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Abstract — A Kalman filtering (KF) approach to on-line 
musical beat tracking with probabilistic data association 
(PDA) is investigated in this work. We first formulate the beat 
tracking process as a linear dynamic system of beat 
progression, and then apply the Kalman filtering algorithm to 
the dynamic system in estimating the time-varying tempo and 
beat locations. Musical beat tracking using traditional 
Kalman filtering is however not reliable in the presence of 
tempo fluctuations and expressive timing deviations. To 
address this problem, we adopt data association techniques to 
assign probability masses to all possible beat interpretations, 
and then locate the true beat according to the weighting. Two 
methods are proposed. The first one (PDA-I) weighs the 
distance between the candidate observation and the predicted 
beat location while the second method (PDA-II) considers not 
only the distance but also the onset intensity in weight 
selection. Superior performance of the proposed beat tracking 
algorithm is demonstrated with simulation results on the 
Music Information Retrieval Evaluation Exchange (MIREX) 
2006 beat tracking competition practice dataset and the 
Billboard Top-10 database1. 
 

Index Terms — Musical signal processing, on-line beat 
tracking, Kalman filter, probabilistic data association, music 
information retrieval.  

I. INTRODUCTION 
When listening to music, most people even without musical 

education can grasp the speed of music and follow it by foot-
tapping or hand-clapping along with beats. However, the same 
is not true for electronic devices. Automatic beat tracking has 
been an active area of research for more than twenty years. 
The beat is a fundamental unit of the temporal structure of 
music, especially to Western music, and beat tracking is an 
essential task in many musical applications such as musical 
analysis, synchronization, editing of musical sounds, and 
human-computer improvisation. This work presents an on-line 
(or causal) musical beat tracking system, where beat 
estimation at a given time depends only on past and present 
data. 

Beat tracking is defined by estimating the possibly time-
varying tempo and the time location of each beat, where the 
beat is referred to as the foot tapping and tempo as the beat 
rate [1]. Our research goal is to estimate the set of beat 
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locations from musical audio signals sequentially. Ideally, 
when beat pulses are strong and the duration between adjacent 
beats is perceptually clear, automatic beat tracking can be 
done easily. Its performance nevertheless degrades 
significantly in practice due to several reasons. The first one 
comes from rest notes and missed-beat syncopation. The rest 
notes hide beat tracking cues, whereas syncopation does not 
have an onset pulse on expected beat location but with a small 
shift. The second one is due to variability in human 
performance. Even if a performer attempts to keep the 
duration between two consecutive beats constant throughout 
the whole music piece, the actual duration tends to vary along 
time. The last one is that some music pieces have time-varying 
tempo and, consequently, a time-varying beat period. The 
performance of beat tracking algorithms is often less robust 
when dealing with classical music, as compared with that 
containing drum sounds [1], [2]. 

Early work on automatic beat tracking was done by 
researchers in the fields of music perception and computer 
science [3]. More recently, Brown [4] used the autocorrelation 
function to examine the pulses in musical scores. Scheirer [5] 
applied a bank of comb filters to a musical signal at different 
fixed frequencies and searched for the filter that gives the 
strongest response for tempo estimation. Afterwards, the beat 
location was calculated by examining the phase of the filtered 
signal. Goto [2] developed an on-line beat tracking system 
that can process music with or without drum sounds. The 
system recognizes the hierarchical beat structure using three 
kinds of musical knowledge: onset times, chord changes, and 
drum patterns. A probabilistic generative model for tempo 
tracking was examined by Cemgil et al. [6],[7]. A Kalman 
filtering process was used to track beats in [6], which was 
followed by using the tempogram representation to assign 
probability masses to all possible beat candidates, while 
Monte Carlo methods were exploited to infer a hidden tempo 
variable in [7]. Hainsworth and Macleod [8] used particle 
filters to associate onsets from an audio signal to a time-
varying tempo process so as to determine the beat locations. 

Most of earlier work for beat tracking used symbolic or 
musical instrument digital interface (MIDI) data, e.g., 
[4],[6],[7]. Audio signals have been examined more recently, 
e.g., [2],[5],[8]. In addition, most previous beat tracking 
systems adopt a non-causal method that allows the use of 
future data and backward decoding, which is not suitable for 
real-time implementation in consumer electronic applications. 

