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Abstract—Channel characterization and modeling are essential
to the wireless communication system design. A model that opti-
mally represents a fading channel with a variable-length Markov
chain (VLMC) is proposed in this paper. A VLMC offers a general
class of Markov chains whose structure has a variable order and
a parsimonious number of transition probabilities. The proposed
model consists of two main components: 1) the optimal fading
partition under the constraint of a transmission policy and 2) the
derivation of the best VLMC representation with respect to the
Kullback–Leibler (K–L) distance of fading samples. The fading
partition is used to discretize a continuous fading channel gain.
The optimal discretization criterion is developed based on the cost
function of fading channel statistics and the transmission policy
used in the system. Once a continuous fading channel gain is
discretized, a VLMC is then used to model the channel. To obtain
the optimal VLMC representation, we use the K–L distance of
the discretized fading samples as the optimization criterion. The
K–L distance of the discretized fading samples is used to determine
the appropriate transition probabilities characterizing the optimal
VLMC. Last, we show simulation results that demonstrate the
accuracy and the effectiveness of the proposed fading channel
representation in modeling the Rayleigh fading as well as the
lognormal fading.

Index Terms—Channel modeling, fading partition,
Kullback–Leibler (K–L) distance, Lagrangian optimization,
variable-length Markov chain (VLMC).

I. INTRODUCTION

THE KNOWLEDGE of wireless fading channels plays an
important role in the wireless communication system de-

sign. This is particularly true in allocating resources and select-
ing a suitable transmission policy to match the instantaneous
fading channel condition [16], [23], [51], [52]. To represent a
fading channel, one may use a mathematical model [1], [2],
[28], [49] in terms of a probability density function (pdf) or
a discrete Markov model. To analyze the error performance
of a digital modulation scheme over a fading channel, the pdf
of a continuous channel gain is typically used. However, it
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is difficult to use the continuous channel model to analyze
the performance of upper layer protocols (e.g., medium access
control, transport layer protocols) due to the complex inte-
gration involved [21], [24], [26], [41], [48]. To simplify the
fading channel modeling and reduce the analysis complexity,
a discrete Markov model is often adopted as an alternative [12],
[15], [24], [34], [40], [43], [45], [51], [52].

There are a couple of challenging issues to be addressed
in making the discrete Markov model an accurate and useful
tool for the wireless fading channel representation. They are
elaborated below. First, the exact fading envelope or the fad-
ing channel SNR distribution is unknown in practice. Thus,
the fading channel model with a discrete Markov model un-
der the assumption of a given fading SNR distribution (e.g.,
the Rayleigh, Rician, or Nakagami distribution [39]) may
not match well with actual measurements. Second, the first-
order Markov model, which is the most popular discrete
Markov model in representing fading channels [12], [15], [24],
[34], [40], [43], [45], [51], [52], may not accurately model
fading channels in all environments [40]. For example, a differ-
ent Doppler rate may cause a different coherence time. Then,
the search of the optimal order of a discrete Markov chain in
fading channel modeling has to be studied. Third, the number of
parameters characterizing a discrete Markov model should be
small to simplify its structure and the performance analysis of
a wireless communication system design. It is possible to have
multiple Markov models representing the same fading channel
with a given number of transition probabilities at the same time.
The challenge is to derive a discrete Markov model that best
represents the statistical property of a fading process from sev-
eral Markov models. Last, the transmission policy that is used
by a wireless communication system, e.g., adaptive modulation
[16], should be considered in discrete Markov modeling.

To address the above issues, in this paper, we present a model
that optimally represents a fading channel with a variable-
length Markov chain (VLMC) [5]. A VLMC provides a general
class of Markov chains that has a variable order and parsimo-
nious number of transition probabilities. Our main idea can
be simply stated as follows. The proposed modeling technique
consists of two main parts: 1) optimal fading partitioning under
the constraint on a transmission policy and 2) derivation of the
best VLMC representation with respect to the Kullback–Leibler
(K–L) distance criterion. In part 1), there are three steps of
the fading partition, which is used to discretize a continuous
fading channel gain. First, a kernel density estimation (KDE)
scheme is used to estimate the pdf of the fading channel gain.
Second, the quantization of the continuous channel gain is
formulated as a constrained optimization problem. Third, a
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Fig. 1. Diagram of the proposed VLMC channel model.

relaxation method based on the Lagrange multiplier is used
to solve the constrained optimization problem to provide the
optimal solution to the fading partition. Once a continuous
fading channel gain is quantized, a VLMC is used to model the
channel. To obtain the optimal VLMC representation in part 2),
we use the K–L distance as the optimization criterion and
formulate the VLMC modeling as a constrained optimization
problem. The Lagrangian optimization technique is then used to
select the optimal VLMC representation that best approximates
the statistics of the fading channel under a constraint on the total
number of transition probabilities. When the fast channel mod-
eling is desired, some steps of the optimal channel modeling
method can be omitted and replaced with a fast VLMC channel
modeling algorithm. Fig. 1 shows the flow of our proposed
algorithm. There are three main inputs of the proposed channel
modeling: 1) the number of fading partitions; 2) the number
of transition probabilities characterizing VLMC; and 3) a set
of fading SNR samples. The number of fading partitions and
the number of transition probabilities are adjustable parameters.
They control the complexity of the VLMC fading channel
model.

The rest of this paper is organized as follows. Previous work
in fading channel modeling with a discrete Markov process
is reviewed in Section II. The fading partition under a trans-
mission policy using the relaxation method is presented in
Section III. The optimal fading modeling with a VLMC based
on the K–L distance and the Lagrangian optimization technique
is presented in Section IV. The fast VLMC channel modeling
is also described in Section IV. Some properties of the VLMC
are discussed in Section V. Applications of the proposed fading
model are described in Section VI. Simulation results for the
proposed channel modeling are shown in Section VII. Last,
concluding remarks are given in Section VIII.

II. REVIEW OF PREVIOUS WORK AND

RESEARCH MOTIVATION

Wireless fading channel modeling with discrete Markov
models has been thoroughly examined in the past. We perform

a brief review on previous work and then describe our research
motivation.

A. First-Order Markov Model

The efforts in [12], [15], [24], [34], [40], [43], [45], and
[50]–[52] have focused on the use of the first-order Markov
model to represent the fading channel and use the derived
result in the design of a wireless communication system. Elliot
[12] and Gilbert [15] first proposed the use of a finite-state
Markov chain (FSMC) model to approximate a lossy channel
with memory. The mapping from a physical fading channel
to the first-order discrete Markov model was proposed by
Wang and Moayeri [44] with the Rayleigh fading statistics.
Sajadieh et al. [34] used the first-order continuous-time Markov
double chain to model the Rayleigh fading channel and com-
pute the Markov state dwell time. Similarly to [44], Zhang and
Kassam [50] examined the first-order Markov model to repre-
sent the Rayleigh fading channel. The error trace in the net-
work layer was studied using the first-order Markov model by
Konrad et al. [24]. The application of the first-order Markov
model to protocol design and performance analysis was consid-
ered in [40], [43], [51], and [52]. The effort included the design
of forward error correction codes and the throughput analysis
of the automatic repeat request (ARQ) scheme.

B. Other Markov Models

There have been some attempts to use higher order Markov
models [3], [4] and the hidden Markov model (HMM) to
represent fading channels. Babich et al. [4] used the context tree
approach to model fading channels, where the derived Markov
model has a variable order. Babich and Lombardi [3] used a
contingency table to determine the order of the Markov chain
and used the narrow-band Rayleigh and Rician statistics to
compute state transition probabilities. The HMM was adopted
to represent fading channels in [37] and [42]. Sivaprakasam and
Shanmugan [37] used the Baum–Welch algorithm to estimate
the HMM parameters. The fading channel modeling with the
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HMM was also discussed by Turin and van Nobelen [42], where
HMM parameters were computed from computer-generated
data. They used the derived HMM for fading statistical analysis
(e.g., the fade duration), which is difficult to compute based on
the continuous fading channel model.

C. Research Motivation

The first-order Markov assumption for fading channel mod-
eling was verified by Wang and Chang [45], which was,
however, questioned by Tan and Beaulieu [40]. Even with the
possible limitation of the first-order Markov model in represent-
ing the fading channel, Tan and Beaulieu [40] did not attempt to
get a better fading channel model using a higher order Markov
model under the constraint on the number of transition prob-
abilities. Although higher order Markov models and HMMs
were used to enhance the fading modeling accuracy, the optimal
Markov model representation (e.g., the optimal order and the
optimal number of states) has not been addressed. Moreover, a
fading partition that takes into account the accuracy of channel
parameters and the objective of a transmission policy was not
considered before. These are the main research motivations of
this paper.

III. OPTIMAL FADING PARTITION UNDER A

TRANSMISSION POLICY

Before presenting the channel model, we describe a general
methodology for a modem-layer channel modeling. A modem-
layer channel consists of a digital modulator, a fading chan-
nel, and a demodulator [48], and it can be modeled by an
FSMC whose states are characterized by different bit error
rates (BERs). For example, a modem-layer channel with the
Rayleigh fading and a certain Doppler spectrum can be con-
verted to an FSMC with different BER states. The basic idea of
this modeling process can be stated as follows.

