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Abstract—In this paper, we propose a generic point cloud encoder that provides a unified framework for compressing different

attributes of point samples corresponding to 3D objects with an arbitrary topology. In the proposed scheme, the coding process is led

by an iterative octree cell subdivision of the object space. At each level of subdivision, the positions of point samples are approximated

by the geometry centers of all tree-front cells, whereas normals and colors are approximated by their statistical average within each of

the tree-front cells. With this framework, we employ attribute-dependent encoding techniques to exploit the different characteristics of

various attributes. All of these have led to a significant improvement in the rate-distortion (R-D) performance and a computational

advantage over the state of the art. Furthermore, given sufficient levels of octree expansion, normal space partitioning, and resolution

of color quantization, the proposed point cloud encoder can be potentially used for lossless coding of 3D point clouds.

Index Terms—Progressive coding, LOD, compression, octree, 3D point cloud.
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1 INTRODUCTION

THREE-DIMENSIONAL models find applications in many
fields such as gaming, animation, and scientific visua-

lization. With the increasing capability of 3D data acquisi-
tion devices and computing machines, it is relatively easy to
produce digitized 3D models with millions of points. The
increase in both availability and complexity of 3D digital
models makes it critical to efficiently compress the data so
that they can be stored, transmitted, processed, and
rendered efficiently.

Traditional polygonal mesh representations of 3D
objects require both the geometry and the topology to be
specified. In contrast, in point-based 3D model representa-
tion, the triangulation overhead is saved, processing and
rendering are facilitated without the connectivity con-
straint, and objects of complex topology can be more
easily represented. They make point-based representation
an ideal choice in many applications that use high-quality
3D models consisting of millions of points. With such a
huge amount of data, efficient compression becomes very
important.

The technique of 3D model coding has been studied for
more than a decade. When various coding schemes are
compared, the compression ratio is the most widely used
performance metric. However, in the algorithmic design
space of 3D model coding, besides the compression ratio,
other parameters such as the following are also important.

One main objective of 3D model compression is to
compress models of all different types with various
geometry and topological features and various point
attributes. Thus, whether a coding scheme can be applied
to a large class of models provides a metric for generality
measure. Furthermore, end users evaluate a coding scheme
based on the decoding efficiency in order to assure the
timely reconstruction of the compressed models. This also
requires that the decoders are simple to implement. Finally,
compression becomes imminent for models with millions of
points, whereas memory usage also increases proportion-
ally with such large models. Thus, efficiency in memory
usage of the codec becomes another important parameter,
based on which the compression scheme has to be
evaluated. With these requirements in mind, we propose
a 3D point cloud coding scheme that is generic, is time and
memory efficient, and achieves a high compression ratio.

1.1 Main Contributions

In this work, we propose a novel scheme for progressive
coding of positions, normals, and colors of point samples
from 3D objects with arbitrary topology. The major
contributions include the following:

. Generic coder. It can compress point data for objects
with arbitrary topology.

. Full-range progressive coder. At the decoder side, a
model is progressively reconstructed from a single
point to the complete complexity of the original model.

. Time and space efficiency. The decoder only needs
to maintain partial octree layers and is able to
reconstruct/update a model in a time-efficient
manner.

. Efficient attribute coders. The simple and effective
prediction technique in position coding, the pro-
gressive quantization and local data reorganization
in normal coding, and the adaptive and nonuniform
quantization in color coding lead to the superior
performance of the proposed scheme.
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. Suitability for lossless coding.1 Since no resampling
of the input model is done, lossless coding can be
potentially achieved.

1.2 Related Work

1.2.1 Mesh Compression

The problem of 3D mesh compression has been extensively
studied for more than a decade. For a comprehensive survey
of 3D mesh coding techniques, we refer to Peng et al.’s work
[1]. Existing 3D mesh coders can be classified into two
general categories: single-rate mesh coders [2], [3], [4], [5],
[6], [7] and progressive mesh coders [8], [9], [10], [11], [12],
[13], [14], [15], [16], [17], [18]. As compared to single-rate
mesh coders, progressive coders allow a mesh to be
transmitted and reconstructed in multiple levels of detail
(LODs), which is suitable for streaming in networked
applications. Most 3D mesh coders handle manifold meshes
only, with the exception of those in [13], [14], and [15],
which process meshes of arbitrary topology.

1.2.2 Point-Based Model Compression

Similar to mesh coding techniques, most point-based model
coders can be classified into single-rate coders [19] and
progressive coders [20], [21], [22], [23], [24], [25], [26], [27],
[28]. In Krüger et al.’s work [29], although the input model
is encoded into multiple LODs, the bitstream of a coarser
LOD is not embedded in that of a finer one. Hence, we do
not classify it as a progressive coder. Furthermore, some
point-based model coders are good for samples from
manifold objects only [21], [22], whereas others can handle
samples from arbitrary 3D objects [19], [20], [23], [24], [25],
[26], [27], [28], [29].

In Gumhold et al.’s work [19], a prediction tree is built
up for each input model to facilitate prediction and entropy
coding; however, it is not suitable for progressive coding. A
bounding-sphere hierarchy is used by the QSplat rendering
system developed by Rusinkiewicz and Levoy [20] for
interactive rendering of large point-based models.
Although not strictly a compression algorithm, QSplat
offers a compact representation of the hierarchy structure
where 48 bits are used to quantize the position, normal, and
color attributes of each node. A multilevel point-based
representation is adopted by Fleishman et al. [21], where the
coefficient dimension is reduced from 3D to 1D for higher
coding efficiency. Techniques of 3D model partitioning and
height field conversion are introduced by Ochotta and
Saupe [22] so that the 2D wavelet technique can be used to
encode the 3D data. Multiple Hexagonal Close-Packing
(HCP) grids with decreasing resolutions are constructed by
Krüger et al. [29] where sequences of filled cells are
extracted and encoded for each HCP grid. An extended
edge collapse operator merges two end points of a virtual
edge into one point in Wu et al.’s work [23]. The cluster-
based hierarchical Principal Component Analysis (PCA) is

used by Kalaiah and Varshney [24] to derive an efficient
statistical geometry representation. Since the research in
[20], [23], [29], and [24] focus on efficient rendering, no rate-
distortion (R-D) data of point cloud compression are
reported therein.

