
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 7, JULY 2008 3261

Iterative Joint Channel Estimation and Multiuser
Detection for DS-CDMA in Frequency-Selective

Fading Channels
Sau-Hsuan Wu, Member, IEEE, Urbashi Mitra, Fellow, IEEE, and C.-C. Jay Kuo, Fellow, IEEE

Abstract—An iterative joint channel estimation, symbol detec-
tion, phase recovery and interference cancellation structure is
proposed for asynchronous code-division multiple-access systems
over frequency-selective fading channels. Based on the expectation
maximization (EM) algorithm, a recursive channel estimator is
developed for blind channel tracking, using a novel stochastic
signal processing technique. To perform symbol detection given
the phase ambiguities of the resultant EM channel estimates,
a noncoherent scheme is developed to compute the a posteriori
probabilities (APPs) of data symbols. Moreover, by incorporating
the APPs into the proposed recursive channel estimator, phase
ambiguity due to the EM channel estimation can be resolved,
which enables soft multiple access interference cancellation for
multiuser detection. Based on these new signal processing schemes,
an iterative structure is proposed for joint channel estimation and
multiuser detection over fast fading channels.

Index Terms—DS-CDMA, expectation maximization (EM), joint
estimation and detection, multiuser detection, noncoherent detec-
tion.

I. INTRODUCTION

FOR MOBILE wireless communications, a significant
amount of training data is often embedded in transmission

packets to help estimate rapidly changing channel parameters.
For example, one eighth of transmitted symbols are used for
training in IEEE 802.16e [1]. This training overhead inevitably
consumes a large portion of the effective data bandwidth, thus
becoming a major barrier to increasing data throughput in
highly dynamic channels. Real-time blind channel tracking
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not only eliminates the need of training symbols but also
helps reduce estimation errors, which potentially reduces bit
error rates and packet dropping rates and, hence, improves
data throughput. To overcome the throughput limitation due
to training and estimation errors, joint channel estimation and
symbol detection in time-varying channels is considered herein.

Over the past decade, much effort has been devoted to de-
veloping effective approaches for joint channel estimation and
symbol detection (JED) in time-varying channels. Among them,
a commonly employed method is pilot-assisted channel estima-
tion, where channel parameters between pilots are interpolated
using channel estimates obtained with pilot symbols e.g. [2],
[3]. Practical implementations of pilot-assisted channel estima-
tion schemes are often equipped with hard-decision [3], [4] or
soft-decision feedback [2], [5]–[7], where “hard-” or “soft-” de-
tected symbols are used to replace unknown transmitted sym-
bols in channel estimation to help reduce channel estimation
errors. These approaches are more suitable for quasi-static or
slowly fading channels if the number of pilots is not properly
matched to the fade rate.

Alternatively, to effectively track fast fading channels, JED
schemes have been developed under the assumption of no prior
data information for channel estimation. Methods of this kind
can be roughly categorized into two classes. Methods in the
first class use the minimum mean squared error (MMSE) crite-
rion for channel estimation and the maximum likelihood method
for sequence detection (MLSD) based on the per-survivor pro-
cessing (PSP) technique [8]. Representative work of this class
includes [9]–[11] and the references therein. The second class
employs probabilistic information about the data symbols to
assist channel estimation under the expectation maximization
(EM) framework. Pioneering work of this class is the EM-based
maximum likelihood (ML) channel estimator in [12] for static
channels. Other examples include the maximum a posteriori
(MAP) estimators in [13], [14] for fading channels.

Both PSP and the methods in [13], [14] can track fast
fading channels at a complexity that grows exponentially
with the number of resolvable paths in multipath channels. To
reduce the complexity, some modifications have been made
by trading tracking performance for complexity reduction, e.g.
the exponentially complex algorithm and its low-complexity
modification in [14]. In the same spirit of the EM-based ML
estimation of [12], we develop a recursive estimator for blind
channel tracking in frequency-selective time-varying channels,
which turns out to be a joint stochastic MMSE channel esti-
mator and MAP detector under additive Gaussian noise. Its
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complexity is much lower than the method presented in [13],
[14] with no compromise in its performance. Some preliminary
results in this work have been reported in [15]–[17], and a
generic graphical representation of the proposed algorithm was
presented in [18].

Despite the different criteria employed in symbol detection,
the two classes above of JED schemes were found in [10] to fall
within a common EM framework [19]. Different schemes result
from different choices of the hidden variables in the corre-
sponding EM settings. More specifically, PSP models channel
parameters as hidden variables and resolves the joint optimiza-
tion problem with the Viterbi algorithm, using a Kalman filter
for each survival path to track all possible channel realizations.
Methods in the second class, model the data symbols as hidden
variables and use the BCJR algorithm [20] to generate the
probabilistic information required for channel estimation. It
was shown in [15]–[18] that the latter approach demands a
lower complexity than its PSP counterpart via proper signal
processing in the EM procedure.