In this work, we present a method that extracts beat 
locations from acoustic musical signals, not limited to any 
particular music type, including both classical music and 
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modern music with drums. Our research is motivated by the 
probabilistic model proposed by Cemgil et al. in [6]. More 
specifically, after pre-processing audio signals and extracting 
onsets, we formulate the beat tracking process as a linear 
dynamic system of beat progression by following the 
framework in [6]. Then, a Kalman filtering process can be 
applied to the dynamic system to estimate the hidden state, i.e., 
the beat location and the period. However, beat estimation 
using only Kalman filtering process is not reliable in the 
presence of tempo fluctuations and expressive timing 
deviations.   

To improve the tracking performance, a probabilistic 
approach can be used by assigning probability masses to all 
possible beat interpretations. Following this line of thought, 
the tempogram representation was adopted in [6]. Here, we 
adopt an alternative approach known as the probabilistic data 
association (PDA) technique to enhance the robustness of 
Kalman filtering. PDA has been widely used in real-time 
object tracking in computer vision [9]-[11] and radar 
applications [12],[13].  The proposed method, called KF-PDA, 
is theoretically elegant and computationally efficient as 
compared with the KF-tempogram approach [6]. For example, 
the switching mechanism required by the KF-tempogram 
approach to handle outliers is not needed in the proposed KF-
PDA solution. 

The basic idea of KF-PDA is briefly described below. First, 
a simple strategy, called local maximum selection, is used to 
choose the location of the predicted beat that has the 
maximum onset intensity among a set of beat candidates 
within a fixed window. Then, we consider two PDA methods. 
The first one (PDA-I) weighs the distance between the 
candidate observation and the predicted beat location while 
the second one (PDA-II) considers the distance as well as the 
onset intensity in weight selection. It is demonstrated by 
experimental results that the proposed beat tracking system 
leads to reliable performance even with tempo fluctuations 
and beat deviations. 

The rest of this paper is organized as follows. Sec. II 
describes the pre-processing of music signals for beat tracking. 
A linear dynamic model of beat progression and Kalman 
filtering algorithm are given in Sec. III. In Sec. IV, beat 
selection techniques based on PDA are discussed. Finally, 
experimental results are given to compare the performance of 
two PDA methods in Sec. V, followed by concluding remarks 
and future research directions in Sec. VI. 

II. MUSICAL DATA PRE-PROCESSING 
The block-diagram of the proposed musical beat tracking 

algorithm is illustrated in Fig. 1. Given the acoustic waveform 
of a musical signal, musical data pre-processing is performed 
to extract temporal locations of musical onsets by two 
modules: 1) onset detection and 2) periodicity estimation. 
Typically, these tasks can be done within a local temporal 
interval of an analysis window and updated from one interval 
to the other. The temporal locations and intensities of onsets 

are used as the input data to the next module, i.e., the Kalman 
filtering process. It should be noted that although there exist 
many techniques for onset detection and periodicity estimation, 
we choose classical algorithms in our implementation for their 
simplicity. Next, the Kalman filtering process is used to 
estimate the hidden state: temporal locations of beats and their 
period. At each step, we validate only measurements whose 
predicted probability is sufficiently high, and then select the 
best beat estimate by assigning probability masses to the 
validated measurements. In this section, we focus on music 
data pre-processing. 

 

Fig. 1. Overview of the proposed musical beat tracking system. 

A. Onset Detection 
The aim of onset detection is to extract a detection function 

to indicate the locations of the most salient features of an 
audio signal [14]. These events are particularly crucial to beat 
perception and provided as an input to the proposed musical 
beat tracking system as shown in Fig. 1. The onset detection 
task falls into two categories: detection of percussive events 
and harmonic changes [8]. The transient events, usually 
coming from drum sounds, have strong energy changes while 
the change of musical piches/harmonies, usually due to the 
arrival of a new note, is associated with small energy changes. 

Here, we adopt a cepstral distance method to calculate the 
musical onset detection function as described below. The 
discrete Fourier transform of the input audio signal is 
calculated for every 20-ms time frame, which is Hanning-
windowed and overlapping with each other by 50%. In each 
frame, the spectrum is mapped onto the mel-scale using the 
triangular mel-scale filter bank. Then, the mel-frequency 
cepstral coefficients (MFCCs) are calculated by taking the 
cosine transform of a log power spectrum on the mel-scale 
frequency, denoted by the mth cepstral coefficient in the nth 
time frame, Lmncm ,,0),( L= , where L is the order of the 
cepstral coefficients. 