Among the previous works on point-based model coding,
[25], [26], [27], and [28] are the most related to our current
work. Waschbüsch et al. [25] used iterative point pair
contraction for LOD construction, and the reverse process is
encoded. It encodes all point attributes under a common
framework. Although this technique is applicable to samples
from nonmanifold objects in principle, no such results were
presented. Besides, there is a limit on the number of LODs
that should be encoded, beyond which the method might
show a significant degradation in coding efficiency.

All the coders in [26], [27], and [28] are based on octree-
based partitioning of the object space. With a major focus on
efficient rendering, Botsch et al. [26] encode only the
position data through the coding of bytecodes associated
with octree cell subdivisions. Similar to that in Peng and
Kuo’s work [15], the coder by Schnabel and Klein [27]
encodes the number of nonempty child cells and the index of
the child cell configuration for each octree cell subdivision. If
color attributes are to be coded, it first encodes a color octree
and then encodes a color index for each nonempty cell in the
position octree. Despite its good R-D performance, Schnabel
and Klein’s [27] coder may not be generally applicable to
real-time decoding due to its computational complexity.

The rest of this paper is organized as follows: Section 2
provides an overview of the proposed coding scheme. The
position, the normal, and the color coders are detailed in
Sections 3, 4, and 5, respectively. The evaluation of the
algorithm on computational and memory efficiency is made
in Section 6. A bit allocation strategy is proposed in
Section 7. Experimental results are presented in Section 8,
and concluding remarks are drawn in Section 9.

2 OVERVIEW OF THE PROPOSED CODING SCHEME

2.1 Constructing the Levels of Detail of the Model

The proposed encoder recursively and uniformly subdi-
vides the smallest axis-aligned bounding box of a given
model into eight children in an octree data structure. Only
the nonempty child cells will be subdivided further. The
part of the model within each cell is represented by its cell’s
attributes—the position of each cell is represented by the
geometric center of the cell, and the normal/color of each
cell is set to the average of the normals/colors of contained
points. The attributes of nonempty cells in each level in the
octree structure yield an LOD of the original 3D model. We
call each point in an LOD as a representative.

2.2 Coding of Levels of Detail

The efficiency of the proposed coding scheme lies in the
effective coding of LODs of the model represented by the
octree data structure. In association with each octree cell
subdivision, we encode the position, normal, and color
attributes of each nonempty child cell.

The position of each cell is implicit as the subdivision of a
cell is uniform, and the center of the cell can be computed
from the position of the parent cell. Nevertheless, the
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1. In the field of model compression, “lossless coding” refers to the
coding process that, for a specific quantization of (a floating-point)
data, represents and recovers the quantized data in a lossless manner.
In essence, the reconstructed data is within a tolerance range from the
original input, and there is no resampling of the input data.
Specifically, it does not mean that the decoded data is exactly the
same as the floating-point input.



sequence of nonempty child cells has to be coded efficiently.
The position coder is described in Section 3.

The normal attribute is first quantized based on the
uniform subdivision of the unit sphere. When the normal
information needs to be refined for an octree cell subdivi-
sion, the normals of the children are predicted by the
normal of their parent, and their residuals are coded. On the
unit sphere, quantized normals around the predicted
normal are locally sorted and indexed, resulting in a
reduced entropy of normal residual indices. The normal
coder is discussed in Section 4.

Before color coding, PCA is first performed on the color
data of the model to determine a new color frame where an
oriented bounding box of color samples is calculated. Then,
the generalized Lloyd algorithm (GLA) is used to calculate
the quantization ranges/representatives along each dimen-
sion of the oriented bounding box. This adaptive quantiza-
tion reduces the number of quantization bins (and, thus, the
number of representational bits) for a given quantization
error threshold. When the color information needs to be
refined for an octree cell subdivision, each child color is
predicted to be the same as its parent color, and the residual
is encoded. The color coder is detailed in Section 5.

3 POSITION CODER

For each octree cell subdivision, the point representing the
parent cell is replaced by points representing nonempty
child cells. The decoder needs to know which child cells are
nonempty so that a representative can be placed at the
geometry center of each nonempty child cell, leading to a
finer approximation to the original point cloud model. Our
main contribution in position coding is to propose a
technique to lower the entropy of codes representing
nonempty children using a neighborhood-based predictor.

3.1 Occupancy Code

In the proposed position coder, a 1-bit flag is used to signify
whether a child cell is nonempty, with “1” indicating a
nonempty child cell and “0” indicating an empty child cell.
For each octree cell subdivision, if we traverse all child cells
according to a fixed order and collect the flag bits of all
child cells, we will obtain an 8-bit code called the occupancy
code, which has to be coded. For the ease of illustration, we
consider a 2D example and show the quadtree subdivision
and its occupancy code in Fig. 1. If we traverse child cells
according to the fixed order, we will obtain two occupancy
codes, 1010 and 0101, for the two cell subdivisions in
Figs. 1a and 1b, respectively.

To reduce the entropy of occupancy codes, we “push”
“1” bit toward an end by reordering the bits in each
occupancy code, as shown in Fig. 1. It is worthwhile to point
out that the technique of octree cell subdivision was also
used by Peng and Kuo in [14] and [15] for mesh
compression. Peng and Kuo [15] encode the index of each
nonempty-child-cell tuple instead of the occupancy code.
Despite its high coding efficiency, the process of pseudo-
probability estimation and tuple sorting is computationally
intensive. As compared to the bit reordering technique used
by Peng and Kuo [14] for entropy reduction in coding
triangular meshes, the occupancy code reordering method
described below differs extensively in local neighborhood
identification and probability assignment.

3.2 Occupancy Code Reordering

For each cell subdivision, we first estimate each child cell’s
probability of being nonempty based on the parent cell’s
local neighborhood. Then, we determine the new traversal
order of child cells and reorder bits in the corresponding
occupancy code according to the relative magnitude of the
estimated probability. The key in occupancy code reorder-
ing is probability estimation, which consists of two steps:
neighborhood identification and probability assignment.

3.2.1 Neighborhood Identification

In a 3D mesh, an edge indicates the neighbor relationship
between two vertices, which was utilized by Peng and Kuo
[14] for bit reordering. Since we do not have edges in a
point-based 3D model, we call two representatives c1 and c2

in the current LOD (and the corresponding octree cells C1

and C2) neighbors if and only if the following conditions are
satisfied:

. The difference of the level numbers of C1 and C2 is
less than a predetermined threshold �.