In addition to narrowband communications, the EM algo-
rithm has also found many applications in joint channel estima-
tion and multiuser detection (MUD) for direct-sequence (DS)
code-division multiple access (CDMA) systems. For instance,
the ML MUD schemes presented in [21] and [22] for flat fading
channels employ the “SAGE” algorithm in [23]. A sequential
joint estimator and detector for multipath fading channels was
proposed in [24] using hard decision feedback and a multiuser
signal decomposition method [25]. An application of [12] was
also employed in [26] for MUD in multipath channels with com-
plexity that grows exponentially with the number of users. De-
spite the rich research results in this area, an effective itera-
tive structure for soft information exchanges between demod-
ulation modules of channel estimation, symbol detection and
interference cancellation for multipath fast fading channels is
still lacking. This type of structure was shown [27] to be the
key ingredient for achieving single-user performance without
resorting to exponentially complex MUD algorithms when per-
fect channel state information (CSI) is available. With this ob-
servation, we develop a low-complexity soft iteration structure
for joint channel estimation and MUD for DS-CDMA in fre-
quency-selective fast fading channels.

In contrast to previous work on JED for DS-CDMA systems,
we propose an iterative soft information exchange mechanism
in this work to perform joint MMSE channel estimation, non-
coherent MAP detection, phase recovery and multiple access
interference (MAI) cancellation in fast fading channels. First,
a low-complexity recursive MMSE estimator is developed for
blind channel tracking via a novel stochastic signal processing
technique derived from the recursive EM algorithm [28]. Next,
to perform symbol detection under the phase ambiguities as-
sociated with the resulting EM channel estimates [29], a for-
ward-backward message passing scheme is provided to com-
pute the noncoherent a posteriori probability (APP) in mul-
tipath fading channels, based on the noncoherent BCJR algo-
rithm originally developed in [30] for additive white Gaussian
(AWGN) channels. Furthermore, to suppress MAI for the de-
sired user, a channel adjustment method is proposed to com-
pensate for the phase errors of the EM channel estimates by in-

corporating the noncoherent APPs of data symbols into the sto-
chastic signal processing procedure for blind channel tracking.1

This phase information is necessary in estimating MAI, which
together with EM channel estimates and noncoherent APPs not
only enables soft MAI cancellation in MUD, but also makes the
proposed structure extensible to iterative (Turbo) MAI cancel-
lation and channel decoding, which was shown in [27] to be
an effective low-complexity approach for achieving single-user
performance in DS-CDMA, given perfect CSI.

The rest of this paper is organized as follows. The system
model for multipath DS-CDMA channels is described in
Section II. A brief review for the EM algorithm and its appli-
cation on JED is given in Section III. Based on the recursive
EM algorithm, a stochastic recursive estimator is developed
in Section IV for blind channel tracking in multipath fading
channels. To perform symbol detection under the phase ambi-
guities resulting from the EM channel estimates, a modified
noncoherent MAP detector is derived in Section V for robust
MUD. Incorporating the posterior probabilities into the EM
channel estimator, a complete signal processing procedure for
joint channel tracking, symbol detection and phase error cor-
rection is specified in Section VI. Finally, an iterative structure
is proposed in Section VII for joint channel estimation, interfer-
ence cancellation and MUD. Simulation results are presented
in Section VIII to demonstrate the performance of the proposed
iterative structure, which is followed by concluding remarks in
Section IX.

II. SYSTEM MODEL

Consider an asynchronous DS-CDMA system with users.
The baseband representation of the transmitted signal for the th
user can be written as

(1)

where is the symbol duration, and , and are
the data bit at time , energy per bit and relative transmis-
sion delay with reference to the base station, respectively,
for the th user. The transmitted symbols are identi-
cally and independently distributed (i.i.d.) random variables
taking values from the finite alphabet set of MPSK, i.e.

. The spreading
waveform is given by , where

is the signature sequence of
user , with a period of . The function is a normalized
chip pulse shaping function of duration , with the spreading
gain .

The th user’s signal propagates through a multipath
fading channel with the complex impulse response

, where is the Dirac delta function,
is the number of paths of user , is the time delay asso-

ciated with the th tap of the tapped-delay-line channel model
and is the fading process corresponding to the tap. The

1We note that after incorporating noncoherent APPs, the original blind
channel tracking scheme could be viewed as semi-blind when used in esti-
mating MAI, as some pilot symbols are required to serve as the boundary
conditions for the noncoherent BCJR algorithm. Nevertheless, no training
symbol is needed for the desired user’s channel tracking.
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Fig. 1. The delay pattern of a three-path DS-CDMA channel for user k, where the light-shaded regions belong to symbols that arrive earlier inside the sampling
interval of y(m) and the dark-shaded regions belong to symbols that arrive later in the same transmission paths of the same sampling interval.

value of is assumed to be constant during one symbol
interval and changes from symbol to symbol. Thus, can
be modeled by a discrete-time fading process , where

is a time-invariant nonnegative channel gain and is
a complex zero-mean wide sense stationary Gaussian process
satisfying ,
where stands for the Kronecker delta function. The auto-
correlation between two consecutive channel states is given by

, .
The received signal due to the th user is given by

(2)

where is the path delay along the path of user
. The overall received signal is equal to

, where is the number of users and is a complex zero-

mean additive white Gaussian noise (AWGN). Define
, where denotes the largest integer less than or equal

to the argument, , ,

and , , where denotes the
remainder of divided by . An example of a three-path delay
pattern for user is illustrated in Fig. 1.