Since low-order MFCCs are highly correlated to the mel-
scale energy envelope of audio signals, we choose four low-
order coefficients to represent the energy change of audio 
signals. Specifically, the 0th order coefficient, )(0 nc  
represents exactly the mel-scale energy while three low-order 
coefficients, )(1 nc , )(2 nc , and )(3 nc , capture well the 
energy change of harmonic sounds. Then, the chosen 
coefficients are averaged over p consecutive time frames,  i.e., 

)1(,),( +− pncnc mm L to represent the smoothed 

coefficients, 3,,0 ),(ˆ L=mncm at time frame n. We selected 
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3=p  in our experiments so that even a fast energy change 
in the underlying music signal can be captured well. Finally, 
the musical onset detection function is calculated by finding 
the difference between the two consecutive smoothed cepstral 
coefficients as 

( ) .)1(ˆ)(ˆ1)(
1

2∑
=

−−=
L

m
mm ncnc

L
nd        (1) 

Low amplitude peaks in the detection function can be 
discarded by thresholding [14]. Then, onsets are localized in 
the detection function by identifying local maxima above the 
threshold. 

B. Period Estimation 
The detection function in (1) at the output of the onset 

detection is observed as a quasi-periodic and noisy pulse-train. 
The aim of periodicity estimation is to find the coarse 
periodicity of the detection function for the next step, i.e., the 
Kalman filtering process. For periodicity estimation, we 
assume that the tempo of the music signal is constant over the 
time interval of the analysis window (yet it can evolve slowly 
from one to the other). To this end, we use the classical 
autocorrelation function as 

∑ −=
n

ndndACF ),()()( ττ          (2) 

where )(nd is the onset detection function and τ  is a delay 
parameter. 

However, the autocorrelation function of real-world 
musical onset signals does not exhibit ideal periodicity so that 
it is not easy to find the exact peak of a period. For example, 
there often exists confusion between the real period and its 
double/half-period (or triple/one-third-period for the triplet 
case) in the musical sound.  

III. BEAT TRACKING WITH KALMAN FILTERING 
Musical tempo can be modeled as a hidden state variable of 

a stochastic dynamic system. Here, we employ the linear 
dynamic model proposed by Cemgil et al. [6] to formulate the 
beat tracking problem in a probabilistic framework, where 
beats are estimated by a Kalman filter under the noisy 
environment. Kalman filtering, widely used in object tracking 
applications [12],[13],[15], exploits the dynamics of the target 
to remove the noise effect and obtain a good estimate of the 
target location.  

A. Linear Dynamic Model of Beat Progression 
A perfect metronome can be described as a dynamical 

system with two state variables [6]: beat τ  and period Δ̂ . 

Letting the state variable at the kth step be ,]ˆ,ˆ[ T
kkk Δ= τx  

the linear state transition model can be written as  

, 
10
11

1111 −−−− +⎥
⎦

⎤
⎢
⎣

⎡
=+= kkkkkk wxwxΦx    (3) 

where kw  is the process noise which is modeled as a zero-
mean multivariate normal distribution with covariance, 

,kQ i.e., ).,(~ kk N Q0w  

At time k, observation ky of true state kx  can be written as 

[ ] , 01 kkkkkk vxvxMy +=+=        (4) 

where kv  is the observation noise which is modeled as the 

zero-mean Gaussian white noise with covariance, ,kR  i.e., 

).,(~ kk N R0v  
The initial state and noise vectors at each step are assumed 

to be mutually independent. With this formulation, hidden 
state kx̂  can be estimated sequentially in the time domain 
based on the estimated state from the (k-1)th time step and the 
current measurement. 

B. Beat Estimation via Kalman Filtering 
Given the linear dynamic model in (3) and (4), the Kalman 

filtering process can be used to estimate the hidden state of 
beats efficiently. In what follows, we use n|mx̂  to represent 

the estimate of x  at time n given observations up to and 
including time m. 

The Kalman filter has two distinct phases (i.e., predict and 
update) [16] as summarized below. The predict phase uses the 
state estimate from the previous time step to produce an 
estimate of the state at the current time step. It can be written 
as 

111 ˆˆ −−− = |kkkk|k xΦx               (5) 

1111 −−−− += kk|kkkk|k QΦPΦP T          (6) 

where 1ˆ −k|kx and 1−k|kP  represent the predicted state and 

covariance, respectively. In the update phase, the 
measurement information at the current time step is used to 
refine this prediction to derive a more accurate state estimate 
as 

( ) 1TT RMPMMPK −

−− += kkk|kkkk|kk 11      (7) 

( )11 ˆˆˆ −− −+= k|kkkkk|kk|k xMyKxx        (8) 

( ) 1−−= k|kkkk|k PMKIP            (9) 

where kK  is called the Kalman gain. These two phases are 
updated alternatively to estimate the hidden state of the 
dynamic system from a series of incomplete and noisy 
measurements. 