. The distance between c1 and c2 is less than
� �minðdiagðC1Þ; diagðC2ÞÞ, where � is a constant,
and diagðCiÞ is the diagonal length of cell Ci.

The first condition requires at most � continuous octree
levels, instead of the whole octree, to be maintained during
the process of compression. This allows a memory-efficient
implementation of the encoder and the decoder. The second
condition guarantees that only nearby representatives (that
is, cells) could be neighbors, and the range of the local
neighborhood is controlled by parameter �. Interestingly, a
similar condition was used by Gopi et al. [30] for the
neighborhood identification of points for surface recon-
struction. We set � ¼ 3 and � ¼ 1:5 in our experiments. Note
that there are data structures and computational geometry
algorithms [31] to determine the immediate neighbors of a
cell in both complete and incomplete octrees. However,
these algorithms are not directly applicable to the current
case since we would like to control the extent of the
neighborhood using the spatial relationship.

Neighborhood identification can be performed efficiently
with the help of the octree structure. To determine the
neighbors of a cell after subdivision, we first construct a list
of candidate neighbors of the target cell by inheriting the
neighborhood relationship from its parent and including all
children of the parent’s siblings that have been compressed
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Fig. 1. Examples of occupancy code formation (a) before and (b) after

the estimation of each child cell’s relative probability of being nonempty,

where nonempty and empty child cells are colored green and white,

respectively. The traversal orders are denoted by the blue arrows.



until now. We then prune cells from this list that do not
satisfy the above two distance criteria.

3.2.2 Probability Assignment

In general, the local surface around a point in a model lies
on one side of its local tangent plane except for saddle and
other complex surfaces, and point samples contained in a
cell tend to locate closely to the local tangent plane. Based
on these observations, we estimate the probability of child
cells being nonempty with the following steps:

. At the center of the parent cell, the normal, whose
coding will be detailed in Section 4, gives an
approximate local tangent plane denoted by p.

. On either side of p, we sum up the distances of
neighbor representatives to p and assign higher
probability values to child cells whose centers are on
the side of p with a higher sum of distances.

. For child cells with centers on the same side of p,
higher probability values are assigned to those
whose centers are closer to p.

For computational efficiency, we use a plane instead of a
higher order surface patch to approximate the local surface.

Being different from the probability assignment in Peng
and Kuo’s work [14], which orders child cells purely based on
their distances to a local approximating surface, our algo-
rithm prioritizes all points on one side of planepover those on
the other. In general, the plane-side-based priority assign-
ment has led to an additional coding gain in our experiments.

3.2.3 Bit Reordering

It is not the exact probability values but their relative
magnitudes that matter in the proposed occupancy code
reordering algorithm. They guide the child cell traversal and
the order of corresponding bits in the occupancy code.
Consider the example of a quadtree cell subdivision shown
in Fig. 2. The parent representative is shown as o, and its
neighbors are given by nbi. The distances of nbi to the
tangent plane at o given by the normal vector n at o are
represented by di. The children of o are represented by Ci.
Child cells C2 and C3 are assigned higher probability values
than C0 and C1 since d1 þ d2 > d3. Child cell C3 is assigned a
higher probability value than C2 since C3 is closer to the
tangent plane than C2. For the same reason, C0 has higher
probability assignment than C1. Based on this probability

assignment, the order of child cell traversal is changed from
C0 ! C1 ! C2 ! C3 to C3 ! C2 ! C0 ! C1, as illustrated
by the red arrows. Accordingly, the associated occupancy
code is changed from 0011 to 1100, with the 1s being shifted
to the left side. Note that this probability estimation
algorithm takes into account the local geometry of point-
based 3D models implicitly, and it works well for different
local curvatures including regions of maxima and minima.

3.2.4 Effect of Bit Reordering

The effectiveness of the probability estimation and the
occupancy code reordering techniques in entropy reduction
of occupancy codes is shown in Figs. 3a and 3b. These
figures show the histograms of occupancy codes before and
after the reordering based on the accumulative statistics for
the Octopus model with eight-level octree subdivision.
High peaks show up at a few values after reordering,
leading to a greatly reduced entropy value of 4.58 from an
entropy value of 6.95 before reordering. This method
achieves similar entropy reductions in other models also.

4 NORMAL CODER

The main contribution in normal coding is to rearrange the
normal data using a novel local normal indexing scheme
that significantly reduces the entropy. The normal of a
representative is the normalized average of the normals of
all data points contained in the corresponding octree cell.
For each cell subdivision, all nonempty child cells are
predicted to have the same normal as their parent, and
prediction residuals are coded using a local normal indexing
scheme that organizes similar normals around the predicted
one on the unit sphere (Gauss sphere) into a 1D list.

4.1 Normal Quantization

Before compression, normals need to be quantized. This is
achieved by the iterative subdivision of the normal space
(that is, the unit Gauss sphere) to a predetermined resolution
as done by Taubin et al. [32] and Botsch et al. [26]. Each
representative normal can then be identified by an index into
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Fig. 2. Determination of the new child cell traversal order based on
estimated relative probabilities, where C0 . . .C3 are child cells, with C2

and C3 being nonempty (filled). The approximate tangent plane p is
determined by the normal n at the parent representative o, and nbi is a
neighbor representative whose distance to p is diði ¼ 1; 2; 3Þ. The final
order of child cell traversal is shown by the red arrows.

Fig. 3. The distribution of occupancy codes (a) before and (b) after bit

reordering.



a table of quantized unit normals determined by the above
subdivision. We use the same subdivision and indexing
approaches as those used by Botsch et al. [26]. The iterative
process of normal space subdivision and indexing is
illustrated in Fig. 4.

In terms of R-D performance, it is not meaningful to
encode the normal value in high resolution when the
positional resolution is still low. Hence, we build up multiple
normal tables, one for each level of normal space subdivision,
and associate an appropriate resolution-level normal table
with each level of the octree in the position coder. In our
experiments, a maximum of 13 bits (that is, six levels of
sphere subdivision) are used for normal quantization. When
an octree cell is subdivided with increased resolution of
normal quantization, we need to encode the normal of each
child representative. Since in most cases, the normal of a child
representative is close to that of the parent, we predict the
normal of a child representative to be the same as that of the
parent and encode the residual.