The received signal is passed through a filter matched to the
chip pulse shaping function and then sampled

at the chip rate. We define

and ;
both vectors are of dimension . Due to the asynchronous
arrival times, the contribution of the signature sequence due to
the earlier arrival symbol for path in Fig. 1 can be expressed as

, and the contribution of

the signature sequence due to the subsequent symbol on path is
equal to . By collecting

samples of , , the discrete
time received signal vector due to the th user is equal to

(3)

where and
. The discrete time

received signal can be expressed as

(4)

It is clear from this expression that there are at most sym-
bols of user involved in the received signal due to the

delays of multiple incoming paths. Let
be the longest symbol delay for user . Then, without loss of
generality, can be considered as a function of

, as is

. Thus, defining
, the received signal can be expressed

in matrix form as

(5)

We note that the spreading sequence and the time delay
be fixed and given.2 The only unknown in the system matrix

is then the symbol state .

2The path delay time varies much more slowly than the fading gain, and is
usually determined by code and timing acquisition circuits. Therefore, we as-
sume they are fixed and given throughout this work.
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III. JOINT CHANNEL ESTIMATION AND SYMBOL DETECTION

USING THE EM ALGORITHM

The complexity of performing channel estimation and
symbol detection simultaneously for all users is prohibitively
high. The complexity is proportional to , where

is the largest symbol delay among all
users. In addition, a large number of samples of the received
signal have to be collected to maintain the quality of channel
estimates, which is counter to tracking a fast fading channel.
To control the algorithm complexity, as well as to reduce the
number of signal samples, estimation and detection is per-
formed separately for each user. When dealing with the th
user’s signal, all interfering users’ signals are lumped together
as an interference vector . Therefore, the received signal
(5) is rewritten as

(6)

where the covariance matrix of is
.

For the ease of mathematical manipulations, the distribution
of is approximated as a zero-mean, colored, complex
Gaussian random vector with a covariance matrix .3 To im-
prove the performance of single-user channel estimation and
symbol detection in multiple access systems, the contribution of

can be mitigated iteratively through interference cancel-
lation techniques such as serial interference cancellation (SIC)
or parallel interference cancellation (PIC) [31] when all users’
channel state and symbol information are available at the end
of each iteration. To facilitate the exposition of joint estimation
and detection, interference cancellation will be addressed at the
end of Section V.

Momentarily ignoring interference cancellation, the mul-
tiuser detection problem is that of joint estimation of
and detection of for each individual user under the
assumption of the colored Gaussian noise, . However,
the complexity of this JED problem is still high. Nevertheless,
this complexity issue is ameliorated via iterative optimization
schemes such as the EM algorithm. We next introduce the EM
algorithm for JED under colored Gaussian MAI.

A. The EM Algorithm

Before introducing the EM algorithm, we first define the ob-
jectives of channel estimation and symbol detection. We let the
set of the unknown channel parameters up to time of user be

and the corresponding symbol

stream be , where, for simplicity of
notation, , and are also denoted by ,

3The exact distribution of i (m) before interference cancellation is in fact a
mixture distribution, while an exact modeling for the distribution of i (m) is
not available when considering the residual interference after iterative soft inter-
ference cancellation. Simulation results in Section VIII show that the Gaussian
assumption does not seem to affect the performance of MUD given CSI, while
its influence on the performance of JED will require more theoretical justifica-
tion.

and , respectively. It is clear that the complete data
for estimating the parameter set is , where

. However, due to the fact that is
not, in fact, observed, the log likelihood (LLK) of be-
comes

(7)

It is, in general, difficult to estimate directly from this
LLK due to the exponential complexity involved in the exhaus-
tive search for the optimal . To reduce the complexity, we
use the EM method in [12] to approach this goal iteratively. In
contrast to PSP [8], this method essentially performs the ML
estimate of and the MAP detection of in each iter-
ation.

We define the Kullback–Leibler (K-L) measure of at
iteration to be

(8)

where in implies the use of information collected
up to time and denotes the expec-
tation with respect to (w.r.t.) the hidden state , using

, which is, in turn, evaluated based upon
the estimate, , of at iteration . The EM algo-
rithm, under this setting, performs the ML estimation of
in two steps as follows:

E-step: Compute ;
M-step: .

Obviously, this algorithm is iterative in nature. Given
, is computed based on the premise

of which, in turn, is computed using the
BCJR algorithm [20] with the previous estimate .4 Fur-
thermore, the new estimate is obtained by maximizing

w.r.t. . Hence, to start the iteration,
an initial set must be assigned in advance to com-
pute the . The initial set can be obtained
either with a random guess or from the initial training sym-
bols of a transmission packet. The EM algorithm guarantees

.
Except for some special cases, e.g. , solving the

above equations for and simul-
taneously is, in general, difficult. Nevertheless, this joint opti-
mization problem can be resolved by optimizing for and

alternatively, using the extended EM framework [10].
Let be the K-L measure with

in (8) replaced by . (Note that ).
Maximizing the K-L measure w.r.t. gives

(9)

4For details regarding how to use the BCJR algorithm for the computation of
the a posteriori probabilities in multipath fading channels, one can refer to [15],
[27].
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Upon the acquisition of , one can further define another
K-L measure by substituting for

in (8). Similarly, maximizing this K-L measure w.r.t.
yields

(10)

Based on [10, Theorem 1], we have
, which

guarantees that the LLK of is non-decreasing, namely
. In the sequel, we will apply this

principle for the inference of and , alternatively and
recursively.

IV. STOCHASTIC RECURSIVE ESTIMATION FOR DYNAMIC

FADING CHANNELS

The essence of recursive channel tracking lies in the use of
a dynamic model to characterize the temporal evolution of the
channel parameters. For fading channels, a widely used model
is the autoregressive moving average (ARMA) model [32]:

(11)

where , being the order of
the channel model. The matrices and , ,
are of dimension , and .