IV. BEAT SELECTION WITH PROBABILISTIC DATA 
ASSOCIATION (PDA) 

In a real world situation, there exist non-beat onsets in 
musical notes and percussive sounds although beats tend to 
have large onset values. The beat tracking performance based 
on only Kalman filtering with onset inputs is however poor. 
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To improve its performance, we need a more intelligent way 
to locate true beats from the audio waveform. In this section, 
we apply the probabilistic data association (PDA) technique, 
which was proposed for real-time object tracking in computer 
vision [9]-[11] and radar applications [12],[13], to estimate 
beat locations robustly in the presence of noisy measurements. 

A. Local Maximum (LM) Selection Rule 
The Local Maximum (LM) selection rule is a simple 

strategy that chooses the beat location at the kth step from a 
set of possible beat interpretations. Basically, it selects the 
onset that has the maximum magnitude within a fixed window 
around the predicted beat location 1|ˆ −kkτ  in the Kalman 

filtering process as shown in Fig. 2. 

 
Fig. 2. Beat selection in the Kalman filtering process with the LM 
selection rule. The arrows represent onsets obtained from the musical 
data pre-processing modules. 

 
Mathematically, the LM selection rule can be written as 

),(maxarg
2ˆ 1|

nd
Wn

k
kk <− −

=
τ

τ              (10) 

where kτ  is the beat at time step k obtained from the LM 
selection rule, W is a fixed-window length and the predicted 
beat location can be obtained by 

.ˆˆˆ 1|11|11| −−−−− Δ+= kkkkkk ττ  

In practice, when the LM selection rule is adopted, its 
performance can still be confused by onsets of non-beat notes 
or percussive sounds, which have stronger energy than true 
beat onsets.  

Fig. 3 shows such an example, where a segment from We 
Didn't Start the Fire by Billy Joel is illustrated. The top sub-
figure of Fig. 3 shows the spectrogram of the music sound 
from 30s to 35s, which is re-labeled as 0 to 5s. The bottom 
sub-figure illustrates the corresponding detection function 
obtained by the musical data pre-processing procedure as 
discussed in Sec. II. The music sound has strong beats from 
percussion in the first 3 seconds. We see that the detection 
function behaves like a pulse train with a fixed interval 
between consecutive pulses. However, beat notes do not have 
stronger energy values than non-beat notes in the time interval 
between 3.0s and 4.5s. When the beat note does not have the 
strongest musical onset in the neighborhood of predicted beat 
location 1|ˆ −kkτ , the LM selection rule fails. For example, there 

are 3 strong pulses around 3.7s in Fig. 3, denoted by A, B and 
C, where A and C are true beats while B is a note of the half-
beat metrical structure. In this situation, since 1|ˆ −kkτ  is around 

3.7s and onset B has a musical intensity larger than onset A 
within a window W, the Kalman filtering process based on the 
LM selection rule selects onset B as new observation .ky  

Thus, the newly estimated beat location kk|τ̂  will be located 

between onsets A and B (instead of onset A, which should be 
the case if the observation is chosen to be onset A). Then, at 
time step k, it is possible to select onset D as observation 

.1+ky  If this happens, the Kalman filtering process starts to 
track wrong beat locations from this point on. In conclusion, 
the performance of beat tracking using the Kalman filter with 
the LM selection rule degrades due to the existence of non-
beat notes and/or percussive sounds. 

 

Fig. 3. Billy Joel's We Didn't Start the Fire: (top) the spectrogram of a 
music segment from 30:00 to 35:00 seconds, where the y-axis represents 
the frequency from 0 to 8 kHz; (bottom) the detection function as a 
function of time (in the unit of seconds) for the same music segment. 

B.  Measurement Validation 
To overcome the weakness of the LM selection rule, we 

adopt the PDA technique that has been widely used for target 
tracking in a cluttered environment, where a clutter denotes a 
set of objects that are close to the target yet random in location 
or intensity. Any non-target in such an environment may 
cause confusion in the tracking of real targets. The PDA 
technique [9]-[12] provides a probabilistic method to associate 
observations (or measurements) with the target of interest in 
the cluttered environment. Ideally, PDA should choose any 
measurement that is originated from the target of interest and 
discard other measurements contributed by random noise 
and/or interference. Instead of using the deterministic 
framework as discussed in Sec. IV-A, we will employ the 
Bayesian probabilistic approach to consider all candidate 
observations simultaneously and probabilistically. 