1) Discretize the continuous Rayleigh random variable into
a discrete random variable based on some optimal crite-
rion (e.g., the minimum mean square error).

2) Map the resulting discrete random variable or SNR to
a set of discrete BER values for a given modulation
scheme, for example, BPSK.

3) Estimate the state transition probabilities that reflect the
Doppler spectrum.

This procedure gives the states (in terms of different BER
values) and the transition probability matrix of the Markov
chain.

Being different from the above modem-layer channel model
that assumes a fixed modulation scheme such as BPSK, our
channel model is more general in the sense that it can incorpo-
rate advanced transmission policies, e.g., adaptive modulation,
so that the mapping from an SNR to a BER is dynamic
depending on the SNR value.

We first consider a set of fading sampled SNRs obtained from
a fading process as Γ = {γ1, . . . , γL}, where γi is the SNR
sample i of the fading process, and L is the total number of
SNR samples in Γ. The pdf of fading SNRs can be derived
from SNR samples in Γ, which are not necessary to be in the

Fig. 2. Partition of a fading channel SNR range.

log-scale domain (i.e., decibel domain). In other words, we
can directly use the fading gain in the linear-scale domain to
derive the pdf of fading SNRs. This is highly dependent on
the availability of the measured fading data. Here, we use the
KDE [46] to estimate the pdf of a fading SNR, which can be
expressed as

f̂(γ) =
1

L × h

L∑
i=1

K

(
γ − γi

h

)

where K(·) is an arbitrary pdf (e.g., the normalized Gaussian
distribution with zero mean and unit variance) and has a
bandwidth equal to h. To compute the optimal h to give the
best match between the estimated and actual pdf’s of the
fading process, an iterative approach called the solved equation
method [46] is used. Note that the pdf estimation can be done
by other methods such as linear regularization [31].

Consider a fading partition scheme that partitions the whole
fading SNR range of the estimated pdf to be U intervals as

∆ = {α1, . . . , αU−1}, γlower ≤ α1 ≤ · · · ≤ αU−1 ≤ γupper

where [αi−1, αi) is the interval i bounded by αi−1 and αi, and
γlower and γupper are the endpoints on the left and on the right of
the estimated pdf, respectively, as shown in Fig. 2. Each fading
partition is viewed as one channel state, and it has its own fading
channel parameters for characterizing the channel condition.
For example, if we partition the whole range of a fading SNR
to two intervals, one of them represents the good channel state
(i.e., with the low bit error probability), whereas the other
represents the bad channel state (i.e., with the high bit error
probability). In other words, the physical meaning of the fading
partition is to discretely categorize the fading channel based
on channel conditions. These partitions representing different
fading channel conditions are characterized by fading channel
parameters, such as the average probability of bit errors.

To compute the optimal fading partition, we jointly consider
two criteria: 1) the accuracy of fading channel parameters char-
acterizing the fading partition and 2) the objective of the wire-
less communication system design. For the first criterion, the
fading channel parameters of the model should be as close as
possible to those of the actual fading. For the second criterion,
we need to meet the objective of the wireless communication
system design when the specific transmission policy is adopted.
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We use Ca(∆) and Cb(∆) to denote the cost functions for
the accuracy of fading channel parameters and the objective of
the wireless communication system, respectively. We consider
Ca(∆) first. The bit error probability of the fading channel,
which is a function of the fading channel condition and the
transmission policy, is used as a parameter in Ca(∆). We try
to minimize the difference of the bit error probability between
the actual fading and that obtained from the fading partition.
Then, we have

Ca(∆) =
U∑

i=1

αi∫
αi−1

(ei{πi} − Pb{γ, πi})2 × f̂(γ)dγ (1)

where Pb{γ, πi} is the bit error probability of the actual fading
channel with transmission policy πi when SNR = γ and α0 =
γlower, αU = γupper, f̂(γ) is the estimated fading SNR pdf,
and ei{πi} is the average bit error probability characterizing
the fading partition [αi−1, αi) with transmission policy πi.
Transmission policy πi specifies the transmission scheme (e.g.,
a modulation type) for the fading partition [αi−1, αi). In dif-
ferent fading partitions, it is not necessary to have the same
transmission policy. Here, we adopt the adaptive modulation
scheme [16] as the transmission policy, which uses possibly
different modulation schemes under different fading channel
conditions.

For Cb(∆), our objective of a transmission policy is to limit
the average bit error per symbol, which is the product between
the number of bits per symbol of the modulation and the bit
error probability of the actual fading channel. The cost function
can be written as

Cb(∆) =
U∑

i=1

αi∫
αi−1

Bi × Pb{γ, πi}f̂(γ)dγ (2)

where Bi is the number of bits per symbol of the modulation
that is used in the interval i (e.g., if transmission policies πi and
πi+1 of fading interval i and i + 1 are BPSK and QPSK and Bi

and Bi+1 are one and two bits, respectively).
Based on the cost functions defined above, our problem can

be formulated as follows.
1) Problem 1—Optimal Fading Partition Under a Transmis-

sion Policy: Find the optimal fading partition ∆∗ such that

min
∀∆

Ca(∆) (3)

subject to

Cb(∆) ≤ Cb,target (4)

where Cb,target is the targeted limitation of the bit error per
symbol.

The solution to Problem 1 can be obtained by minimizing a
Lagrangian cost function, which is defined as

Jp(λp,∆) = Ca(∆) + λpCb(∆) (5)

where Jp(λp,∆) is the combined cost function of Ca(∆) and
Cb(∆), and λp is the Lagrange multiplier. There are two sets of

variables in the cost function given in (5), i.e., the fading par-
tition ∆ = {α1, . . . , αU−1} and a set of bit error probabilities
for the fading partition, i.e., E = {e1(π1), . . . , eU−1(πU−1)}.

To minimize Jp(λp,∆) in (5), we can first take its derivative
with respect to ei{πi} and set it to zero, which leads to

ei{πi} =

∫ αi

αi−1
Pb{γ, πi}f̂(γ)dγ∫ αi

αi−1
f̂(γ)dγ

, i = 1, 2, . . . , U. (6)

Similarly, we can take the derivative of Jp(λp,∆) in (5) with
respect to αi and set it to zero, which yields

(ei{πi} − Pb{αi, πi})2 − (ei+1{πi+1} − Pb{αi, πi+1})2

= λp [Bi+1 (1 − Pb{αi, πi+1}) − Bi (1 − Pb{αi, πi})]
i = 1, 2, . . . , U. (7)

Thus, we obtain a system of nonlinear equations (6) and (7),
which can be solved by the relaxation method as described
below.

Algorithm 1: Relaxation method to obtain the optimal fading
partition

Step 1) Select a value for λp, and initialize with a fading
partition (for example, the uniform partition).

Step 2a) Compute ei{πi}, i = 1, . . . , U − 1, from the given
fading partition using (6).

Step 2b) Use the value of ei{πi}, i = 1, . . . , U − 1 from
Step 2a) to compute the fading partition αi, i =
1, . . . , U − 1, using (7).

Step 2c) We iterate between Steps 2a) and 2b) until a con-
verged fading partition is reached. This converged
fading partition is the optimal fading partition for the
given λp value.

Step 3) Go to Step 1) to adjust the value of λp so that the
solution meets the constraint of the averaged bit
error per symbol.

From the above algorithm, an iterative approach, where several
λp’s are tried until an appropriate solution is found, is required.
Note that we use the bit error probability and the average bit
error per symbol as parameters to set up the above optimization
framework. However, it is possible to modify the optimization
framework by accommodating various channel parameters and
transmission policies of interest. Note that from our experiment,
the number of iterations, which is commonly required to obtain
a fading partition, is about ten.

IV. VLMC MODELING OF FADING CHANNELS

In this section, we explain the method to fit the discretized
fading samples to the VLMC. The objective in VLMC model-
ing is to obtain the model that behaves as close as possible to
the actual fading process. We review a concept of the VLMC in
Section IV-A. The method in fitting discretized fading samples
with the VLMC is described in Sections IV-B and C. The fast
VLMC channel modeling is given in Section IV-D.
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Fig. 3. Context tree structure of a VLMC. NS stands for the next state
corresponding to a current state and a transition probability.

Fig. 4. Finite state machine representation of the VLMC.

A. VLMC

The VLMC [6], [47] is a Markovian process whose structure
has a sparse memory with some states that are lumped together.
The structure of the VLMC can be characterized by a variable
order and a parsimonious number of transition probabilities.
The VLMC can be represented by either a context tree or
a finite state machine. We can derive a finite state machine
representation directly from a context tree representation of the
VLMC. An example of a context tree and a finite state machine
representation of the VLMC is illustrated in Figs. 3 and 4,
respectively. The VLMC in the example has a variable order,
namely, one state is characterized by the first-order Markov
chain (i.e., state a), whereas the others are characterized by the
second-order Markov chain (i.e., states ba and bb).