4.2 Local Normal Indexing

The proposed normal coder is based on a local normal
indexing scheme with an objective to reduce the entropy of
normal residuals. For each triangular facet Ti:4j at the
ith level of normal space subdivision, we reindex the same-
level facets in its local neighborhood on the sphere based on
the differences in their normal from Ti:4j. We maintain an
array, Ai;4j, of pointers to these facets in the neighborhood,
as shown in Fig. 5. Although we can further expand the local
neighborhood, we have already seen very good perfor-
mance with just three rings in our experiments, and the
advantage of having more rings with additional coding bit
complexity is negligible. Note that at lower quantization
resolutions, the neighborhood may not have enough
triangles to have three rings and hence will have fewer
rings. The normal space subdivision scheme and the local
normal indexing scheme are computed only once and stored
as a table for use by both the encoder and the decoder.

Initially, the normal of the root octree cell is represented
with a 3-bit global normal index. When an octree cell is
subdivided and the associated normal data need to be refined,
the indexed local neighborhood facet of the Gauss sphere
around the facet of the parent normal in which the normal of
the child representative falls is searched. A 1-bit flag is
arithmetically encoded to indicate whether this local search is

successful. If it is, the local index of the matching normal is

arithmetically coded; otherwise, a global search is conducted,

and the global normal index is arithmetically coded.
In essence, the proposed local normal indexing scheme

increases the occurrence frequencies of local normal indices

ð0 . . . 51Þ, resulting in a reduced entropy of the normal data.

Fig. 6 demonstrates the effectiveness of the local normal

indexing scheme. By comparing Figs. 6a and 6b, we see a

much more concentrated distribution around a small

number of local normal indices in Fig. 6b.

5 COLOR CODER

Our approach to color data coding is adaptive quantization

followed by delta coding. To reduce the resultant data

entropy at the same distortion tolerance, the proposed
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Fig. 4. Normal quantization. (a) An octahedron is inscribed into the unit
sphere and its eight facets T0:j ðj ¼ 0; 1; . . . ; 7Þ form the first level of
subdivision. (b) Triangle T0:j ðj 2 f0; 1; . . . ; 7gÞ is subdivided into four
subtriangles T1:4j . . .T1:4jþ3, with index ð1 : 4jÞ assigned to the central
subtriangle whose normal is equal to that of T0:j.

Fig. 5. Local normal indexing. (a) Ti:4j . . .Ti:4jþ3 are assigned the
smallest four indices since they have the smallest difference in normal
from Ti:4j. Ti:4jþ1 . . .Ti:4jþ3 form the first neighbor ring of Ti:4j. (b) The first
neighbor ring of Ti:4j is expanded, and the second neighbor ring (in
purple and pink) is formed by the triangular facets around the first
neighbor ring. Note that the purple facets are assigned smaller indices
than the pink ones since their normals are closer to that of Ti:4j than
those of the pink facet. (c) The local neighborhood is expanded to the
third neighbor ring similarly.

Fig. 6. The distribution of normal indices. (a) Global indices at 9-bit

quantization for the Igea model. (b) The corresponding local normal

indexing, where the local normal indices are offset by 512 for the

purpose of plotting.



quantization scheme utilizes the probabilistic distribution of
color samples specific to an input model. As a result, the
proposed adaptive color quantization scheme leads to
optimized R-D performance when compared with the
uniform quantization scheme and the well-known octree-
based color quantization scheme by Gervautz and
Purgathofer [33]. Finally, delta coding is employed to further
reduce the entropy of color data. The proposed adaptive
quantization scheme consists of two major components:
adaptive color frame determination and adaptive quantiza-
tion representative/range computation.

5.1 Adaptive Color Frame Determination

A high degree of color correlation exists in a wide range of
3D models, and the color samples of a model tend to cluster
in only a small portion of the color space. This often leads to
high redundancy in color representation when the uniform
RGB space quantization is used. For example, there is a high
degree of color sample clustering in the RGB color space for
the Face model, as shown in Figs. 7a, 7b, and 7c. This
observation generally holds in most models. To exploit this
color coherency, we derive a new Cartesian color frame
based on the probabilistic distribution of input color data so
as to achieve higher representational efficiency. Specifically,
PCA is applied to the set of input color samples in the RGB
color space. The three orthogonal eigenvectors V1, V2, and
V3 identified by PCA and the centroid, C, of the input color
samples determine a new Cartesian color frame and is
denoted by F 0. The oriented bounding box that tightly
encloses the color samples in the frame F 0 is denoted by B0,
and the one that is defined in F is denoted by B. Typically,
the volume of B0 is significantly smaller than that of B. For
the Face model, whose color data distribution is illustrated
in Fig. 7, the volume of B0 is only around 15 percent of that
of B. In general, such a compact bounding box leads to the
reduction of redundancy in the representation.

After the new color frame F 0 is determined, the
coordinates of each color sample in the old RGB color
frame F are transformed to the new color frame F 0. These
transformed coordinates are used to compute B0.

5.2 Adaptive Quantization Range and
Representative Calculation

In the new color frame F 0, we subdivide each dimension of
B0 into quantization ranges and select a representative for
each range. To utilize the probabilistic distribution of color
samples, instead of equally subdividing B0 along each
dimension, we adaptively determine the extent of
individual ranges along each dimension of B0 such that

the average quantization error can be minimized for a given
number of quantization ranges. This is done using GLA,
which is a clustering algorithm widely used in the context
of vector quantization [34] and pattern recognition [35]. (See
the Appendix for more information.) After the application
of GLA, a sequence of optimal representatives is obtained
along each dimension of B0, and the set of midpoints
between adjacent pairs of representatives delimits the
individual quantization ranges.

The number of required ranges in each dimension is
determined by the tolerance to the quantization error. In each
dimension, the GLA algorithm can be repeatedly applied by
adding additional seed representatives at every iteration
until the algorithm yields a partition of B0 such that the
maximum difference between any sample and its represen-
tative is within the tolerance. In our experiment, we use 1/32
of the RGB cube’s side length as the tolerance level, which
has yielded a final color quality that is perceptually
indistinguishable from the original in all our test models.