Here, a two-step approach is implemented to track musical 
beats robustly: validation and association of measurements. 
The first step is to validate measurements whose predicted 
probability is high. In other words, the observation validation 
process aims to remove measurements that are unlikely to be a 
correct target in the next step. In this subsection, the 
observation validation method for musical beat tracking is 
discussed and data association techniques to choose beats 
robustly will be described in the following subsections. 
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A validation region can be viewed as a subspace in the 
observation space and often obtained by applying a multi-
dimensional probabilistic threshold [12]. To derive the 
validation region for musical beat tracking, we begin with the 
predicted observation 

,ˆˆ 11 −− = k|kkk|k xMy               (11) 

and the associated covariance matrix can be written as 

( )( )[ ]
,

ˆˆ

1

1
1|1|

kkk|kk

k
kkkkkkk |E

RMPM

YyyyyS
T

T

+=

−−=

−

−
−−

       (12) 

where [ ]ξE  is the expected value of ξ  and 1−kY  is a set of 

validated measurements up to time (k-1): { } 1
1

1 −

=
− = k

jj
k yY . 

If the true measurement at time k conditioned upon 1−kY  is 
normally distributed, the probability distribution of ky  can be 
expressed as 

[ ] ( ).ˆ 1
1

kk|k
k

k N|p S,yYy −
− =              (13) 

Then, a region can be defined in the measurement space, 
which has a higher probability [12], 

{ },~~:)(~ γγ ≤= kkkkV ySyy TT           (14) 

where γ  is a threshold and ky~  is a measurement residual or 
innovation defined by 

.ˆ~
1−−= k|kkk yyy                (15) 

By choosing a proper value of ,γ  we can determine the 

validation region, ).(~ γkV  Under (15), measurements that lie 
inside the region are considered valid while those outside are 
discarded. 

It was shown in [12] that the weighted norm of the 
measurement residual from (14) is chi-square distributed with 
the degree of freedom equal to the dimension of the 
measurement vector. By choosing 9=γ in (14), the 
probability for the region to contain true measurements is 
99.7%, whereas the choice of 4=γ  produces a probability 
of 95.4 % [12]. 

Based on (12) and (14), we derive the validation region for 
the proposed musical beat tracking algorithm as 

,
ˆ

:)(~
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1|

⎪⎭

⎪
⎬
⎫
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⎪
⎨
⎧
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−
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v

kkk
k p

V
yy

y         (16) 

where 11p  and 2
vσ  are the variance of beat location kτ  and 

observation noise ,kv  respectively. Given ,, 11pγ and ,2
vσ  

the validation region can be calculated for each predicted 
observation 1ˆ −k|ky  as 

( ) ( ).ˆˆ 2
111

2
111 vk|kvk|k pp σγσγ ++≤≤+− −− yyy  (17) 

To summarize, the validation procedure limits the region in 
the measurement space to search for the beat of interest 

robustly. After the validation, PDA adopts a strategy to 
associate valid measurements with probabilities as described 
below. 

C. Basic Probabilistic Data Association (PDA-I) 
Within the validation region, the next step is to perform the 

probabilistic data association (or weighting), which is derived  
with the following assumption 

[ ] ( ),ˆ 11
1

−−
− = k|kk|k

k
k ,N|p PxYx          (18) 

i.e., the state is Gaussian-distributed with a mean and an error 
covariance matrix. Mathematically, PDA decomposes an 
estimate into a linear combination of estimate from 
measurements inside the validation region as 
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where km  is the number of measurements in the validation 

region. i,k|kx̂  is the updated state estimate conditioned on 

event )(kiθ  which means that i,kŷ  is the measurement 

originating from the target beat, while )(0 kθ  represents the 
event that none of the measurements originating from the 
target beat. )(kiβ  in (19) is the probability of 

even )(kiθ conditioned on given measurements, i.e., 

[ ] .,,0   ,|)()( k
k

ii mikpk L== Yθβ      (20) 

These events are mutually exclusive and ∑
=

=
km

i
i k

0
.1)(β  

To make the basic Kalman filtering process compatible 
with PDA, some steps in the Kalman filter algorithm as 
described in Sec. III-B have to be modified. We begin with 
the update of state vector k|kx̂  from 1ˆ −k|kx  as 