From the channel model, it is clear that is a time-varying
random vector and can be modeled by a hidden Markov model
(HMM). Thus, in the absence of both transmission data and
CSI, the incomplete data is only the observation to the system,
namely , and, as a result, the hidden state
for user at time is redefined for time-varying channels as

and . The
corresponding unknown parameter set to be estimated for user

is also redefined as , where

. We note that the expectation is
w.r.t. the posterior probability of , given the system pa-
rameter of the previous iteration. Furthermore, alters
only when system loading changes, upon the joining or leaving
of users. So, it is still modeled as a constant matrix within each
processing block.

Under the above EM setting, the K-L measure can be
rewritten in a recursive fashion as

(12)

where . Taking expectation w.r.t.
and using the fact that

, it can be shown that

(13)

where

and

The corresponding covariance matrices are defined as

and

Notice that is a time-varying

variable, and our objective is to find the ML estimates of
and . To this end, we need to evaluate the

expectation terms present in (13). Since there are no closed-form
expressions for the expectations, for brevity, we define

(14)

(15)
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The computational complexity for evaluating these two terms is
. Again, the APP required

for the expectation calculation can be computed with the well-
known BCJR algorithm, given and of the previous
iteration.

Now, with the introduction of these two matrices, (12) can be
reformulated as

(16)

where

and

It is obvious from (16) that the product term of and
makes it difficult to solve for both and simultaneously.
To get around this difficulty, we apply the iterative optimization
procedure stated in (9) and (10). We first perform the maximiza-
tion w.r.t. in the next section and, hence, set to .

A. Recursive EM Estimation for Blind Channel Tracking

By setting to , the K-L measure (16) becomes a
Gaussian quadratic form in , given that is independent
of and can, thus, be ignored during the maximization. The
maximization w.r.t. can be stated as

(17)

The complexity of directly solving this maximization problem
is extremely high due to the growing dimension of with the
time index . This computational complexity can be alleviated
with the recursive maximization procedure proposed in [28],
which leads to

(18)

where

and by the subscript , it means that the present channel
estimate is predicted based on the observation . This al-
gorithm is often referred to as the recursive EM algorithm.

Despite its lower complexity, we note that the recursive EM
algorithm gives the exact solution to (17) due to the fact that

is a Gaussian quadratic form in . Never-
theless, the computational complexity still increases with time.
To maintain a consistent algorithm complexity, it is necessary to
constrain the dimension of recursion. Hence, the recursive algo-
rithm is modified slightly into

(19)

where we have defined and

, both of di-

mension .
Now, let

and

By the Matrix Inversion Lemma, it can be shown from (16) that

(20)

Substituting (16) and (20) into (19), it is straightforward to show
that

(21)

This is a generalized stochastic Kalman-like recursive filter
in the sense that no exact data information is needed for the
computation of the channel estimator. With the knowledge of
transmitted symbols, the estimator degenerates to the Kalman
filter proposed in [28]. However, in the absence of the exact
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symbol state , and serve as the expected ma-
trices of and , respec-
tively, using obtained with the BCJR algo-
rithm and of the previous iteration. Moreover, during the
recursion process from time to time , not only is the
new estimate obtained, the estimate also gets up-
dated with the addition of innovation term . As a result, the
dimension of increases from to the dimen-
sion of . Therefore, to maintain a
consistent dimension of (21), only the upper left sub-block ma-
trix of dimension of is kept in (20) as the
recursion proceeds from time to .

The algorithm’s complexity is dominated by the matrix in-
version of of dimension and the computation
required for evaluating the matrices, and , which is

. Other than that, its complexity is similar to a
standard Kalman filter.

We note that a soft decision-directed (SDD) Kalman filter
was also proposed in [14] for frequency selective fading chan-
nels, based on the Bayesian EM algorithm [33]. Instead of using
the averaged state-space model proposed in [33], the approach
in [14] essentially constructs a filter for each possible received
signal such that the SDD Kalman filter requires
iterations of filtering to obtain an “averaged” Kalman filtering
for each time step. As a result, its complexity is one order higher
than that of the PSP-based channel estimator [8] which requires

Kalman filters at each time step, despite the Viterbi al-
gorithm used in PSP for the MLSD of as opposed to the
BCJR algorithm used in [14] for the MAP detection of .
To reduce complexity, [14] also proposed for PSK modulation
a reduced complexity SDD (RC-SDD) Kalman filter based on
the EM-based decomposition method in [34]. The number of
filtering for the RC-SDD Kalman filter can consequently be re-
duced to at the cost of inferior performance to the SDD
Kalman filter.

Starting from a different perspective, in this paper we inves-
tigate JED with the original EM algorithm [19]. Through the
introduction of the synthetic parameters and , we ob-
tain a generalized Kalman filter in (21) which requires only one
iteration of filtering to obtain the estimate of as opposed to

iterations required by the SDD Kalman filter and
iterations required by its simplified RC-SDD version in [14].

B. Recursive Estimation of the Noise Covariance Matrix

Given the new channel update , one can form the K-L
measure, , for the estimation of , which can
be expressed as

(22)

Taking its derivative w.r.t. and setting to a zero matrix, the
covariance estimate is given by

(23)

where is the previous estimate at time ,
and the new update term

(24)

due to the fact that the backward update of only covers the
region .