To describe the VLMC in detail, we first define the finite
categorical space χ as an arbitrary set of letters that represent all
possible data values that are generated from a Markov process.
For example, the finite categorical space in Fig. 3 is χ = {a, b}.
The context function and the variable-length memory can be
introduced to serve as tools in VLMC construction [6].
Definition 1: Let (xt)t∈Z be a time series, where xt

−l+1+t =
x−l+1+t, . . . , xt, with value xt ∈ χ. We define a function,
which is denoted by Ψ, that maps an infinite sequence (an
infinite past) to a possibly shorter string as

Ψ : xt
−∞ → xt

−l+1+t

where

l = l
(
xt
−∞

)
= min

{
k;P

{
xt+1|xt

−∞
}

= P
{
xt+1|xt

−k+1+t

}
,∀xt+1 ∈ χ

}
.

Then, Ψ(·) is called a context function, and Ψ(xt
−∞) =

xt
−k+1+t is called a context of the process time t with length k.

Let 0 ≤ ζ ≤ ∞ be the smallest integer such that

l(xt
−∞) ≤ ζ, ∀xt

−∞ ∈ χ∞.

Then, ζ is called the order of the context function Ψ(·), and, if
ζ ≤ ∞, (xt)t∈Z is called a VLMC of order ζ.

It is obvious from the above definition that the VLMC
of order ζ is a Markov chain of order ζ with an additional
structure having variable order l inside its structure. The context
represents how previous data values of the Markov process
contribute to the knowledge of the incoming data values, and
the length of the context corresponds to the number of past
data. For example, the context function for the VLMC given
in Figs. 3 and 4 is

Ψ
(
xt−1
∞

)
=




a, xt−1 = a,xt−2
∞ arbitrary

ba, bb, xt−1 = b, xt−2 ∈ {a, b}
xt−3
−∞ arbitrary.

Thus, the corresponding transition probabilities can be ex-
pressed as

P{xt|xt−1, . . .} =
{

P{xt|xt−1 = a}
P {xt|xt−1 = b, xt−2 ∈ {a, b}} .

Given the contexts of a VLMC, we can represent it as a
context tree that is defined as follows.
Definition 2: Let Ψ(·) be a context function of the VLMC.

Its context tree τ is defined as

τ =
{
ωl : ωl = Ψ

(
xt
−∞

)
, ωlu /∈ τ,∀u ∈ χ, l ≤ ζ

}
where ωl is a context of length l corresponding to the nodes
of the tree, and ωlu is the concatenation of context ωl and
alphabet u, where u ∈ χ.

The context tree structure of the VLMC does not have to be
complete. It depends only on those contexts that have an influ-
ence on the occurrence of incoming data values, thus reducing
the number of parameters of a complete Markov model. The
terminal nodes of the tree (i.e., the node that does not possess
children nodes or the node that does not possess children nodes
equaling |χ|l+1, where l is the length of a context corresponding
to the considering node) will represent the state of the VLMC,
whereas the depth of the tree corresponds to the order of the
VLMC. Fig. 3 gives a tree structure representing the second-
order three-state VLMC with three terminal nodes and one
internal node (node O). Only terminal nodes are used in the
VLMC channel model, where there are a total of three states
of the VLMC corresponding to terminal nodes. The depth of
the tree is equal to two. This means that the maximum order of
the VLMC is equal to two. In contrast, the complete second-
order Markov model has four terminal nodes, which are nodes
corresponding to aa, ab, ba, and bb. As we can see, the VLMC
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lumps nodes aa and ab of the complete second-order Markov
model together. It implies that the structure of the VLMC is less
complex than a higher order Markov model.

In this paper, we use the VLMC to model fading channels
by exploring the time-varying nature of the Doppler rate or the
coherence time. For example, we can use a high-order or a low-
order Markov chain to characterize a channel with long or short
coherence time while maintaining low description complexity
with the VLMC. In other words, when the fading is changing
with time, the structure and the parameters of the VLMC
fading channel model can optimally capture these variations.
In the next two subsections, we propose a method to obtain the
optimal VLMC representation of fading channels constrained
by the number of transition probabilities.

B. Fading Channel Modeling: Problem Formulation

A VLMC model can be built based on a set of measured
fading SNR values and a finite categorical space χ, where each
letter represents an interval in a fading partition, as described in
Section III. To be more specific, we use Γ = {γ1, γ2, . . . , γL}
to denote a set of measured fading SNR values and A =
{x1, x2, . . . , xL} to represent a letter sequence that is obtained
by assigning a letter in χ to every measured fading sample in
Γ. To give an example, if γ1 is between [α0, α1] in Fig. 2,
we assign the letter “a” to x1. We call the letters in A the
discretized fading samples.

To characterize a context tree or a VLMC, we need to
compute the probability and the transition probability of a
context. The probability of context ωl can be written as

P
{
xk+l−1
k = ωl

}
=

N(ωl)
L − l + 1

(8)

where ωl is a context with length l in A, and N(ωl) is the num-
ber of contexts ωl obtained from A. The transition probability
can be expressed as

P
{
xk+l = u0|xk+l−1

k = ωl

}
=

N(ωlu0)
N(ωl)

(9)

where N(ωlu0) is the number of contexts ωlu0, which is the
concatenated context of context ωl and letter u0, and P{xk+l =
u0|xk+l−1

k = ωl} is a transition probability given that the past
sequel of letters is equal to context ωl with the incoming data
equal to u0 ∈ χ. To obtain N(ωl) and N(ωlu0), the sliding
window with length l is used to count the number of contexts
that are existing in A.

The closeness of two transition probabilities with contexts ωl

and ωlu can be measured using the K–L distance [11], [27], i.e.,

ρ
(
P

{
xk+l = u0|xk+l−1

k−1 = ωlu
}
‖

P
{
xk+l = u0|xk+l−1

k−2 = ωl

})
= P{xk+l = u0|xk+l−1

k−1 = ωlu}

× ln
P{xk+l = u0|xk+l−1

k−1 = ωlu}
P{xk+l = u0|xk+l−1

k−2 = ωl}
. (10)

The smaller the K–L distance, the closer these two transition
probabilities. When the K–L distance is close to zero, there is

little contribution in the knowledge improvement of incoming
letter u0 from the concatenated context ωlu, where u ∈ χ, as
compared with context ωl alone. To give an example, suppose
that the K–L distance in (10) between ωlu = ab and ωl = a is
close to zero. This shows that contexts ab and a have almost the
same contribution to the knowledge improvement of incoming
letter u0 ∈ χ. Therefore, there is no need to concatenate letter b
to context a, and the Markov state corresponding to context ab
is not included in the VLMC structure.

There could be more than one VLMC to represent the same
fading channel. To select the optimal one, the tradeoff between
the model complexity and its accuracy in reflecting the station-
ary process of the fading channel has to be balanced. The com-
plexity of a VLMC model can be measured in terms of the
number of states and the number of transition probabilities. The
summation of the K–L distances of terminal nodes of a context
tree for the VLMC channel model Υ can be written as

DΥ

(
P

{
xk+l = u0|xk+l−1

k−1 = ωlu
}
‖

P
{
xk+l = u0|xk+l−1

k−2 = ωl

})
=

∑
∀ωlu∈τt

ρ
(
{P{xk+l = u0|xk+l−1

k−1 = ωlu}‖

P
{
xk+l = u0|xk+l−1

k−2 = ωl

})
(11)

where τt is a set of terminal nodes of the context tree of VLMC
Υ, and l ≤ ζ is the length of a context that is associated with
a terminal node. The smaller the summed K–L distance of all
terminal nodes is, the better the VLMC represents the statistical
property of a fading process that is represented by the letters
in χ. We have the following theorem about the summed K–L
distance of terminal nodes.
Theorem 1—Convexity of the Summed K–L Distance of Ter-

minal Nodes: DΥ(P{xk+l = u0|xk+l−1
k−1 = ωlu}‖P{xk+l =

u0|xk+l−1
k−2 = ωl}) is a convex function in a set of transition

probabilities of VLMC terminal nodes.
The proof of Theorem 1 is given in the Appendix.
The problem of determining the optimal VLMC channel

representation can be formulated as follows.
Problem 2—Optimal VLMC Channel Representation: Find

the optimal VLMC channel representation Υ∗ such that

min
Υ

DΥ

(
P

{
xk+l = u0|xk+l−1

k−1 = ωlu
}
‖

P{xk+l = u0|xk+l−1
k−2 = ωl}

)
(12)

subject to

NΥ ≤ NΥ,target

where DΥ(P{xk+l=u0|xk+l−1
k−1 =ωlu}‖P{xk+l=u0|xk+l−1

k−2 =
ωl}) is the summed K–L distance between all terminal nodes
and their parent nodes corresponding to a context tree of VLMC
(Υ), and NΥ,target is the number of transition probabilities
that are allowed to characterize the optimal VLMC channel
representation.
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C. Fading Channel Modeling: Problem Solution

Due to the convexity of the summed K–L distance of the
VLMC terminal nodes, we can use the Lagrangian optimization
technique to solve Problem 2 in search for the optimal VLMC
model. For the minimization problem in Problem 2, we can
define the following cost function:

Jc(λc) = DΥ

(
P

{
xk+l = u0|xk+l−1

k−1 = ωlu
}
‖

P
{
xk+l = u0|xk+l−1

k−2 = ωl

} )
+ λcNΥ (13)

where λc is the Lagrange multiplier. The solution procedure
consists of two steps: 1) constructing the summed K–L distance
characteristic curve and 2) searching the optimal VLMC repre-
sentation. They are detailed below.
1) Constructing the Summed K–L Distance Characteristic

Curve: The summed K–L distance characteristic curve char-
acterizes the relationship between the summed K–L distance
of terminal nodes from a context tree of a VLMC model and
its number of transition probabilities. It is built by considering
several possible context trees representing the same discretized
fading process A. Here, we limit the maximum depth of a
context tree (or the maximum order of the VLMC) to ξmax to
control the size of a context tree. The algorithm for constructing
the summed K–L characteristic curve is described below.