( ).ˆˆˆ 11 −− −+= k|kkkkk|kk|k xMyKxx              (21) 

With (20) and (21), k|kx̂  can be represented by 
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The state vector update formula in (21) is kept intact except 
for the replacement of the prediction residual with its 
weighted version, .kΨ  Since the quantity, 1ˆ −− k|kki,k xMy , 

is called the innovation, kΨ  can be viewed as the equivalent 
innovation for PDA, which is the weighted average of 
innovations from all validated measurements. Another needed 
modification is to compute the error covariance matrix .k|kP  

We only state the results below and refer to [12] for details: 

[ ] ,kk kk|kk|kk|k PPPP ~ )(1)( 0
010 +−+= − ββ     (23) 

where ( ) 1
0

−−= k|kkkk|k PMKIP is the covariance of ,ˆ k|kx  
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and where y~  is the measurement residual defined in (15).  
For musical beat tracking, a validation region is calculated 

at each sample time. If more than one measurement is found in 
the validation region at a given time for a beat, then PDA is 
applied to all of them. In other words, all measurements in the 
validation region are used for beat estimation. 

D. Enhanced Probabilistic Data Association (PDA-II) 
PDA-I exploits the weighted average of innovations from 

all validated measurements y as shown in (22). As defined in 

(20), weight ),(kiβ  also known as the association 
probability, is related to the distance between candidate 
measurement i,ky  and .1−k|kkxM  The smaller the distance 

between them, the larger the probability is. However, in 
musical beat tracking, human uses not only the closeness of 
the measurement and the predicted beat location but also the 
onset intensity as cues to select the next beat location. 
Motivated by the observation, we propose an enhanced PDA 
method.  

It is worthwhile to mention that modification of the 
association probability has been considered by researchers 
before in various contexts to improve the tracking 
performance, e.g., in visual object tracking [9], [11] and radar 
applications [13]. The former uses both the prediction residual 
and image similarity as cues for object tracking while the 
latter uses the prediction residual and the intensity of the 
reflected radar signal as cues for airplane tracking. Here, we 
use both the prediction residual and the intensity of the 
measurement to improve the musical beat tracking 
performance . 

The intensity of the observed signal is introduced to the 
association probability calculation via 
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where ( )⋅YI  is the distribution function of the onset intensity. 

As shown in (25), new weight )(kenh
iβ  is the product of two 

terms. The first term is contributed by the onset intensity 
while the second term is associated with the prediction 
residual that is actually equal to the weight defined in (20). 
More specifically, the first term contributed by the onset 
intensity can be further decomposed as [11] 
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where ,,,1 ),( kii miI L=y  is the probability distribution 

of validated measurement iy  and )(0 jI y  is the probability 

distribution of jy when it is not the measurement 

corresponding to the target beat. We can re-write (26) as 
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It is difficult to compute ,1 ),( kii miI ≤≤y  in (27) 
efficiently and accurately for two reasons. First, the number of 
candidate measurement, km , is determined dynamically by 

validated region )(~ γkV  at each time step k. Second, for 
particular i and k, there are not enough samples in estimating 
probability distribution )(kI i  accurately. To address this 

issue, )(kIi  is replaced by a fixed probability distribution of 
the validated measurement for all i and k. That is, we 
approximate  

,,,1    ,)( kBi miIkI L=≈                                         (28) 

where BI  is the probability distribution of onset intensities at 
beat locations, which can be determined statistically. On the 
other hand, )(0 iI y  is the probability distribution of 

observations iy  at non-beat locations. Similarly, since it is 
difficult to get the accurate distribution specific i and k, we 
approximate it by a fixed probability distribution 

,)(0 NIkI ≈                                                                   (29) 

where NI  is the probability distribution of onset intensities at 
non-beat locations. 