C. Forward-Recursion Channel Updates

To further reduce the complexity, the extent of the backward
update can be limited to a value between 0 and in (21) and
(23). For the most simple case where no backward update is
employed, the estimates become

(25)

(26)

where

and . These expressions pro-
vide more insight into the blind recursive estimator.

Observe that is obtained from mini-
mizing

(27)

which is essentially the stochastic ML channel estimate of
based on the current observation only. The channel esti-
mate in (25) is equal to the prediction, , given
by the channel model plus a correction term proportional to the
difference between the stochastic ML estimate and the predic-
tion. Furthermore, the Kalman gain of this estimator is

. It is straightforward to show that
the eigenvalues of , denoted by , satisfy

. If there is no noise present in the system, then the
eigenvalues of are close to zero, and thus .
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Under this circumstance, we have . This implies
that the stochastic ML estimate, based on only, suffices to
provide accurate channel estimates. On the other hand, if the
noise strength is extremely high such that , then
it becomes which implies that the estimate
obtained from the channel model is more reliable than the sta-
tistical estimate , under this circumstance.

V. NONCOHERENT DETECTION

The EM algorithm only guarantees convergence to a local
maximum [19]. Assume the initial values for the EM iterations
fall within a neighborhood of the true channel parameters, then
the EM algorithm can effectively track the channel parame-
ters, resulting in reliable channel and symbol information. How-
ever, when the channel gain attenuates close to zero, the lo-
cally maximal points become very close to each other, (e.g.
the same channel gain with an in-phase state and a 180-degree
out-of-phase state for BPSK modulation). Under these channel
conditions, the EM algorithm becomes vulnerable to the channel
noise and may lock onto a false state when the channel regains
strength. This false-locking phenomenon is widely known as the
phase ambiguity problem for blind channel estimation.

The phase ambiguity is relative steady and may only
change its status in deep fading and strong noise. There-
fore, neglecting estimation errors, the best achievable EM
channel estimate within a processing block can be modeled
as ,
where is the exact channel parameter of path and
is the corresponding phase error over the processing block. The
phase error is not uniformly distributed over . It
depends on the modulation. For MPSK, it takes values on the
discrete set , where
is the constellation size of MPSK. For more general discussion
on the relationship between phase ambiguities and modulation
schemes, one can refer to [29].

Common methods for combating phase ambiguity in detec-
tion include differential encoding or asymmetric modulation
[29]. In this section, based on the noncoherent BCJR algorithm,
we develop for MPSK a method to compute the correct APP
of by exploiting the phase error characteristics of the EM
channel estimates. Later in Section VI-C, a phase correction
scheme will be introduced to recover the channel phases of the
EM estimates, incorporating the noncoherent APPs provided
herein. This phase information plays a crucial role in interfer-
ence cancellation, without which MAI can not be suppressed
by cancellation even if all interfering users’ channel gains and
transmitted symbols are accurately acquired by noncoherent
methods.

A. Noncoherent Detection Over Multipath Fading Channels

In contrast to [30] which considers noncoherent detection
over AWGN channels, we perform herein noncoherent detec-
tion over multipath fading channels with partial channel state
information (CSI), namely only with the correct estimates
of channel gains. Hence, the noncoherent BCJR originally
developed in [30] for AWGN channels under continuous
phase errors is modified to incorporate CSI and discrete

random phase errors. We assume that CSI can be estimated
up to ,
where is obtained with the EM algorithm and

is the inherent phase
error vector for the EM estimates. As was done in [30], we
also assume that the phase errors are fixed within a processing
block and have memory to some extent. Therefore, in addi-
tion to the channel memory resulting from arrival delays, a
phase memory of length is also introduced to char-
acterize the phase errors. We define the extended symbol
state ,

where is attributed to

the phase memory, and the symbol state
is due to the channel memory. The

total length of the extended channel memory is ,
where is the length of the original channel memory. A
diagram is shown in Fig. 2 to illustrate the relationship between

and .
We next evaluate the APP of without correct phase in-

formation. By Bayes’ rule, we have

(28)

The memory length constraint imposed on the phase error
allows us to exploit the conditional independence struc-
ture revealed in . Let denote

. Due to the memory length constraint,
the observations after time , i.e. , are independent of the
observations back in time beyond the extent of phase memory,
namely . As a result,

(29)

To obtain the APP of , the above individual probabilities
must be computed in advance.

In the absence of , the likelihood
of is

(30)



WU et al.: ITERATIVE JOINT CHANNEL ESTIMATION AND MULTIUSER DETECTION FOR DS-CDMA IN FREQUENCY-SELECTIVE FADING CHANNELS 3269

Fig. 2. Data flow diagram for the noncoherent BCJR algorithm. The evaluation for  and � as well as the forward recursion of � proceeds from time q
and ends at time M. The backward recursion of � starts from time M � 1 back to time q . The effective posterior probability of b is given for m =

q ; � � � ;M � q � 1. The initial and ending states are fixed and given.

where the summation is taken w.r.t. all possible outcomes of ,
and

(31)

. Marginalizing out of

yields .