Algorithm 2: Construction of the summed K–L distance
characteristic curve

Initialization: Initialize the root node of a tree.
Step 1) Let l = 1 be the size of a sliding window and ωl be

a context with length l. From A, compute P{xk+l
k−1 =

ωl}, P{xk+l+1 =u0|xk+l
k−1 =ωl}, and P{xk+l+1 =

u0|xk+l
k = ωlu} through a sliding window ∀u0, u ∈

χ, where ωlu is a context with length l + 1 obtained
from concatenating context ωl with u. Then, add
nodes corresponding to ωl in A to the tree.

Step 2) Repeat Step 1) until l = ξmax, which will give τ0.
Then, go to Step 3).

Step 3) For every context from A, compute ρ(P{xk+l=
u0|xk+l−1

k−1 =ωlu}‖ P {xk+l = u0|xk+l−1
k−2 = ωl}),

which is the K–L distance between P{xk+l =
u0|xk+l−1

k−1 =ωlu} and P{xk+l =u0|xk+l−1
k−2 =ωl}

for specific context ωlu and ωl from parameters that
are obtained in Step 1).

Step 4) Select threshold Tth and prune nodes corresponding
to context ωlu if
∣∣ρ (

P
{
xk+l = u0|xk+l−1

k−1 = ωlu
}

‖ P
{
xk+l = u0|xk+l−1

k−2 = ωl

})∣∣ < Tth. (14)

Repeat the pruning process for every node in τ0 until
the condition in (14) is not satisfied for all remaining
nodes.

Step 5) From the pruned tree, compute the summed K–L
distance of the terminal nodes of the tree. Repeat
Steps 4) and 5) for various threshold values, which
begins with τ0.

Fig. 5. Summed K–L distance characteristic curve and the process in using
the Lagrangian optimization to search for the optimal solution.

For different Tth, we obtain various pairs of the summed
K–L distance and the corresponding number of transition prob-
abilities, which gives the summed K–L distance characteristic
curve. An example is illustrated in Fig. 5.
2) Optimal VLMC Model: We use the bisection algorithm

[31] to search for λ∗
c from the summed K–L distance character-

istic curve, which provides the optimal VLMC representation
based on the cost function Jc(λc). Let DΥ(λc) and NΥ(λc)
be the summed K–L distance defined in (11) and the number
of transition probabilities of the VLMC channel model, respec-
tively. When the Lagrange multiplier is equal to λ∗

c, it gives the
optimal VLMC model. The bisection search algorithm can be
stated below.

Algorithm 3: The bisection algorithm to search for the
optimal VLMC

Initialization: Initialize with two values λu and λl such that
NΥ(λu) ≤ NΥ,target ≤ NΥ(λl).

Step 1) Set λnext = ((DΥ(λl) − DΥ(λu))/(NΥ(λl)−
NΥ(λu))) + ε, where ε is an arbitrarily small
positive number, which is added to ensure that the
smallest number of channel parameters is selected
if λnext is a singular slope value. Perform the
optimization process in (13) for λc = λnext.

Step 2) If NΥ(λnext) = NΥ,target, then stop. Otherwise, set
λl = λnext if NΥ(λnext) ≥ NΥ,target, or set λu =
λnext if NΥ(λnext) ≤ NΥ,target. Go to Step 1).

D. Fast VLMC Channel Modeling Algorithm

The methods described in Sections III and IV-C1 and 2 find
the optimal representation of a fading channel with a fixed
number of transition probabilities. The optimal VLMC provides
a bound on the representation of the fading channel in terms of
statistical properties, which are measured by the K–L distance.
In this section, we describe a fast algorithm to compute the
VLMC channel model to significantly reduce the complexity
of channel modeling. The input parameters to this process are
the number of fading partitions and the number of transition
probabilities. The algorithm can be stated as follows.
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Algorithm 4: Fast VLMC channel modeling
Initialization: We are given the number of fading parti-
tions U , the number of transition probabilities, and a set of
fading samples, where all fading samples are discretized
based on their SNR intervals.

Step 1) Perform Steps 1) to 3) as given in Algorithm 3. If
the total number of transition probabilities corre-
sponding to the current context tree does not exceed
the given number of transition probabilities, we can
terminate the algorithm and use the VLMC channel
model corresponding to the context tree as a channel
model. If this condition fails to hold, go to Step 2).

Step 2) Prune the node of the tree corresponding to context
ωlu that has the lowest |ρ(P{xk+l =u0|xk+l−1

k−1 =
ωlu}‖P{xk+l =u0|xk+l−1

k−2 =ωl})|. Then, compute
the number of transition probabilities of the pruned
tree. If it does not exceed the given number of
transition probabilities, terminate the algorithm and
use the VLMC channel model corresponding to the
context tree as a channel model. Otherwise, repeat
Step 2) until the desired VLMC channel model is
obtained.

V. PROPERTIES OF THE VLMC CHANNEL MODEL

Several properties of the VLMC channel model are examined
in this section. With a given fading partition, we may have
new contexts added to the VLMC channel model. The mutual
information of discretized fading samples is studied in the fol-
lowing theorem, which sheds light on the correlation between
discretized fading samples.
Theorem 2—Mutual Information Property of the VLMC:

Consider a fading process, which is stationary and ergodic, and
two VLMC models Υ and Υe, where Υe is derived from Υ
by adding node/nodes to the context tree of Υ, which results
in an order increase. Let Me and M be orders of Υe and Υ,
respectively. The letter xi, which is an element of χ, represents
a discretized fading sample at time i. Then, we have

Ie

(
xM+1;xM

1

)
≥ I

(
xM+1;xM

1

)
(15)

where Ie(xM+1;xM
1 ) and I(xM+1;xM

1 ) denote the mutual
information [11] of discretized fading samples at time M + 1,
given the knowledge of the past discretized fading samples from
time 1 to M obtained from Υe and Υ, respectively.

The proof of Theorem 2 is given in the Appendix. This theo-
rem implies that the discretized fading samples before adding
new contexts decorrelate faster than those after adding new
contexts. In other words, the correlation among the discretized
fading samples increases when they are represented by a higher
order VLMC. This result is also proven by experiments as
shown in Figs. 12 and 13 in Section VII for the lognormal
fading environment.

The next two theorems are developed to study the effect from
changing the number of fading partitions to the property of
discretized fading samples. First, we study the mutual infor-

mation of the VLMC when the number of fading partitions is
increased by splitting the partition. Then, we derive the bound
on the mutual information reduction when the fading partitions
are merged.
Theorem 3—Asymptotic Mutual Information of the VLMC

After the Split of One Interval: Consider a stationary and
ergodic fading process. Two subintervals (αi−1, δ] and (δ, αi]
are obtained by splitting the interval (αi−1, αi] into two. Define

pi,1 =

δ∫
αi−1

f̂(γ)dγ, pi,2 =

αi∫
δ

f̂(γ)dγ,

pi = pi,1 + pi,2 =

αi∫
αi−1

f̂(γ)dγ,

HK = −
K∑

j=1

pj ln pj

HK+1 = −
K∑

j=1,j 	=i

pj ln pj − pi,1 ln pi,1 − pi,2 ln pi,2

where pi is the average probability of the partitioned interval i;
pi,1 and pi,2 are the average probabilities of the two subintervals
that are obtained from splitting the interval i; and HK and
HK+1 are entropies of discretized fading samples before and
after splitting the partitioned interval, respectively. Further-
more, let M be the maximum order of the VLMC and L be the
number of discretized fading samples from the fading process
used for constructing the VLMC with the size sufficiently large.
Then, the mutual information of the discretized fading sam-
ples xM+1 and xM , . . . , x1 after splitting IK+1(xM+1;xM

1 )
increases with probability 1 if

pi,1 ln
(

pi,1 + pi,2

pi,1

)
+ pi,2 ln

(
pi,1 + pi,2

pi,2

)

≥ (K + 1)Le−LHK+1HK+1. (16)

Theorem 4—Asymptotic Mutual Information of the VLMC
After Merging Two Intervals: Consider a stationary and ergodic
fading process. Let (αi−1, αi+1] be the interval obtained by
merging two neighboring intervals (αi−1, αi] and (αi, αi+1].
Define

pi =

αi∫
αi−1

f̂(γ)dγ, pi+1 =

αi+1∫
αi

f̂(γ)dγ

pi,i+1 = pi + pi+1 =

αi+1∫
αi−1

f̂(γ)dγ.

