct
the 3D model as shown in Fig. 5 using ITK-SNAP [23] and
Matlab software. Afterwards, a two-step registration process
are applied for the ICP scheme. First, we perform the land-
mark registration using three junctions between LA and pul-
monary veins: LA-LIPV, LA-LSPV, and LA-RSPV. These
points are used for the initial pose of subsequent registra-
tion. Second, surface registration using the ICP scheme is per-
formed to refine accuracy furthermore. The resulting image is
shown in Fig. 6(a).

To validate the proposed algorithm, the optimal surface is

reconstructed using 250 EAM data points by incorporating a
heart shape prior from pre-operative MRA. By minimizing the
energy functional, the final result is shown in Fig. 6(b), where
diamonds (in blue) represent EAM data points and circles (in
red) represent ablation points. Blurred points are located in-
side. A quantitative evaluation result can be obtained by mea-
suring the mean distances of EAM and ablation points from
the surface of the left atrium. They are reported in Table 1,
which shows that the proposed approach gives better results
than the ICP method.

Table 1. Performance comparison of ICP and the proposed method

ICP Proposed
EAM point mean distance 4.5087mm 2.4113mm

Ablation point mean distance 3.2046mm 2.0921mm

5 CONCLUSION AND FUTURE WORK

A novel multi-modal data integration technique using the
level set method for catheter ablation of AF was presented in
this paper. This technique enables reconstruction and regis-
tration simultaneously using data fidelity, regularization, and
shape prior energy terms. It provides better performance than
the existing ICP method in accuracy. In the proposed frame-
work, the heart shape model from MRA reconstruction is used



Journal of Biomedicine and Biotechnology 7

(a) ICP (b) Proposed method

Figure 6. The surface registration results for the patient data.

as a prior shape knowledge. Thus, we can use the shape infor-
mation to compensate for insufficient EAM data. Clinically,
this technique can improve efficacy and safety of AF ablation
by integrating EAM data and 3D imaging data.

Dynamic cardiac shape analysis will make the current in-
tegration method more precise and meaningful. We plan to
incorporate a richer set of spatio-temporal shape models using
dynamic shape information in the future. Besides, we may
consider a localized regularization method around the point
data to obtain more precise reconstruction.
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