As for , it can be ex-
pressed in a forward recursion form

(32)

as in [30], where

(33)

due to the fact that and
that and are independent of , according to the

memory length assumption. In addition, it follows that

(34)

Similar to the derivations in (30), in the absence of ,

(35)

Therefore, the forward recursion of is given by

(36)

Finally, can also be ex-
pressed in a backward recursion form

(37)
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as in [30], where

(38)

due to the fact that , and that
is independent of and , according to the

memory length assumption. In addition, we also have

(39)

Thus, the backward recursion of is given by

(40)

Now, substituting (30), (36) and (40) back into (29) yields

(41)

The signal processing procedure for calculating the nonco-
herent posterior probability is illustrated in Fig. 2. To initiate
the forward and backward recursions of (36) and (40), respec-
tively, both the initial state and the ending
state must be given a priori. In practice, this infor-
mation can be inserted in packet headers. Other than the com-
plexity imposed by the extended channel memory length, the
complexity of this algorithm is dominated by the summations
involved in (30) and (35), which seem to have no closed-form
solutions except for the flat fading case that will be discussed in
the next section. Taking into account the complexity of (31), the
overall complexity of this algorithm is .

B. Noncoherent Detection Over Flat Fading Channels

For flat fading channels, and . Thus (31)
degenerates to

(42)

where is now a vector. Marginalizing out the phase
error gives

(43)

where

and
is the phase angle of . The above ex-

pression can be further simplified since the signal constellation
of MPSK is formed with conjugate pairs on a circle, with 180
phase difference in each pair. Therefore, (43) becomes

(44)

Similarly, for we have

(45)

where
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Fig. 3. Signal processing procedure for exploring unknown channel state information.

and

We note that the APP of is still given by (41).

VI. SIGNAL PROCESSING PROCEDURES FOR JOINT CHANNEL

ESTIMATION AND SYMBOL DETECTION

We now have the necessary tools ready for joint channel es-
timation and symbol detection. The remaining problem is how
to apply the above results in a systematic way to track a un-
known time-varying channel. This is more involved than it ap-
pears to be. To help interpret the entire signal processing pro-
cedures, the whole process is partitioned into three consecutive
steps which are referred to, respectively, as the channel explo-
ration, channel refinement and phase adjustment. We first intro-
duce the channel exploration step to obtain a rough channel es-
timate for a time-varying channel without the prior knowledge
of transmitted data.

A. Channel Exploration

The channel exploration can start with or without initial CSI.
With initial CSI, the algorithm will converge faster. The avail-
ability of the initial CSI does not affect the final estimation re-
sults. Without loss of generality, we assume the initial CSI state,

as shown in the shaded region in
Fig. 3, is obtained either with a short training sequence or by
random assignment. On the other hand, the initial covariance is
set to .

In the absence of both CSI and transmitted data, CSI has
to be first explored step by step from time 1 to time .

For every new time step , the initial estimate is given by
using the dynamic model (11). In

addition, for each time step, the EM procedure is iterated
for a number of times, denoted by , before reaching a
steady-state channel estimate.5 Thus, the initial parameter set
is , and the estimates at the th

iteration are .

To initiate the channel tracking, we set
and use a sliding-window BCJR algorithm to evaluate

. Due to ignorance of future CSI, the
channel parameter used for the sliding-window BCJR algorithm
is set to . Similarly, the observations used for the BCJR
are , where is the smoothing lag set to
isolate the future observations from the current processing
block. The size of is a design parameter. A small value
of it will affect the accuracy of , whereas
a large value will make the use of less realistic for the
entire processing block. A reasonable value should be less
than the coherence time of a fading channel. In the simulation
studies, is set equal to the length of channel memory, .

After obtaining , we substitute it back
into (14) and (15), which results in the new parameters and

. With these two parameters as well as the channel update
equation (21), we immediately obtain , where the initial ma-

trix . Similarly, given , the estimate can also
be obtained with (23) and (24).

The aforementioned procedure can be repeated, by the EM
principle, until converging to a steady state. The corresponding
steady-state estimates are denoted as .

5Our simulation studies show that one or two iterations are sufficient for
channel exploration. More iterations do not help due to the limited observations
available for channel exploration.



3272 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 7, JULY 2008

Fig. 4. Data blocks for the signal processing of joint channel estimation and MAP symbol detection. The first block is for channel exploration and channel
refinement, the second for evaluating APP using the noncoherent BCJR and the third for channel adjustment with the stochastic Kalman estimator (21).

Continuing the same procedure for each processing window
, , leads to the steady-state

estimates , and hence of
the channel exploration phase. The signal processing flow for
channel exploration is illustrated in Fig. 3.

It is noted that upon acquisition of the update ,
the sliding-window BCJR algorithm is executed one more time
to obtain a new with the new set .
This will lead to a new K-L measure , and, in
turn, another new update . The likelihood of
is non-decreasing by the recursive EM framework [10].

B. Channel Refinement

In the channel exploration phase, due to the ignorance
of the future channel parameters, a sliding-window BCJR
algorithm of size is used for the evaluation of

, which may make the APP of
less reliable, and, consequently, yield less accurate estimates
of . To improve the performance of channel
tracking, the entire process of the EM iteration which involves
BCJR and the stochastic recursive estimators (21) and (23),
can be redone on a block basis of size M as shown in Fig. 4,
using obtained from the channel exploration phase as the
initial parameter set. To help track the time-varying channel
parameters, adjacent blocks are overlapped to some extent. The
parameters in the overlapped region at the end of a block serve
as the initial parameters for channel exploration of the next
processing block.