In other words, pi and pi+1 are the average probabilities of in-
tervals i and i + 1, respectively, and pi,i+1 is the average prob-
ability of the interval after merging i and i + 1. Furthermore,
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we can express entropies of discretized fading samples before
and after merging fading partitions as

HK+1 = −
K+1∑
j=1

pj ln pj

HK = −
K+1∑

j=1,j 	=i,i+1

pj ln pj − pi,i+1 ln pi,i+1

respectively. Let M be the maximum order of the VLMC and
L be the number of discretized fading samples from the fading
process used for constructing the VLMC when the size is suffi-
ciently large. Then, the mutual information of the discretized
fading samples yL and IK(yM+1;yM

1 ) will be decreased at
most by the following amount:

KLHKe−LHK + pi ln
pi,i+1

pi
+ pi+1 ln

pi,i+1

pi+1
. (17)

The proofs of Theorems 3 and 4 are given in the Appendix.
When we split an interval in the fading partition, the cor-

relation between discretized fading samples may increase or
decrease. However, if the conditions in Theorem 3 are met, we
can guarantee with probability 1 that the correlation between
discretized fading samples increases. Theorem 3 also implies
that, to achieve a good approximation of the statistical property
of a fading process, the process of fading partition and VLMC
channel modeling should be jointly considered. Theorem 4
gives a lower bound on the mutual information reduction when
the number of fading partitions is reduced. In other words, the
correlation of discretized fading samples after merging intervals
in a fading partition will reduce at most by that corresponding
to the derived lower bound of the mutual information reduction.

The next theorem specifies the relationship of the
K–L distances of parent and child nodes in a context tree in
terms of mutual information and entropy.
Theorem 5—Average K–L Distance Between Parent and

Child Nodes of a Context Tree: Let M be the maximum order
of the VLMC, u the letter of χ representing the partition, and
ωM−1 a context with length M−1. Define Davg(P{xM+1 =
u0|xM

1 ωM−1u}|‖P{xM+1=u0|xM
2 ωM−1}), which is the aver-

age K–L distance between P{xM+1 = u0|xM
1 ωM−1u} and

P{xM+1 = u0|xM
2 ωM−1} for all contexts ωM−1 with length

M − 1. I(xM+1 = u0;xM
2 =ωM−1) and I(xM+1=u0;xM

1 =
ωM−1u) are the mutual information of u0 and ωM−1, as well
as u0 and ωM−1u, respectively. Hp(P{xM+1 = u0|xM

1 =
ωM−1u}‖P{xM+1 = u0|xM

2 ωM−1}) is the cross entropy
between P{xM+1 = u0|xM

2 = ωM−1} and P{xM+1 =
u0|xM

1 = ωM−1u}, and H(xM+1 = u0|xM
2 = ωM−1) is the

conditional entropy of u0 given the knowledge of context
ωM−1. Then, we have

Davg

(
P{xM+1 = u0|xM

1 = ωM−1u}‖

P{xM+1 = u0|xM
2 = ωM−1}

)
= 
I + 
H (18)

where


I = I(xM+1 = u0;xM
2 ωM−1)

−I(xM+1 =u0;xM
1 = ωM−1u) (19)


H =Hp

(
P{xM+1 = u0|xM

1 ωM−1u}‖

P{xM+1 =u0| xM
2 = ωM−1}

)
−H(xM+1 =u0|xM

2 = ωM−1). (20)

The proof of Theorem 5 is given in the Appendix. By
Theorem 5, we see that the K–L distance between parent and
child nodes of a context tree is the difference between the
information gained and the uncertainty reduction by increasing
the order of the VLMC. When they are equal, there is no need
to increase the order of the VLMC any longer since there is
no more uncertainty reduction of the discretized fading process
(i.e., the increase in mutual information).

VI. APPLICATIONS OF THE VLMC CHANNEL MODELING

In this section, we show the usage of the VLMC channel
model in two example applications, namely, the computation
of the average fade duration and the signal outage probability.

A. Average Fade Duration

The average fade duration of the small-scale fading (i.e.,
the Rayleigh fading channel) plays an important role in the
communication system design. It is related to the packet length
selection, the signal outage probability, and the size of the inter-
leaver that is used in error correction codes, as explained below.
In the digital broadcasting context, the packet length is often
chosen to be longer than the average fade duration, and an error-
correction code is used to correct the burst errors. In the full du-
plex mobile data communication system or the random access
system, the packet length can be selected to be shorter than the
average fade duration, and the ARQ scheme is used to retrans-
mit lost packets. For the signal outage probability, we can use
it to adaptively adjust the power of the transmitted signal along
with the fading channel conditions and the distance between the
transmitter and the receiver. The power adjustment can ensure
the probability that the strength of the received signal is small
in the fade period. Last, the size of the interleaver should be
larger than the fade duration to overcome burst errors so that
corrupted bits can be recovered by error correction codes.

It is difficult to obtain an analytical solution of the average
fade duration using the mathematical characterization of the
small-scale fading channel since it demands the knowledge of
the joint pdf between an SNR and its derivative [16], which is
difficult to obtain. Even if the joint pdf is available, a complex
integration has to be performed to analytically or numerically
obtain the average fade duration. In contrast, the computation
of the average fade duration of the small-scale fading using the
proposed VLMC channel model requires only addition, multi-
plication, and division operations. We show how to compute the
average fade duration using the VLMC channel model below.

Suppose that the VLMC consists of Jtot states corresponding
to U fading intervals, where fading interval j corresponds to the
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SNR range between γj−1 and γj . Note that Jtot ≥ U because
there may be more than one Markov state corresponding to one
fading interval. For example, suppose that U = 2. The fading
partitions are represented by letters a and b. If there are three
states of the VLMC corresponding to two fading partitions,
which are a, ba, and bb; therefore, Jtot = 3. Each state is
characterized by its context and transition probabilities. Based
on [25], the average time that the fade stays in state i can be
computed as

ηi =
1

Psum,i

where ηi is the average time that the SNR level stays in state i,
and Psum,i is the summation of the transition probabilities from
state i to other states. Furthermore, to compute the average
fade duration that the SNR is lower than γj , we can sum up the
average time for all states corresponding to the SNR intervals
below γj . In other words, suppose that Ωγj

is a set of the
VLMC states corresponding to SNR intervals below γj . Then,
the average fade duration below γj is equal to

Λγj
=

∑
∀i∈Ωγj

ηi

where Λγj
is the average fade duration below γj . As shown

above, the average fade duration computation requires only
addition, multiplication, and division operations without in-
volving a complex integration process.

B. Signal Outage Probability

The signal outage probability [39] can be computed by the
multiplication of the average fade duration and the average
number of fades per second. It gives the probability of the
received envelope level being less than γj . The average number
of fades per second across γj can be expressed as

Φγj
=

∑
∀i∈Θγj

Pcross,i × pi

where Θγj
is a set of VLMC states corresponding to SNR in-

tervals above γj , Pcross,i is the summation of transition proba-
bilities from state i to the states whose SNR is below γj , and pi

is the state probability of VLMC state i. Thus, the signal outage
probability with an SNR lower than γj is equal to Λγj

Φγj
.

VII. SIMULATION RESULTS

In this section, we present a sequence of computer simulation
results to demonstrate the main concepts discussed in previous
sections.

A. Channel Discretization Based on the Fading
SNR Distribution

The proposed fading partition scheme will be justified in
this subsection. First, we study the fading SNR distribu-
tion estimation using the proposed method as described in
Section III. It will help us to determine a suitable number
of fading samples used for channel modeling. The closeness

Fig. 6. K–L distance between the Rayleigh fading channel and the estimate
fading SNR distribution with different number of fading samples.

between the estimated and the actual fading SNR distributions
can be objectively measured using the following K–L distance:

D
(
f̂(γ)‖f(γ)

)
=

∞∫
−∞

f̂(γ) ln
f̂(γ)
f(γ)

dγ

where f̂(γ) and f(γ) denote the estimated and the actual fading
SNR distributions, respectively.

Fig. 6 shows the effect of the number of fading SNR samples
used on the K–L distance in an environment with a Rayleigh
fading channel and a normalized Doppler frequency equal
to 0.01 and 0.005. The more the number of fading samples
used, the smaller the K–L distance. Moreover, in the fading
environment with a larger normalized Doppler frequency, fewer
samples are required to obtain the same K–L distance. In other
words, to obtain an accurate estimation of the fading SNR
distribution, a fading environment with a larger normalized
Doppler frequency requires fewer fading samples than a fading
environment with a lower normalized Doppler frequency.

Next, we explore the performance of our proposed fading
partition algorithm as in Section III. Here, we use the proba-
bility of bit errors, as described in Section III, as our criterion.
First, we study the fading partition scheme when λp in (5) is
set to zero. In other words, the cost function that is given in (2)
is ignored. The number of intervals in a fading partition is set
at four, 10, and 16. The transmission policy in each interval
is fixed, which is chosen to be the BPSK modulation. Fifty
thousand samples of the Rayleigh fading gain with a normalized
Doppler frequency equal to 0.01 are generated in our simula-
tion. The Newton–Raphson method [33] is used to solve (7). To
show the channel modeling capability via the fading partition,
we compare the probability of bit errors of the Rayleigh fading
channel and that obtained from the fading partition model in
Fig. 7(a), where the effect on the interval number is shown.
When the interval number increases, the performance curves of
the fading partition are closer to those of the Rayleigh fading.
Fig. 7(b) shows the performance comparison of the proposed
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Fig. 7. Comparison of probabilities of bit errors. (a) Rayleigh fading channel and the proposed iterative fading partition mechanism with four, 10, and 16
intervals. (b) Rayleigh fading channel, the proposed iterative fading partition mechanism with 16 intervals, and the equal partition scheme.