Having determined quantization representatives and
ranges along each dimension of B0, we construct a color
quantization table, which consists of the following data items:

. the origin C and axes V1, V2, and V3 of the new
color frame and

. the following data along each of the above three axes:

– the value of the first quantization representa-
tive and

– the number of quantization ranges and intervals
between every two consecutive quantization
representatives.

For time and space efficiency, GLA is conducted along
each dimension separately. Please note that running GLA
three times, once for each dimension, for 1D ranges of size k
each is about three orders of magnitude faster than running
it once for 3D cubes of size k3 that partition the entire 3D
bounding box. Furthermore, the separable GLA scheme
demands a table consisting of 3k 1D representatives, rather
than a table consisting of k3 3D representatives as
demanded by the joint GLA scheme.

5.3 Effectiveness of Adaptive Color Quantization

To illustrate the effectiveness of the proposed adaptive
color quantization scheme, we use two other color
quantization schemes as benchmarks: the uniform quanti-
zation scheme that subdivides each dimension of the
original RGB color cube into equal-sized ranges and the
octree-based color quantization scheme by Gervautz and
Purgathofer [33] that adaptively constructs an octree in the
original RGB color cube for the quantization purpose.

We plot the estimated R-D curves of three quantization
schemes in Fig. 8 with the Face model. The schemes are
denoted as “uniform,” “octree,” and “adaptive” in the figure.
The quantization resolution is controlled by the number of
quantization ranges along each dimension in the uniform
quantization scheme and the proposed adaptive quantiza-
tion scheme and by the number of quantization representa-
tives in the octree-based scheme. For each quantization
resolution, we estimate the corresponding coding bits per
input sample based on the entropy of quantized color indices
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Fig. 7. The distribution of color samples for the Face model viewed from

(a) the R-axis, (b) the G-axis, and (c) the B-axis.



and estimate the distortion per input sample by the average
distance between each input color sample and its quantized
representative. We see in Fig. 8 that the proposed adaptive
quantization scheme yields a significant R-D advantage over
the uniform quantization scheme.

Although the octree-based color quantization scheme
yields almost the same R-D performance as the adaptive
color quantization scheme, the memory efficiency of the
adaptive scheme can be two orders of magnitude superior
to that of the octree-based quantization scheme. For Oðk3Þ
3D color quantization representatives, the octree-based
color quantization scheme requires Oðk3Þ space to store
the color quantization table, whereas the adaptive scheme
requires just OðkÞ space since the quantization represen-
tatives are stored independently on each of the three axes
of the bounding box.

5.4 Entropy Coding

Since the color decoder requires the color quantization table,
the encoder has to encode the table before encoding the
colors of representatives in any LOD. In our implementa-
tion, the color quantization table is arithmetically coded.

In an intermediate LOD, the color of a representative is
quantized in the new color frame F 0 according to the
obtained quantization table, and the quantized color
coordinates are to be encoded. Motivated by the observa-
tion that there is usually high correlation between colors of
a child representative and its parent, a child representative
is predicted to have the same color as its parent, and only
the residual is coded with an arithmetic coder, leading to
further entropy reduction.

Please note that the RGB color representation instead of
the luminance-chrominance representation (such as the
YUV color space) is used here. Since the luminance-
chrominance color representation models human percep-
tion of color more closely, it would be interesting to study
the quantization scheme in the luminance-chrominance
color representation as a future extension. For example, we
may apply the adaptive quantization scheme separately to
the 1D luminance subspace and the 2D chrominance
subspace to prioritize the luminance component over the
chrominance components.

6 EVALUATION ON TIME AND SPACE EFFICIENCY

6.1 Asymptotic Performance Analysis

In this section, we conduct an asymptotic performance
analysis on the computational and memory costs of the
proposed point cloud coder. In order to provide a big-O

analysis, we focus on the cost associated with major
algorithmic steps and the most expensive operations in
each step. Consider the case where there are N points in the
input 3D model, which is decoded to a sufficient LOD,
namely, OðNÞ cell subdivisions in total.

6.1.1 Computational Cost

The computational cost for each cell subdivision can be
analyzed as follows:

. Position encoding/decoding. The neighbor search re-
quires b point-point distance calculations, where b is
the size of the candidate neighbor set. The prob-
ability assignment entails bþ 8 point-plane distance
calculations. The bit reordering process demands at
most 8� log2 8 ¼ 24 comparisons. Since b is a
bounded constant by the definition of a local
neighborhood, the computational cost for each
position encoding/decoding is Oð1Þ.

. Normal encoding/decoding. The major cost of normal
encoding resides in the normal table search, which is
dominated by local normal indexing. For each
nonempty child cell, the encoder performs at most
52 (mostly less than 10) calculations and compar-
isons of the normal difference, and the decoder
retrieves the normal vector through a table lookup
whose cost is negligible. Thus, the computational
cost for each normal encoding/decoding is Oð1Þ.
Note that the normal quantization table can be built
up once and stored for use by any encoder/decoder.

. Color encoding/decoding. The encoder performs
3Oðlog kÞ searches to quantize each color if the
quantization ranges and representatives of each
dimension are organized into a binary search tree,
where k is the average number of ranges along each
dimension. Typically, we have log k � 8 for k � 256.
The decoder simply retrieves the quantized color
through three table lookups. In addition, both the
encoder and the decoder need to perform a color
coordinate transformation through a matrix-vector
production. The total computational cost of color
encoding/decoding is thus Oð1Þ.

Besides the computational cost per cell subdivision
analyzed above, we need to construct the octree and the
color quantization table once at the encoder as a
preprocessing step. For a 3D model of N points, building
an ðrþ 1Þ-layer octree costs OðrNÞ in the position
encoding, where r is the number of quantization bits
along each 1D dimension. For the color encoding, one
PCA step and one GLA iteration cost OðNÞ and OðkNÞ,
respectively, where k is the average number of quantiza-
tion ranges along each dimension in the adaptively
determined color frame.