Within each block, starting with , a more reliable
can be obtained, owing to the full observa-

tion of the current block. In addition, with the new updated
APP, the recursive estimators of (21) and (23) can be executed
once again from time 0 to time to obtain a refined estimate
of . By the EM principle, .
Similarly, this EM procedure can be repeated a number of
times, with the final steady-state estimate denoted by .
The combination of the channel exploration phase and the
channel refinement phase is shown as the first stage of signal
processing procedures in Fig. 4. The mechanism for channel
phase adjustment is presented in the next section.

C. Phase Adjustment

As pointed out earlier, the EM algorithm only guarantees
convergence to a local maximum, which may lead to incorrect
APPs and channel estimates with phase errors. For the purpose
of symbol detection only, a corrected APP can be obtained
with a modified noncoherent BCJR algorithm presented in
Section V, using the EM channel estimates. However, when
one intends to improve the performance of MUD via inter-
ference cancellation, reliable channel phase information must
be obtained for all users. We present in this section a method
to adjust the EM channel estimates, which incorporates the
noncoherent APP, (41), introduced in Section V.

We observe that the reliability of the EM channel estimates
is closely related to that of the APP of the symbol state, .
For (14) and (15) involved in the estimator (21), the matrices

and for every
possible state of are weighted and summed by its cor-
responding . If the transmitted symbol is
known a priori as in a training mode, then the estimate
in (21) simplifies to

(46)
which will lead to a regular Kalman estimator. Therefore, if

in (14) and (15) of (21) are robust to phase
errors, then the channel estimators are able to track the channel
phase coherently. This phase robustness of APP can be achieved
with the noncoherent scheme presented in (41), given the EM
channel estimates.

To adjust the channel estimate, is first ap-
plied in (31), which is required by (30) and (35) to
evaluate with (41). The resul-
tant , which is proportional to

, is robust to phase errors. Substituting this
probability back into (21) gives the adjusted channel estimate.
We note that the phase error coupled to the EM estimates only
changes under the circumstance of a deep channel fade and
strong noise, otherwise it will stay at the same value until
the next adverse channel condition occurs. By correcting the
phase error block by block, the stochastic recursive estimator
is able to track channel parameters without the exact symbol
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Fig. 5. Signal processing diagram for joint channel estimation and multiuser detection, where the stochastic Kalman refers to the stochastic recursive estimator
of (21).

information. A block diagram is presented in Fig. 4 to illustrate
the sliding-window mechanism for joint channel estimation,
noncoherent detection as well as channel adjustment. The
boundary conditions, shown as the gray areas in Fig. 4, must
be given a priori for the noncoherent BCJR algorithm, which,
in practice, can be obtained from packet headers.

VII. ITERATIVE INTERFERENCE CANCELLATION AND

MULTIUSER DETECTION

Soft interference cancellation has been shown in [27] to be
an effective low-complexity approach for achieving the single-
user detection performance in DS-CDMA systems, given per-
fect CSI. In addition to reliable CSI, performing soft interfer-
ence cancellation also requires the soft output of the transmitted
symbol of all users. For BPSK, the soft output of each symbol
is given by

(47)

where is obtained by the modified non-
coherent BCJR algorithm (41). Given of all users, the
soft estimate of the MAI, , of user , in (6) is obtained by
replacing the user symbol , , embedded in
with the soft output , as well as substituting for

. The resultant matrix is denoted by , where
, [cf. (6)]. Then, the received signal

for user after interference cancellation is given by

(48)

By using for the joint symbol detection and channel esti-
mation for user , the quality of and
can both be improved due to the suppressed MAI. With more
precise estimates of and , one can obtain better es-
timate of , too. Through iterations, both MAI and the

variance of estimation can be greatly reduced, hence resulting
in much better estimation and detection performance than a
single-user method.

The entire signal processing flow for joint channel estimation
and MAP MUD is presented in Fig. 5. The received signal for
one user is first sent to the EM block to compute the channel
estimates. The EM block not only involves the stochastic es-
timators (21), it also employs the coherent BCJR algorithm to
evaluate . Once the EM algorithm is done
with its iterations, the channel estimates are forwarded
to the noncoherent detection block to evaluate a robust version
of using the noncoherent BCJR algorithm
(41). The robust APP is further fed to (21) (denoted by stochastic
Kalman in the figure) to correct the phase errors coupled on the
EM estimates. Notice that no iteration is required between the
EM block and the noncoherent BCJR algorithm. The entire pro-
cedure for channel re-estimation, symbol re-detection and inter-
ference cancellation can be repeated until
, for some prespecified tolerance, . The hard decision only em-

ploys at the last stage. For BPSK, it is
.

VIII. SIMULATION RESULTS

Computer simulations are conducted to examine the per-
formance of the proposed joint channel estimation and MUD
scheme in multipath fading channels. A DS-CDMA system
of seven users, , is investigated, with the spreading
gain . Spreading sequences are randomly generated
and assigned to users in the system. The variance of the noise
for each chip interval is normalized to 2, one for the real part
and the other for the imaginary part. The number of channel
paths is set to for each user, with the path delays being
generated with a uniform distribution over . The delays
are assumed pre-acquired and provided to the MUD.

The channel coefficients for each path are assumed Rayleigh
and generated following the method in [35]. In this simula-
tion study, we investigate two cases, one with the normalized
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Fig. 6. (left) Simulation results of channel tracking for path 1 of user 1 over a three-path fading channel at f T = 5� 10 and (right) path 1 of a three-path
fading channel at f T = 10 .

Fig. 7. Effects of JED and multistage PIC on the BER and the residual interference to user 1 of a multiuser system in which K = 7, N = 15, L = 3, and
f T = 5 � 10 .