TABLE I
RESULTS OF THE OPTIMAL FADING PARTITION, WHERE e1{π1} AND

e2{π2} ARE THE PROBABILITIES OF BIT ERRORS IN INTERVALS

[α0, α1) AND [α1, α2), RESPECTIVELY

fading partition scheme and the equal-partition scheme. The
equal-partition scheme equally divides the whole SNR range
except the first and last intervals, in which α0 = −66 dB
and αU = 32 dB (i.e., αi+1 − αi = αi+2 − αi+1, ∀i, i 	= 0 and
i + 2 	= U ). As we can see, the proposed iterative technique
provides a better approximation in terms of the probability of
bit errors, particularly in the low SNR ranges, which have a high
probability of occurrence in the Rayleigh fading environment.

Last, we consider the complete cost function as given in (5).
We consider a fading partition that is characterized by α0 <
α1 < α2, where α0 = −66 dB, and α2 = 32 dB. Thus, there
is only one free parameter, i.e., α1. The transmission policy is
adaptive modulation with two choices (BPSK and QPSK), and
BPSK and QPSK modulation schemes are used in [α0, α1) and
[α1, α2), respectively. Table I shows the results of the optimal
fading partition under the Rayleigh fading environment with a
normalized Doppler frequency equal to 0.01 and a different α1

value. As shown in the table, when λp = 0, we get the lowest
cost function, which is Ca(∆∗). In other words, we do not have
to consider the tradeoff between Ca(∆∗) and Cb(∆∗) but con-
centrate on Ca(∆∗) alone in this simple case. When λp = 0, the
fading partition optimization only minimizes the closeness of
the average probabilities of bit errors between the actual fading
environment and the approximate fading channel representation
by the VLMC. When λp > 0, Ca(∆∗) and Cb(∆∗) are consid-
ered at the same time. The optimal solution corresponding to λp

is the tradeoff between the accuracy in approximating the chan-
nel characteristics in terms of the average probabilities of bit

errors and the designed transmission policy. Different λp values
correspond to different α∗

1 values (i.e., with different fading par-
titions), as shown in the first column of Table I. As α∗

1 increases,
e1{π1} is decreasing since the channel condition corresponds
to the SNR interval from −∞ to α∗

1, which includes channel
conditions of a higher SNR (i.e., a good channel condition).
As α∗

1 increases, e2{π2} is also decreasing since the channel
condition corresponds to the SNR interval from α∗

1 to ∞, which
excludes channel conditions of a lower SNR (i.e., a bad channel
condition). Thus, we see the decrease in the average bit error
probabilities from the top to the bottom of Table I.

B. Channel Approximation With Discretized Fading
SNR Samples

In the last subsection, we studied how to approximate a
fading SNR distribution and the evaluation of the fading par-
tition. Here, we study the channel approximation of a fading
channel with discretized fading SNR samples. The environment
we consider is in the presence of Rayleigh fading or lognormal
fading. The Rayleigh fading and the lognormal fading are often
used to model the short-term and long-term fading processes,
respectively [39]. Fifty thousand samples of each fading chan-
nel are generated in the simulation.

For the lognormal fading, the envelope level that is experi-
enced at location i can be expressed as [39]

γi = ρ × γi−1 + (1 − ρ) × ni (21)

where γi and γi−1 are the envelope levels in decibels at po-
sitions i and (i − 1), respectively ρ is the correlation between
the envelope levels, and ni is a Gaussian random variable with
zero mean and standard deviation σ. For the typical suburban
propagation at 900 MHz, it has been experimentally verified by
Gudmundson [18] that σ = 7.5 dB and ρ = 0.82 at a distance of
100 m (i.e., two envelope levels, which separate with a distance
equal to 100 m, have a correlation equal to 0.82). For the
typical urban propagation at 1700 MHz, Gudmundson [18] has
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Fig. 8. Normalized autocorrelation comparison between the lognormal fading process and the discretized fading process with a different number of intervals.
(a) ρ = 0.3 and σ = 4.3 dB. (b) ρ = 0.82 and σ = 7.5 dB.

also experimentally verified that σ = 4.3 dB and ρ = 0.3 at a
distance of 10 m (i.e., two mean average levels, which separate
with a distance equal to 10 m, have a correlation equal to 0.3).
The normalized autocorrelation of the envelope level from the
lognormal fading SNR can be expressed as [18], [39]

Rs(i) = ρi. (22)

The Rayleigh fading process is generated with different nor-
malized Doppler frequencies. We assume that the angle of ar-
rival of the multipath signal is uniform. The fading conditions,
which correspond to normalized Doppler frequencies 0.01 and
0.001, respectively, are considered. The autocovariance coeffi-
cient of the fading power under the Rayleigh fading environ-
ment with the uniform angle of arrival can be expressed as [39]

µ(i) = J2
0 (2πfDi) (23)

where µ[i] is the autocovariance coefficient of the fading power
under the Rayleigh fading channel, and J0(2πfDi) is the
zero-order Bessel function of the first kind with normalized
Doppler frequency fD.

We partition the possible range of a fading SNR into
two, four, and eight intervals with the method described in
Section III. The condition of a discretized fading channel is
represented by the mean value of the SNR of each fading in-
terval. The mean value of the SNR in the ith interval can be ex-
pressed as

γi,avg =

∫ αi

αi−1
γf̂(γ)dγ∫ αi

αi−1
f̂(γ)dγ

, i = 1, 2, . . . , U. (24)

For example, if the fading SNR is located in the interval
[αi−1, αi), we will represent it with γi,avg.

Fig. 8 compares the normalized autocorrelation of the lognor-
mal fading process that is obtained from the discretized fading
process, the simulated lognormal process, and the correlation
function that is computed from (22). Again, when the fading

partition has more intervals, the normalized autocorrelation
coefficient is closer to the theoretical value. From the simulation
results, it is sufficient to have eight intervals in the fading
channel discretization to approximate the statistical property of
the true fading channel.

Fig. 9 compares the autocovariance coefficient [32] of the
fading power that is obtained from the discretized fading, the
simulated Rayleigh fading channel, and the correlation that is
computed from (23). When the number of intervals increases,
the autocovariance coefficient of the fading channel approaches
the simulated Rayleigh fading channel in fading with fD =
0.001 in Fig. 9(a) and fading with fD = 0.01 in Fig. 9(b). The
partition with eight intervals produces a satisfactory result.

As shown in Figs. 8 and 9, we see that the statistical proper-
ties of the quantized fading process with eight partition intervals
are close to the theoretical results in the Rayleigh and lognormal
fading channels. Therefore, VLMC channel modeling with
eight partition intervals can provide a good approximation of
the actual fading channel.

C. VLMC Channel Modeling

In this subsection, we evaluate the fading channel modeling
with the optimal VLMC. We also examine the performance
of VLMC channel modeling based on the fast algorithm de-
scribed in Section IV-D. The characteristics of a fading channel,
including the normalized autocorrelation, the autocovariance
coefficient, and the derived parameters such as the average
fade duration and the signal outage probability, are used in
the evaluation. Furthermore, we investigate the complexity of
VLMC channel modeling by comparing Wang’s model [44],
the higher order Markov chain, and the proposed VLMC model.
Recall that a higher order Markov chain is a Markov chain
whose states have the same order. For example, for a second-
order Markov chain, all its states have an order of two. In
contrast, different states in the VLMC may have a different
number of orders.
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Fig. 9. Autocovariance coefficient comparison between the Rayleigh fading channel and the discretized fading process with two, four, and eight intervals for
(a) fading with the normalized Doppler frequency 0.001 and (b) fading with the normalized Doppler frequency 0.01.

Fig. 10. Summed K–L distance characteristic curves of the lognormal fading process with two intervals in (a) urban environment with ρ = 0.3 and σ = 4.3 dB,
and (b) suburban environment with ρ = 0.82 and σ = 7.5 dB.

TABLE II
RESULTS OF THE OPTIMAL VLMC FADING MODELING OF THE

LOGNORMAL FADING CHANNEL IN A SUBURBAN ENVIRONMENT

WITH TWO FADING PARTITIONS

First, the summed K–L distance characteristic curve of the
lognormal fading channel is shown in Fig. 10 with the num-
ber of intervals set to two. Fig. 10(a) and (b) corresponds
to the lognormal fading channel in an urban and a suburban
environment, respectively. We see from this figure that the

TABLE III
RESULTS OF THE OPTIMAL VLMC FADING MODELING OF THE

LOGNORMAL FADING CHANNEL IN A SUBURBAN ENVIRONMENT

WITH EIGHT FADING PARTITIONS

lognormal fading in an urban environment requires fewer model
parameters than that in a suburban environment. Note that the
out-of-curve points are obtained by suboptimal VLMC channel
models that have the same number of transition probabilities as
the optimal VLMC that is located on the summed K–L distance
characteristic curve.



KUMWILAISAK et al.: FADING CHANNEL MODELING VIA VARIABLE-LENGTH MARKOV CHAIN TECHNIQUE 1351

Fig. 11. Statistical property comparison between the optimal VLMC and the complete higher order Markov model of the lognormal fading channel in a suburban
environment. (a) Two fading partitions. (b) Eight fading partitions.