Based on the above analysis, we conclude that the
proposed encoding scheme has a computational complexity
of Oðmaxðr; kÞNÞ. Based on our experiments, r and k
typically take their values from the range of 10-30 in order
to produce an approximation to the original 3D model with
perceptually indistinguishable quality. We also conclude
that the proposed decoding scheme has a computational
complexity of OðNÞ, which is much faster than the encoding
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Fig. 8. Comparison of the R-D curves of the three color quantization

schemes for the Face model.



scheme. For more detailed timing data, we refer to Table 4
in Section 8.

6.1.2 Memory Cost

Both the encoder and the decoder have to store several tree-
front layers of the octree, that is, three tree-front layers of
the octree, which takes OðNÞ space. In addition, the encoder
has to store the position, normal, and color attributes
associated with each point in the input model, whose
memory cost is again OðNÞ. Furthermore, both the encoder
and the decoder need to store the normal quantization table
and the color quantization table. The normal quantization
table takes OðsMÞ space, where s is the neighborhood size
in local normal indexing, which is a constant, and M is the
number of distinct normals in the maximum quantization
resolution. The color quantization table takes OðkÞ space.
Since M < N and k < N , the overall memory cost of the
encoder/decoder is OðNÞ.

6.2 Comparison with the Prior Art

In this section, we compare the asymptotic performance of
our scheme with the prior art [25], [26], [27]. Since all these
works and our work has OðNÞ space complexity, we just
focus on the comparison of computational complexity below.

Botsch et al. [26] only compress the position data with
a computational cost of OðNÞ. As compared to our coder,
its computational efficiency is slightly better since no
prediction is made in the encoding process (at the cost of
poorer R-D performance).

Waschbüsch et al. [25] compress all position, normal, and
color data. A computational cost of OðNÞ is needed for the
actual encoding/decoding of each attribute. Before the
actual coding, the encoder needs to build up a multi-
resolution hierarchy through a minimum-weight perfect
matching process [36], which demands an extra computa-
tional cost of OðN2 logNÞ. In addition, both the least squares
local plane approximation in position coding and the local
coordinate transformation/conversion in attribute coding
demand higher complexity than ours.

Schnabel and Klein [27] encode position and color data.
The overall coding time is between OðN logNÞ and
OðN2 logNÞ due to the expensive reordering of tree-front
cells in both the position and the color octrees. The
prioritization of nonempty-child-cell configurations asso-
ciated with each cell subdivision step is also computation-
ally intensive. Actually, we observe that the prioritization of
nonempty-child-cell configurations and the reordering of
tree-front cells are major computational bottlenecks in some
octree-based 3D model coders such as those by Schnabel
and Klein [27] and Peng and Kuo [15].

7 DISCUSSION ON BIT ALLOCATION STRATEGY

In this section, we consider the bit budget allocation
strategy among different types of point attributes for the
proposed point cloud coder. Since the coding process is
driven by the iterative octree cell subdivision, the positional
resolution is always increased at every level of octree
expansion. For normal and color coding, we have the
flexibility in specifying the octree level at which the points
would inherit those attributes from their parents and at

which the difference between their attributes should be
encoded. Further, since the resolution of normal quantiza-
tion is progressively refined, we have extra flexibility in
specifying the octree level at which the resolution of normal
quantization should increase.

For models without color attributes, better approxima-
tion quality of intermediate models has been observed for
most of our test models when we encode the normal
updates and increment the level of normal space partition-
ing at every other octree level (rather than at every octree
level). This may be due to the fact that the positional
accuracy contributes more to the model quality than the
normal accuracy when points are densely sampled.

We plot the R-D curves for the Dragon model in Fig. 9
using different bit allocation strategies. Two sets of R-D
curves are obtained with two bit allocation strategies: to
increase the normal resolution and conduct the normal
coding at every level and at every other level, denoted by
“Every” and “EveryOther,” respectively. The horizontal
axis is the total coding bit rate, whereas the vertical axis is
the corresponding PSNR values for the position/normal
coding. We see in Fig. 9 that the “EveryOther” strategy
leads to significantly better position quality at any fixed
total bit rate. Interestingly, the “EveryOther” strategy
achieves not only higher position quality, but also higher
normal quality at relatively high bit rates. This could be
explained by the fact that normal quantization reaches its
maximum resolution quickly with the “Every” strategy,
whereas the position resolution is still relatively low. After
that, normal coding is not efficient since normals are
already encoded in full resolution, whereas the relatively
low position resolution does not help much in providing
good normal prediction accuracy.

For models with color attributes, we have an additional
flexibility in specifying the bit allocation priority of color
coding. It is still an open problem to find the optimal bit
allocation among different attributes. Instead of providing
an optimal or a suboptimal solution, we only illustrate the
effect of different bit allocation strategies on the model
quality here.

The reconstructed Santa model at 2.5 bits per point (bpp)
with two bit allocation strategies is shown in Fig. 10. Fig. 10a
adopts color coding at every level and normal resolution
refinement and coding at every other level. Fig. 10b uses
color coding at every other level and normal resolution
refinement and coding at every level. We see clearly that the
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Fig. 9. R-D curves of normal coding for the Dragon model with different

bit allocation strategies.



reconstructed model in Fig. 10a has higher visual quality

than that in Fig. 10b, especially in regions around Santa’s
hat, face, beard, and waist. This could be due to the higher

contribution to visual quality of the position’s and color’s

accuracy than that of the normal’s accuracy. For example,

densely sampled models usually have smooth normal
variation among adjacent points over the surface.

Although our experiments suggest that we need a higher
resolution for position and color data than that for the

normal data during bit allocation, it is worthwhile to study

the bit allocation problem and its optimality conditions more

thoroughly. In general, we need to estimate the R-D curves
for different attributes and measure the relative importance

of different attributes accordingly. A preliminary study

along this direction was conducted by Li and Kuo in [11].

8 EXPERIMENTAL RESULTS

Nine point-based models are used in our experiments, as

shown in Fig. 11. They are Face, Igea, Dragon, and Octopus,

which are courtesy of Pointshop 3D; Acer_saccarinum from
Xfrog public plants (http://web.inf.tu-dresden.de/ST2/

cg/downloads/publicplants/); Dragon-vrip, Santa, Happy

Buddha (vripped reconstruction) from the Stanford 3D

scanning repository (http://graphics.stanford.edu/data/
3Dscanrep/); and FemaleWB from Cyberware (http://

www.cyberware.com/). Two versions of dragon models

(namely, Dragon and Dragon-vrip) are used in our

experiments for fair comparison with previous work,
although only one dragon model is rendered in Fig. 11.
Except for the models provided by Pointshop 3D, all other
models were transferred to the Surfel format by ourselves.