E. Probability Distribution Estimation 

To estimate probability distributions BI  and NI in (28) and 
(29), we adopt a non-parametric approach and use part of the 
MIREX 2006 beat tracking competition dataset [17] as the 
training data. This database consists of twenty 30s music clips 
with annotated beat locations. The first 10s music signals were 
used to determine BI  and NI . The histograms of BI  and NI  
as functions of the onset intensity are shown in Fig. 4, where 
the y-axis is the frequency of occurrence and the x-axis is the 
onset intensity. Bin centers are located uniformly between 
0.25 and 8.25 seconds with bin width of 0.5 second in (a) and 
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between 0.125 and 8.125 seconds with bin width of 0.25 
second in (b), respectively. We see from Fig. 4 that the onset 
distribution for non-beats heavily concentrates on small onset 
values with few large onset values. The non-beat type has a 
much higher probability than the beat type in the first bin in 
Fig. 4 (a). For the second bin centered at 0.75, the beat and the 
non-beat types have comparable probabilities around 20% 
(0.190 for beats and 0.207 for non-beats). For the third bin 
centered in 1.25 and above, the onset probability for beats is 
larger than that for non-beats. By refining the bin width from 
0.5 to 0.25, we can get a better resolution for small onset 
values as shown in Fig. 4 (b). 

 
(a) Bin width of 0.5 second. 

 
(b) Bin width of 0.25 second. 

Fig. 4. Probability distributions of BI  and NI  as a function of music 

onset intensities. 

V. EXPERIMENTAL RESULTS 

A. Experimental Setup and Evaluation Metrics 
Musical sounds in our experiments were obtained from two 

music databases. The first one was the MIREX 2006 beat 
tracking competition dataset that has twenty 30-second music 
clips of diverse genres including classic, pop, rock, blues, and 
foreign-language pop songs. Beats in each audio clip were 
listened and verified by more than 40 people. The tempo of 

the audio clip was not known to the listeners so that they 
might use a different period to label beats. The second dataset 
used in our experiments was twenty Billboard Top-10 songs 
in 80's [18], which contains various genres including pop, 
rock, and some adult contemporary from singer-songwriters 
such as Billy Joel. For each song, a 60-second music clip was 
segmented from the original. The candidate tempos were 
estimated from the autocorrelation method and manually 
selected. Then, beats were labeled based on the selected 
period to serve as the ground truth. To be compatible with the 
MIREX 2006 dataset, only the first 30 seconds of the 
Billboard Top-10 dataset were used. All audio signals were 
sampled at 44.1-kHz rate with 16-bit resolution. 

The first 10 seconds of the music clips were used to 
determine the probability distributions BI  and NI  as 
discussed in Sec. IV-E. The next 5 seconds were exploited to 
initialize the state vector of the Kalman filter such as .0x  The 
performance of the proposed musical beat tracking system 
was evaluated with the remaining 15 seconds of these musical 
clips. A detection function is derived, as discussed in Sec. II, 
at a sampling rate of 100 Hz, and the peak-picking scheme 
[14] is used to locate onsets.  

Two well-known metrics were exploited to evaluate the 
musical beat tracking performance. Being similar to the P-
score evaluation in MIREX 2006 [17], we choose the first 
evaluation metric as 

∑ ∑
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δδ       (28) 

where dδ and gδ are unit pulse functions in the detected and 

the ground-truth beat locations, respectively. Note that dδ  

and gδ  take binary values only (i.e., 0 and 1). In (28), W2  is 

the tolerable window size and maxN  is defined as 

( ),,maxmax gd NNN =  

where dN and gN are the detected and the ground-truth beat 

numbers, respectively. The window size W2  was chosen to 
be 20% of the beat duration throughout the experiment. From 
the definition of the metric, the P value lies between 0 and 1, 
where the higher the P value, the better the performance. Note 
that if there are false alarms, the P value will be penalized by 
a larger value of .dN  

The second evaluation metric is the Longest Tracked Music 
Segment Ratio (LTMSR) [1], [2]. In the metric, we normalize 
the longest music segment with all its beats correctly tracked 
by the total duration of the same clip, i.e., 15 seconds in the 
MIREX dataset. It shows how long the beat tracking 
algorithm can maintain the accurate tracking once it starts to 
track. Thus, its value lies between 0 and 1. It is noticed that 
even if a single beat is missed in the tracking process, this 
metric drops significantly. For example, for a clip of 15 
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seconds, if all beats are correctly detected except one at the 
9th second, the performance will drop from 100% (=15/15) to 
60% (=9/15). In contrast, the P-score metric can still be as 
high as 96%. 

B. Performance Evaluation with P-Score Metric 
Table I shows the average beat tracking performance for the 

MIREX dataset, where the proposed KF-based beat tracking 
algorithm was used, associating with various beat selection 
strategies. We see that PDA-II improves the performance 
greatly over LM by an average of 13.25%. In contrast, PDA-I 
and LM have performance similar. 