Fig. 12. Comparison of the normalized autocorrelation of several channel models for the lognormal fading process in a suburban environment with ρ = 0.82
and σ = 7.5 dB. (a) Two intervals. (b) Eight intervals.

Tables II and III show the results of the optimal VLMC in
the modeling of the lognormal fading channel in a suburban
environment with the number of fading partitions equal to two
and eight, respectively. These two tables justify the complexity
of the VLMC structure when compared with the higher order
Markov chain. We show the maximum order and the average
order of the optimal VLMC by varying the number of transition
probabilities. The average order is computed by averaging the
order of all states of the VLMC. We see that the proposed
VLMC model greatly reduces the number of transition prob-
abilities compared to the higher order Markov chain. It implies
that the optimal VLMC structure is less complex than the full
Markov chain. When the maximum order is one, the proposed
VLMC model is comparable with Wang’s model. However,
since the order of Wang’s model is only equal to one, its channel
modeling capability is severely limited.

It is worthwhile to point out that these experiments are
conducted by approximately fixing the statistical properties of
the optimal VLMC fading model and the complete higher order
Markov model. Fig. 11 compares the normalized autocorrela-

tion between the optimal VLMC model and the complete higher
order Markov model of the same maximum order. As shown
in the figure, the normalized autocorrelations of the optimal
VLMC model and the complete higher order Markov model
are very close to each other.

Figs. 12 and 13 show the performance of the optimal
VLMC model in approximating the normalized autocorrelation
of discretized fading processes with two and eight intervals
in a suburban and an urban environment, respectively. The
performance metric is the normalized autocorrelation. We com-
pare the VLMC results with the popular Wang model [44],
[45] and the suboptimal VLMC under the same number of
transition probabilities (or the same model parameters), where
the suboptimal solution is obtained from the fast-fading channel
modeling algorithm given in Section IV-D. We see from these
figures that the optimal VLMC model with a larger number
of transition probabilities approximates the discretized fading
process better than that with a smaller number of transition
probabilities. This can be seen from the closeness of the
normalized autocorrelation. Moreover, the performance of the
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Fig. 13. Comparison of the normalized autocorrelation of several channel models for the lognormal fading process in an urban environment with ρ = 0.3 and
σ = 4.3 dB. (a) Two intervals. (b) Eight intervals.

Fig. 14. Summed K–L distance characteristic curve of the Rayleigh fading process with two partitions. (a) Fading environment with the normalized Doppler
frequency equal to 0.001. (b) Fading environment with the normalized Doppler frequency equal to 0.01.

TABLE IV
RESULTS OF THE OPTIMAL VLMC FADING MODELING OF THE RAYLEIGH

FADING CHANNEL WITH NORMALIZED DOPPLER FREQUENCY

EQUAL TO 0.01 AND TWO FADING PARTITIONS

optimal VLMC model is significantly better than Wang’s model
in the suburban environment, as shown in Fig. 12. The perfor-
mance of the fast-fading channel modeling is close to that of
the optimal VLMC. However, the VLMC and Wang’s model
provide almost the same performance in the urban environment,
as shown in Fig. 13. In other words, increasing the VLMC order
for the lognormal fading channel modeling in an urban environ-

TABLE V
RESULTS OF THE OPTIMAL VLMC FADING MODELING OF THE RAYLEIGH

FADING CHANNEL WITH NORMALIZED DOPPLER FREQUENCY

EQUAL TO 0.01 AND EIGHT FADING PARTITIONS

ment does not help in improving the channel modeling accu-
racy. Thus, the choice of the modeling VLMC structure depends
on the fading environment and the desired modeling accuracy.

Similarly, we conduct the simulation for the Rayleigh
fading environment. The autocovariance coefficient is used
as the performance metric. The summed K–L distance
characteristic curves of the Rayleigh fading channel under
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Fig. 15. Statistical property comparison between the optimal VLMC and the complete higher order Markov model of the Rayleigh fading channel with
normalized Doppler frequency equal to 0.01. (a) Two fading partitions. (b) Eight fading partitions.

Fig. 16. Comparison of the autocovariance performance of several VLMC channel models for a discretized Rayleigh fading process with two intervals and
normalized Doppler frequency equal to (a) 0.001 and (b) 0.01.

different fading environments are shown in Fig. 14(a) and (b),
where the normalized Doppler frequencies are 0.001 and 0.01,
respectively. We see that the Rayleigh fading channel under
fading channel conditions with low dynamic change (i.e., a
lower normalized Doppler frequency) requires fewer transition
probabilities than that in fading channel conditions with high
dynamic change. In other words, a small number of transition
probabilities are sufficient to model the Rayleigh fading with
low dynamic change. Tables IV and V show the results of the
optimal VLMC in modeling the Rayleigh fading channel with
a normalized Doppler frequency equal to 0.01 and number
of fading partitions equal to two and eight, respectively. The
complexity of the VLMC is justified by comparing the number
of transition probabilities with that of the complete higher order
Markov model. Results show that our VLMC greatly reduces
the number of transition probabilities compared to the higher

order Markov model. When compared with Wang’s model, the
VLMC requires more parameters; however, it provides much
better approximation performance, as discussed below.

These experiments are conducted by approximately fixing
the statistical properties of the optimal VLMC fading model
and the complete higher order Markov model. Fig. 15 compares
the autocovariance coefficients between the optimal VLMC
model and the complete higher order Markov model of the same
maximum order. As shown in the figure, the autocovariance
coefficients of the optimal VLMC and the complete higher
order Markov model are very close to each other.

We consider a discretized Rayleigh fading channel with
two and eight intervals. Figs. 16 and 17 show how well the
optimal VLMC can model a discretized fading channel. The
optimal VLMC with a larger number of transition probabilities
models the discretized fading channel better than that with
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Fig. 17. Comparison of the autocovariance performance of several VLMC channel models for a discretized Rayleigh fading process with eight intervals and
normalized Doppler frequency equal to (a) 0.001 and (b) 0.01.

Fig. 18. Comparison of the average fade duration for the Rayleigh fading using the optimal VLMC channel model and theoretical analysis with normalized
Doppler frequency equal to (a) 0.01 and (b) 0.001.

a smaller number of transition probabilities. This can be
seen by the closeness of the autocovariance coefficient. As
compared with Wang’s model, the optimal VLMC offers a
better fading channel model. This is particularly true in a fading
environment with high dynamic change. However, in a fading
environment with low dynamic change, the performances of
different methods in modeling the discretized fading channel
are almost the same. Note that the suboptimal VLMC models
in Figs. 16 and 17 are based on the fast-fading modeling
algorithm. Although the accuracy of the statistical properties
of the suboptimal VLMC is not as good as that of the optimal
VLMC, their performances are somehow close. If the channel
modeling complexity is a major concern, the tradeoff between
the complexity and the performance can be considered.

D. Application of the VLMC Model

In this section, we consider the application of the VLMC
model to the computation of the average fade duration and the

signal outage probability, which are important parameters in the
wireless communication system design. We use the Rayleigh
fading channel as an example since there exist closed-form
solutions for the average fade duration and the signal outage
probability so that the correctness of VLMC channel modeling
can be verified. In Figs. 18 and 19, we compare the average
fade duration and the signal outage probability that are obtained
from the optimal VLMC and the theoretical analysis. The
average fade duration is measured in terms of the number of
symbols. The average fade duration under α can be computed
as [39]

t̄ =
eα2 − 1

α × fD ×
√

2π

where fD is the normalized Doppler frequency. The parameter
γ is the ratio between the fading envelope level and the root
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Fig. 19. Comparison of the signal outage probability for the Rayleigh fading using the optimal VLMC channel model and theoretical analysis with normalized
Doppler frequency equal to (a) 0.01 and (b) 0.001.

mean square envelope level, which can be expressed as

α =
γ

γrms
(25)

where γ is the fading envelope level, γrms =
√

γ2
avg is the root

mean square envelope signal level, and γ2
avg is the average

power of a fading channel, which can be defined as

γ2
avg =

∞∫
−∞

ϑ2 × f(ϑ)dϑ (26)

where ϑ is the random variable of the fading envelope signal,
and f(ϑ) is the pdf of the fading envelope signal.

The signal outage probability is the probability of the re-
ceived envelope level being less than γ, which can be expressed
as [39]

P{z ≤ γ} = 1 − e−α2
(27)

where z is the received envelope level, and α is defined in (25).
We compute the fade duration for every envelope level cor-

responding to a fading partition. The optimal VLMC channel
model is derived based on eight intervals. The average power
of the transmitted signal is set as γavg = 10 dB. The numbers
of transition probabilities in Figs. 18 and 19(a) and (b) are set to
115 and 22, respectively. They show the average fade duration
and the signal outage probability when the Rayleigh fading has
high dynamic change (with a normalized Doppler frequency
equal to 0.01) and low dynamic change (with a normalized
Doppler frequency equal to 0.001). We see that the average fade
duration and the signal outage probability of the optimal VLMC
are close to the theoretical values in both fading environments
with high and low dynamic changes. Thus, the proposed VLMC
model can be used to compute the fading parameters.