8.1 Rate-Distortion Performance Comparison

The coding performance is measured in bits per point,
which is the ratio of the total coding bit rate and the
number of points in the original model. Although the MLS
surface that compares the difference between two point-
based models was adopted as the distortion measure by
Pauly et al. [37] and Fleishman et al. [21], we do not use the
MLS-surface-based distortion metric since it is not suitable
for measuring normal and color distortions [25]. Here, we
use the peak signal-to-noise ratio (PSNR) to measure
position, normal, and color distortions as done by
Waschbüsch et al. [25]. The position PSNR is calculated
using the euclidean distance between corresponding points
in the original and the reconstructed models with the peak
signal given by the diagonal length of the tightly fit axis-
aligned bounding box of the original model. The normal
PSNR is calculated using angles between the original and
the reconstructed normals with a peak signal of 180 degrees.
The color PSNR is measured separately for each color
channel, using the difference between the original and the
reconstructed color coordinates with a peak signal of
255 for an 8-bit prequantization of each color channel. We
measure the color PSNR in the RGB space except that when
the color encoding performance is compared with that of
Waschbüsch et al.’s work [25], the color PSNR is measured
in the YUV space for fair comparison.

We compare the R-D performance of the proposed point
cloud coder with those in [25], [26], and [27], which serve as
benchmarks since they too can encode point samples of 3D
objects with arbitrary topology progressively. Please note
that the coder of Botsch et al. [26] encodes only position
data, the coder of Schnabel and Klein [27] encodes both
position and color data, and the coder of Waschbüsch et al.
[25] encodes all position, normal, and color data.

The R-D performance of the proposed position coder and
that of our own implementation of Botsch et al.’s [26]
algorithm is compared in Fig. 12. We see that the proposed
position coder has 33-50 percent bit rate reduction for PSNR
values below 65.

The R-D performance of the proposed progressive coder
and that of Waschbüsch et al. [25] for position and normal
coding is compared in Figs. 13a and 13b, respectively. The
horizontal axis is the coding bit rates, whereas the vertical
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Fig. 10. Visual comparison of the Santa model at 2.5 bpp with two bit

allocation strategies.

Fig. 11. Models used in our experiments.

Fig. 12. R-D performance comparison of the proposed coder and that in

Botsch et al.’s work [26] for Octopus (466k).



axis gives the position/normal PSNR values. Note that the

R-D data of the position coder of Waschbüsch et al. [25] are

taken from the progressive encoding curves in [25, Fig. 10],

and the R-D data of normal encoding for [25] are taken from

the encoding results in [25, Table 2]. Due to the lack of data,

we are not able to make a full-range comparison, especially

for normal encoding, as shown in Fig. 13b. As shown in

Fig. 13a, the PSNR improvement in position coding is

around 10 dB and 15 dB for Igea and Dragon, respectively,

at all bit rates. Further, the proposed normal coder can

reduce the bit rate by about 50 percent at certain high PSNR
values.

Next, we compare the R-D performance with all coding
schemes taken into account. The R-D performance of
position, normal, and Y-color-component coders for
Octopus is shown in Figs. 14a, 14b, and 14c, where the
horizontal axes are the total coding bit rates (that is, the sum
of position, normal, and color encoding bit rates) in bits per
point, and the vertical axes give the corresponding PSNR
values. The proposed position and color coders outperform
those of Waschbüsch et al. [25] at almost all bit rates with an
improvement of up to 9 dB, which roughly corresponds to
65 percent distortion reduction. As compared with the
normal coder of Waschbüsch et al. [25], the proposed coder
has comparable or better R-D performance for higher bit
rates, as shown in Fig. 14b. For lower bit rates, the
performance of the proposed normal coder is dictated by
the coarse normal quantization resolutions that are adopted
in initial octree levels. As the resolution of normal
quantization is refined, the normal encoding performance
is improved at higher bit rates.

Since Schnabel and Klein [27] do not compress normal
data, we compare this work with only the proposed
position and color coders in Tables 1 and 2. Table 2 shows
only the PSNR value of the B-color-component coding;
similar trends are observed for other color components as
well. The position coder of Schnabel and Klein [27] achieves
higher PSNR values by 4 dB at most bit rates for Dragon-
vrip and Igea. In contrast, the proposed color coder
outperforms that in [27] by 10 dB or higher at lower bit
rates and around 2-6 dB at higher bit rates for Santa and
FemaleWB. The R-D data of the coders in [27], shown in
Tables 1 and 2, were not reported in the original paper yet
kindly provided by the authors for this comparison.

A comprehensive list of R-D data for position, normal,
and color coding with the proposed point cloud coder for
six test models is given in Table 3, where the bit rate and
distortion are reported in bits per point and PSNR,
respectively. “N/A” signifies unavailable data because the
fully expanded octree in our experiments has 12 levels only,
and the final total bit rate of Happy Buddha is less than
16.0 bpp. Due to high randomness in position and normal
data and nonmanifoldness, Acer_saccarinum requires more
coding bits than other models. Similarly, due to the high
variation in the color of Octopus, it requires more bits than
other models to represent the color information. To the best
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Fig. 13. R-D performance comparison of the proposed coder and that of

Waschbüsch et al. [25] for Dragon (436k) and Igea (134k). (a) Position

coding. (b) Normal coding.

Fig. 14. R-D performance comparison of the proposed progressive coders and those in Waschbüsch et al.’s work [25] for Octopus (466k).

(a) Position coding. (b) Normal coding. (c) Y-color-component coding.



of our knowledge, no other work except that of Huang et al.

[28] has ever reported R-D data on highly complex models

like Happy Buddha.
Intermediate LODs of Dragon, Octopus, and

Acer_saccarinum are shown in Fig. 15 for visual comparison.

The same Dragon and Octopus models were considered by

Waschbüsch et al. [25] also. The first four rows show the

models reconstructed at total bit rates of 2 bpp, 4 bpp, 8 bpp,
and 16 bpp, respectively, whereas the last row shows the
uncompressed original models. As shown in this figure, a
reasonable profile already appears at 2 bpp. We can achieve
very decent model quality at 8 bpp. The reconstructed
models are almost indistinguishable from the original ones
at 16 bpp.