Doppler shift , the other with .
It is noted that the system under the above simulation setting
is overloaded from the perspective of linear multiuser receivers
[36] and, as such, MAI can not be effectively suppressed without
using interference cancellation.6

The proposed joint channel estimation and MUD scheme is
performed on a block basis. The sliding-window for channel
tracking and phase adjustment contains 128 symbols, and to ini-
tialize the noncoherent BCJR algorithm, the first four symbols
of each block are used as initial states. The number of itera-
tions for each time step is three, one for channel exploration and
the other two for channel refinement. In addition, six stages of

6A system is defined to be overloaded in [36] if Cov[i ] > N �L . While
this definition is for linear receivers, we observe that the MAP detector derived
in this paper generalizes the linear ML detector derived in [36] (the work in
[36] ignores ISI). Thus, the performance of the MAP detector before PIC is still
constrained by the loading factor defined above.

parallel interference cancellations (PICs) are employed for each
user on a block basis.

We first present the performance of channel tracking at
dB, using the simplified stochastic recursive

estimator (25). The order, , of the channel model (11) is set
to 3 in the simulations.7 The estimates of channel amplitudes
and channel phases for path 1 of user 1 are shown in Fig. 6
for and , respectively. Both
of the results prior to (referred to as the EM estimates) and
post (referred to as the noncoherent EM estimates, due to
the noncoherent APPs used for phase correction) the phase
adjustment are shown in the figures. As presented in the figures,

7A thorough discussion on order selection for training-based Kalman filtering
can be found in [37]. For our JED algorithm, we compared the BERs for the
single-user system with different values of N (2 to 5), and found almost no
performance improvement forN � 3. So, we setN = 3 so as not to increase
the system complexity.
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Fig. 8. (left) BERs for f T = 5� 10 under different operating conditions; (right) similar results for f T = 10 .

Fig. 9. (left) Average BERs over all users in the system for different fading speeds; (right) corresponding average MSEs.

the channel amplitudes of both the estimates agree with the
true channel ones. However, the phase estimates of the EM
algorithm often go 180 out of the phase of the true channel.
Only the noncoherent EM algorithm provides correct phase
estimates. This shows that the phase errors can be recovered for
PIC with the proposed phase adjustment scheme.

Fig. 7 demonstrates the effects of JED and multistage PIC
on the bit error rate (BER) and the residual interference to
user 1 when . The effect of multistage
PIC on the BER of JED is shown in the left plot, while the
right plot presents the strength of the residual MAI plus
noise. The strength of the residual interference is measured in

with being the eigenvalues of
. As shown in the figure, the strength drops quickly close

to 2 of the white noise power level after four to five stages of
PICs, while the BER curve after 6 stages of PICs still sees a
3 dB loss in at BER in comparison with the
single-user performance.

Fig. 8 presents the BERs of JED for user 1 at two different
fading speeds. The left plot compares the BER of user 1 after six
stages of PICs against the BER of JED of a single-user system,
the BER of user 1 given perfect CSI and the BER of a single-user
system given CSI when . Similar simulation
results are provided for in the right plot, which
show close agreement with that of .

As shown in the figures, with prior CSI, the BER of user 1
comes close to that of the single-user BER, implying that the
performance of MAP detection is not sensitive to the colored
residual interference when perfect CSI is provided. On the other
hand, the BER of JED for the single-user system is around 3
dB inferior to the coherent BER, and has another 3 dB gain
against the BER of joint estimation and MUD for user 1. This
implies that the performance of channel estimation is rather sen-
sitive to the colored residual interference, despite the fact that
the strength of the colored residual interference is comparable to
that of the white noise as seen in Fig. 7. For a single-user system
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under AWGN, via JED, channel estimation errors introduce to
detection a 3 dB loss in signal to noise ratio (SNR). While for
a multiuser system, estimation errors seem to be worse due to
the colored residual interference, consequently, resulting in ad-
ditional loss in SNR compared with the single-user one. This
can be considered as the additional loss in SNR due to the com-
bination of JED and PIC.

Fig. 9 compares the average BERs and mean squared errors
(MSEs) over all users for the cases of and

after 4 stages of PICs. As expected, with perfect CSI,
the performance of MUD is negligibly affected by the fading
speeds, while the BERs of JED for are about 1 dB
inferior to that of . Though not significant, this
shows that the performance of JED is also affected by the fading
speed to certain extent. Different length processing blocks may
be needed for different fading speeds to better tradeoff between
the performance, pilot expense and delay constraints.

IX. CONCLUSION

An iterative structure was proposed for JED and PIC in mul-
tipath time-varying channels. Through the proposed stochastic
recursive channel estimator and the corresponding phase correc-
tion scheme, soft PIC is made possible for joint estimation and
MUD over fast fading channels. It was shown by simulation that
the strength of MAI can be effectively suppressed within four to
five stages of soft PICs and, hence, largely improving the per-
formance of MUD at high SNR.

Despite PIC, a 3 dB loss of SNR was observed in the BERs
of JED between a multiuser system and a single-user one. This
may result from the sensitivity of channel estimation on the
colored residual interference and the coupling effects between
channel estimation and symbol detection. Shorter length pro-
cessing blocks may be adopted to improve the performance.
However, a more rigorous theoretical investigation is required
to characterize the limiting performance of joint estimation and
MUD.
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