VIII. CONCLUSION

Optimal fading channel modeling with VLMC was studied
in this paper, where the K–L distance was chosen as the
optimization criterion. The proposed scheme consists of two
main components. One is the fading partition, which takes
the transmission policy into account. The other is the deriva-
tion of the optimal VLMC that represents a fading channel
under the constraint of the number of transition probabilities.
The optimal VLMC model was obtained by constructing the
summed K–L distance characteristic curve and selecting the
optimal VLMC using the Lagrangian optimization. A fast
VLMC channel modeling algorithm was proposed to speed
up the process of channel modeling. Several properties of
the optimal VLMC fading channel were stated and proved.
It was shown by simulation that the optimal VLMC provides
an excellent fading channel approximation with reasonable
complexity. As compared with the higher order Markov model,
the complexity of the VLMC model is significantly lower in
achieving the same approximation performance. As compared
with the popular Wang’s model, the VLMC model can provide
a broad range of performance–complexity tradeoff. Last, we
showed the application of the VLMC channel modeling to the
determination of fading parameters with good accuracy, such as
the average fade duration and the signal outage probability.

APPENDIX

Proof of Theorem 1: From [11, Th. 2.7.2], we know
that ρ(P{xk+l = u0|xk+l−1

k−1 = ωlu}‖P{xk+l = u0|xk+l−1
k−2 =

ωl}) is convex in a pair of transition probabilities. Since the
summation of convex functions is also a convex function [7],
the summed K–L distance of the VLMC terminal nodes is
convex in a set of transition probabilities of VLMC terminal
nodes. �

Proof of Theorem 2: We can express mutual information
Ie(xM+1;xM

1 ) and I(xM+1;xM
1 ) as [11]

Ie(xM+1;xM
1 ) =He(xM+1) −He(xM+1|xM

1 ) (28)

I(xM+1;xM
1 ) =H(xM+1) −H(xM+1|xM

1 ) (29)
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where He(xM+1) and H(xM+1) are the entropies of xM+1

obtained from Υe and Υ, respectively. We use He(xM+1|xM
1 )

and H(xM+1|xM
1 ) to denote conditional entropies of xM+1,

given the past M quantized fading samples obtained from Υe

and Υ, respectively. It is clear that He(xM+1) = H(xM+1)
since the number of intervals in a fading partition is still the
same. Moreover, we have

H
(
xM+1|xM

1

)
= He

(
xM+1|xM

M−Me+1

)
≥ He

(
xM+1|xM

1

)
by using the fact that the order of Υ is less than Υe and
the entropy property from [11]. Therefore, we conclude that
Ie(xM+1;xM

1 ) ≥ I(xM+1;xM
1 ), which proves the theorem. �

Proof of Theorem 3: It is assumed that the VLMC process
of consideration is stationary and ergodic. Let χK and χK+1

be finite categorical spaces representing all K and K + 1
partitions, respectively. Let yi and xi be quantized fading sam-
ples i obtained before and after interval splitting. The mutual
information after interval splitting will increase if

IK+1(xL;xL−1
L−M−1) − IK(yL;yL−1

L−M−1)

= HK+1 −HK −HK+1(xL|xL−1
L−M−1)

+ HK(yL|yL−1
L−M−1) > 0 (30)

where IK+1(xL;xL−1
L−M−1) and IK(yL;yL−1

L−M−1) are the mu-
tual information measured after and before interval splitting,
respectively. Since this process is stationary, we have

IK+1

(
xL;xL−1

L−M−1

)
= IK+1

(
xM+1;xM

1

)
IK

(
yL;yL−1

L−M−1

)
= IK

(
yM+1;yM

1

)
.

Then, we have

HK(yL|yL−1
L−M−1)=HK(yL|yL−1

1 )

−
∑

y1,...,yL

P{y1; . . . ; yL} ln P{yL|yL−1
1 }

(31)

HK+1(xL|xL−1
L−M−1)=HK+1(xL|xL−1

1 )

−
∑

x1,...,xL

P{x1; . . . ;xL} ln P{xL|xL−1
1 }

(32)

where P{y1; . . . ; yL} and P{x1; . . . ;xL} are joint probabili-
ties of quantized fading samples when there are K and K + 1
partitioned intervals, respectively. Since

HK+1 −HKpi,1 ln
(

pi,1 + pi,2

pi,1

)

+ pi,2 ln
(

pi,1 + pi,2

pi,2

)
> 0 (33)

(30) will be positive if

−HK+1

(
xL|xL−1

1

)
+ HK

(
yL|yL−1

1

)
<HK+1−HK . (34)

From [11], we have

HK(yL|yL−1
1 ) ≤ HK(y1, . . . , yL)

L
(35)

where

HK(y1, . . . , yL) = −
∑

y1,...,yL

P{y1, . . . , yL}

× ln P{y1, . . . , yL} (36)

and where HK(y1, . . . , yL) is the joint entropy among quan-
tized fading samples y1, . . . , yL.

When L is sufficiently large, the joint probability can be
expressed as [11]

P{y1, . . . , yL} = e−LhK (37)

where hK is the entropy rate of the quantized fading process,
which is a Markov process with K partitioned intervals. The
entropy rate hK can be further expressed as [11]

hK = lim
L→∞

HK(y1, . . . , yL)=HK(yL|yL−1
1 )≤HK . (38)

Therefore, from (37) and (38), we obtain

P{y1, . . . , yL} ≥ e−LHK . (39)

With (35), (36), and (39), the bound of HK(yL|yL−1
1 ) can be

derived as

0 ≤ HK(yL|yL−1
1 ) ≤

∑
y1,...,yL

e−LHKHK (40)

or

0 ≤ HK(yL|yL−1
1 ) ≤ KLe−LHKHK . (41)

Therefore, we get

−KLe−LHKHK ≤ HK+1(xL|xL−1
1 ) −HK(yL|yL−1

1 )
≤ (K + 1)Le−LHK+1HK+1. (42)

With (34) and (42), the information will be positive if HK+1 −
HK is greater than the upper bound of (34) or

HK+1 −HK ≥ (K + 1)Le−LHK+1HK+1. (43)

Thus, we conclude that

pi,1 ln
(

pi,1 + pi,2

pi,1

)
+ pi,2 ln

(
pi,1 + pi,2

pi,2

)

≥ (K + 1)Le−LHK+1HK+1 (44)

which proves the theorem. �
Proof of Theorem 4: Here, we follow the same notations

as given in Theorem 3. Let yi and xi be quantized fading
samples i obtained after and before merging the partitioned
intervals, respectively. Consider the difference between the mu-
tual information values after and before merging the partitioned
intervals, which can be written as

IK(yM+1;yM
1 ) − IK+1(xM+1;xM

1 ) = HK

− HK+1 −HK(yM+1|yM
1 ) + HK+1(xM+1|xM

1 ). (45)

From the proof of Theorem 3, we get

−KLHKe−LHK ≤ HK+1(xM+1|xM
1 )

− HK(xM+1|xM
1 ) ≤ (K + 1)LHK+1e

−LHK+1 . (46)
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Moreover, we have

HK −HK+1 − pi ln
pi,i+1

pi
− pi+1 ln

pi,i+1

pi+1
< 0. (47)

From (45)–(47), we conclude that the mutual information will
be decreased at most by the following amount:

pi ln
pi,i+1

pi
+ pi+1 ln

pi,i+1

pi+1
+ KLHKe−LHK

which concludes the theorem. �
Proof of Theorem 5: For the sake of conciseness, we

will shorten the expression during the proof. For example, we
will express H(xM+1u0|xM

1 = ωM−1u) as H(u0|ωM−1u) and
P{xM+1u0|xM

1 = ωM−1u} as P{u0|ωM−1u}, i.e.,

H(u0|ωM−1u) −H(u0|ωM−1)

=
∑
∀u0

∑
∀ωM−1

∑
∀u

P{u0;ωM−1u} ln P{u0|ωM−1u}

−
∑
∀u0

∑
∀ωM−1

P{u0;ωM−1} ln P{u0|ωM−1}, (48)

=
∑
∀u0

∑
∀ωM−1

∑
∀u

P{u0;ωM−1u}

× ln
P{u0|ωM−1u}P{u0|ωM−1}

P{u0|ωM−1}
−

∑
∀u0

∑
∀ωM−1

P{u0;ωM−1} ln P{u0|ωM−1}, (49)

= Davg(P{u0|ωM−1u}‖P{u0|ωM−1})
+

∑
∀u0

∑
∀ωM−1

∑
∀u

P{u0;ωM−1u} ln P{u0|ωM−1}

−
∑
∀u0

∑
∀ωM−1

P{u0;ωM−1} ln P{u0|ωM−1}, (50)

= Davg(P{u0|ωM−1u}‖P{u0|ωM−1})
−Hp(P{u0|ωM−1u}||P{u0|ωM−1})
+ H(u0|ωM−1). (51)

Since the mutual information can be written as

I(u0;ωM−1) = H(u0) −H(u0|ωM−1) (52)

we obtain from (51) and (52) that

Davg (P{u0|ωM−1u}‖P{u0|ωM−1})
= I(u0;ωM−1) − I(u0;ωM−1u)

+ Hp (P{u0|ωM−1u}‖P{u0|ωM−1})
−H(u0|ωM−1) (53)

which concludes the proof. �
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