8.2 Computational Complexity Comparison

Another important advantage of the proposed coding
scheme is its low computational complexity. In addition to
the asymptotic performance analysis given in Section 6, we
report the measured timing data for selected models in
Table 4. The experiment was conducted on a PC with an
Intel Pentium IV 3.20-GHz CPU and 1 Gbyte of RAM. The
reported timing data in this table refer to full-resolution
encoding/decoding with our unoptimized prototype re-
search code. We see in Table 4 that models with less than a
half million points (for example, Igea, Dragon, and Octopus)
can be decoded within 10 sec, whereas models with around
one million points (for example, Acer_saccarinum and
Happy Buddha) may take about 30-40 sec. For very large
models such as Acer_saccarinum and Happy Buddha, the
increase in decoding time seems to be superlinear with
respect to the number of points in the input model, which
could be due to the large memory requirement. Typically,
the encoding time is several times higher than the decoding
time due to the extra cost associated with the maintenance
of the original point attribute data and the quantization of
normal and color data.

The reader may have noticed that for some models other
than Acer_saccarinum and Happy Buddha, the relative
magnitudes of the decoding and/or the encoding time may
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TABLE 1
Comparison with Schnabel and Klein’s Work [27]:

Position Coding

(a) Dragon-vrip. (b) Igea.

TABLE 2
Comparison with Schnabel and Klein’s Work [27]: Color Coding

(a) Santa. (b) FemaleFB.

TABLE 3
R-D Data for Position, Normal, and Color Coding Using the Proposed Point Cloud Coder

TABLE 4
Statistics of Encoding/Decoding Time in the Unit of Seconds and the Number in the

Parenthesis Refers to the Number of Points in Each Model



not be commensurate with the relative magnitudes of the

point numbers. Although the number of points in Santa is

only about one half of that in Igea, the encoding and the

decoding times for Santa are more than those of Igea. The

reason is that color data need to be encoded and decoded

for Santa but not for Igea, and a significant amount of

computation is demanded by the adaptive color

quantization in encoding and the color coordinate

transformation in decoding. Although there is almost twice

the number of points in FemaleWB as in Santa, the decoding

time for FemaleWB is comparable with that for Santa. This

may be related to the different bit allocation strategies we

employ for the two models. For Santa (FemaleWB), normal

resolution refinement and coding is performed at every

other (every) octree level, whereas color coding is

performed at every (every other) octree level. The
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Fig. 15. Models reconstructed at different bit rates.



reconstruction of a normal vector requires decoding one
integral index and looking up a normal table once, while
reconstruction of a color vector requires decoding three
integral indices, searching three 1D color representative
tables, and transforming the color coordinates. This
difference in the decoding complexity of normal and color
leads to the similar decoding performance of two models
with significantly different sizes. As for the encoding time,
however, FemaleWB takes significantly more time due to
the complexity associated with adaptive color quantization
over significantly more points in the color space, when
compared with Santa. Although Octopus and Dragon have
comparable numbers of points, the encoding time for
Octopus is more than twice that of Dragon. This may again
be explained by the complexity in adaptive color quantiza-
tion, since we need to encode the color data for Octopus but
not for Dragon. Interestingly, their decoding time is
comparable, although more types of attributes are encoded
for Octopus. This may be explained by the different point
distributions or, in other words, different numbers of octree
cell subdivisions to encode/decode in these two models.
According to our statistics, 711,658 cell subdivisions are
encoded/decoded for Octopus, whereas 1,022,947 cell
subdivisions are encoded for Dragon.

9 CONCLUSION AND FUTURE WORK

A generic point cloud coder was proposed to encode
attributes, including position, normal, and color, of points
sampled from 3D objects with arbitrary topology in this
work. With novel and effective schemes of quantization,
prediction, and data rearrangement, the proposed point
cloud coder results in a significant R-D gain and offers a
computational advantage over prior art. Another advantage
of the proposed point cloud coder is that it does not
resample the input model. Thus, it can be potentially used
for lossless encoding if the levels of octree expansion and
normal space partitioning are sufficiently large and the
resolution of color quantization is fine enough.

There are several ways to extend the current research.
First, we would like to design more effective predictors for
normal and color data. Currently, we predict that each child
cell has the same color and normal as its parent. However, a
local-neighborhood-based predictor may further improve
prediction accuracy. Second, for better color quantization,
we may segment all color samples inside the RGB cube into
several small clusters analytically and perform adaptive
quantization separately for each small cluster for higher
efficiency in data representation. Other interesting direc-
tions of future work include analytical bit allocation, view-
dependent 3D rendering, out-of-core compression of
gigantic point clouds, and efficient decoding and rendering
implementation on GPUs.

APPENDIX

THE GENERALIZED LLOYD ALGORITHM

GLA is employed to calculate the quantization ranges and
representatives along each dimension of the axis-aligned
bounding box in the new color frame F 0 such that the

overall quantization error is minimized along each dimen-
sion. For a given set of 1D color coordinates S ¼ fs1;
s2; . . . ; sNg, if k quantization representatives are to be
calculated, GLA can be stated as follows:

1. Initialization. Select randomly an initial representa-
tive set R0 ¼ fr1; r2; . . . ; rkg from S.

2. Iterative partition. For l ¼ 1; 2; � � � , we perform the
following:

. Partition S into nonoverlapping subsets P1;
P2; . . . ; Pk using the nearest neighbor rule;
namely, S ¼

S
i2f1;2;...;kg Pi, Pi \ Pj ¼ ; for all

i 6¼ j, and Pi ¼ fsjdðs; riÞ � dðs; rjÞ; 81 � j � k;
s 2 Sg, where dð:Þ is a distance metric.

. Compute the new centroid ri from all coordi-
nates in Pi, 1 � i � k, update representative set
Rl with the k new centroids, and calculate the
distortion:

El ¼
1

n
�k
i¼1�p2Pidðp; riÞ:

3. Stopping criterion. The above iteration stops if either
ðEl�1 � ElÞ=El < � or l ¼ L, where � and L are design
parameters. Rl gives the final set of representatives.
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