The performance of LM and PDA-II for each music clip 
from the MIREX dataset is further compared by the scatter 
plot shown in Fig. 5, where each diamond-shape dot 
represents a music clip and its x- and y-coordinates represent 
the performance using LM and PDA-II, respectively. 14 dots 
are concentrated in the top-right corner of the figure, where 
the performance of LM is between 80% to 90% and that of 
PDA-II ranges from 95% to 100%. For the remaining six 
cases, three dots are above the 45-degree line (i.e., the dotted 
line), which implies that PDA-II still performs better than LM. 
LM performs slightly better than PDA-II in the two cases, 
where two dots are below the 45-degree line. Finally, there is 
a one dot in the bottom-left corner of the figure, for which 
both LM and PDA-II perform poorly. It is “train13.wav’’ in 
the MIREX dataset, which has a very fast tempo (178 beat per 
minutes) and strong onsets from the metrical level of the half 
beat. Consequently, they result in serious confusion on beat 
detection. 

The P-score performance for the Billboard Top-10 dataset 
is shown in Table II along with that for the MIREX dataset for 
comparison. For the Billboard Top-10 dataset, the P-scores of 
LM, PDA-I and PDA-II all improve, as compared with the 
MIREX dataset, but with a different degree. The improvement 
of PDA-I is most significant while PDA-II still offers the best 
performance. Actually, except for poorer performance with 
Elton John's Candle in the Wind, PDA-II can achieve a P-
score higher than 94%. In contrast, LM has similar 
performance for the MIREX dataset and the Billboard Top-10 
dataset. There is only a small difference of 3.72% between the 
two datasets when using LM. The results can be explained as 
follows. The MIREX dataset has rather diverse genres while 
songs in the Billboard Top-10 dataset are more homogeneous. 
For the latter, since all of them received great commercial 
success, they resorted to average people's music taste. 
Generally speaking, the Billboard dataset has more regular 
beats throughout each music clip than the MIREX dataset. 

C. Performance Evaluation with LTMSR Metric 
Next, we tested the proposed beat tracking algorithms on 

the same datasets with the second evaluation metric, LTMSR, 
which emphasizes the robustness of the tracking performance 
in the presence of beat variation, rest notes and noisy 
measurements. The results are shown in Table III. For the 
MIREX dataset, the performance of PDA-I is worse than that 

of LM, which implies that the onset intensity may play a more 
important role than the prediction residual in beat tracking for 
the MIREX dataset. PDA-II outperforms LM and PDA-I by 
12.36% and 26.71%, respectively. For the Billboard top-10 
dataset, PDA-I has slightly better performance than LM. The 
performance of PDA-II is 90.88%, which is significantly 
better than LM and PDA-I. As compared with the MIREX 
dataset, LM, PDA-I and PDA-II all have better LTMSR 
performance for the Billboard Top-10 dataset, which can be 
explained by the homogeneity of beats in the Billboard Top-
10 dataset. 

 
Fig. 5. The performance of the Kalman-filter-based beat tracking 

algorithm with LM and PDA-II for each music clip. 
 

TABLE I 
P-SCORE COMPARISON WITH MIREX DATASET 

 LM PDA-I PDA-II 
MIREX 74.08% 72.67% 87.33% 

 
TABLE II 

P-SCORE COMPARISON WITH MIREX AND BILLBOARD DATASETS 
 LM PDA-I PDA-II 

MIREX 74.08% 72.67% 87.33% 
BILLBOARD 77.80% 87.81% 94.68% 
 

TABLE III 
LTMSR COMPARISON WITH MIREX AND BILLBOARD DATASETS 

 LM PDA-I PDA-II 
MIREX 66.18% 51.83% 78.54% 

BILLBOARD 73.42% 78.98% 90.88% 

VI. CONCLUSION AND FUTURE WORK 
A Kalman-filter approach to musical beat tracking with 

three measurement selection rules were examined in this 
work. The simple LM measure selection rule chooses the 
onset that has the maximum intensity within a fixed window. 
The basic PDA method (PDA-I) considers only the prediction 
residual value while the enhanced PDA method (PDA-II) 
incorporates both the prediction residual and the onset 
intensity. PDA-II gives the best performance among the three 
for two test music databases: the MIREX 2006 competition 
dataset and the Billboard Top-10 dataset. 
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We should mention that our experimental results are still 
preliminary. More extensive test of the proposed KF-PDA 
method should be conducted in the near future. In particular, it 
is worthwhile to compare the proposed scheme with the 
scheme proposed by Cemgil et al. [6],[7] on a wide range of 
test datasets. 
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