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Abstract

Most research on the lifetime of wireless sensor networks has focused primarily on
the energy depletion of the very first node. In this study, we analyze the entire
aging process of the sensor network in a periodic data gathering application. In
sparse node deployments, it is observed that the existence of multiple alternate
paths to a sink leads to a power law relation between connectivity to a sink and hop
levels, where the probability of connection to a sink decreases in proportion to the
hop level with an exponent, when device failures occur over time. Then, we provide
distance-level analysis for the dense deployment case by taking into account the
re-construction of a data gathering tree and workload shift caused by the energy
depletion of nodes with larger workload. Extensive simulation results obtained with
a realistic wireless link model are compared to our analytical results. Finally, we
show through an analysis of the aging of first-hop nodes that increasing node density
with a fixed radio range does not affect the network disconnection time.

Key words: Wireless sensor networks, Aging process, Reliability, Data gathering
tree, Connectivity, Residual energy, Network lifetime

1 Introduction

A wireless sensor network typically consists of a large number of low-cost sen-
sor devices with limited battery energy deployed in an unattended manner.
Many applications require sensor nodes to operate in the context of limited
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resources, node failure and an unpredictable dynamic environment in a dis-
tributed and self-organized way [1, 2]. Under the above constraints, a sensor
network should provide a certain degree of network performance required by
applications for a target period of time. The aging problem is important in
the fields of biology [3–5] and system reliability [6] and has been extensively
studied therein. Studies in biology and system reliability have attempted to un-
derstand the causes of the aging process and predict the lifetime of organisms
or systems by characterizing their aging process. According to the Gompertz
law [7], the living adult organism’s mortality rate increases exponentially with
age.

A similar aging phenomenon occurs in wireless sensor networks. Since the ag-
ing process of a network is caused by the aging of its constituent sensor nodes,
we need to examine the aging process of each individual node, including the
energy consumption rate and the device reliability rate. The energy consump-
tion rate is however not a trivial problem since a sensor network has to be
regarded as a whole system (or an organism) that allows dynamic interaction
among sensors with respect to the evolving nature of the environment and the
survival state of neighboring nodes. To analyze the aging process of a wire-
less sensor network, we would like to understand how nodes approach the end
of their life and how the network performance degrades over time. Generally
speaking, we have to examine this problem from a microscopic view of energy
consumption or reliability in a sensor device as well as a macroscopic view
of the network environment and condition in order to understand the overall
aging process of a network. Applications, operations, the initial deployment,
and the operating environment all affect the aging process. With a good un-
derstanding of the aging process and an accurate prediction, we can provide
proper network maintenance planning and operations effectively, which include
energy-efficient operations such as load balancing and power saving to delay
the aging process as well as proper planning in redeployment and/or recharg-
ing time to extend the network’s life. Predicting when and where nodes are
approaching to death can enable timely network maintenance without inter-
rupting network operations.

In this work, we extensively examine aging beyond initial node death due to
energy depletion and device failure in diverse network operations and deploy-
ment conditions. It reveals that diverse aging phenomena depend on network
conditions including multi-hop communication with sparse and dense node
deployments.

• In a multi-hop data gathering tree for a sparse node deployment, we present
hop level analysis of workload. We discuss the effect of energy depletion
with or without data aggregation and the effect of device failure on the
connection at each hop level to a sink in the tree. A power law is observed
in the relation between connectivity and the hop level in the face of node

2



death caused by device failure and energy depletion with data aggregation
as node death increases, which is due to the existence of multiple alternate
paths to the sink. Thus, the probability of connection to the sink decreases
in proportion to the hop level with an exponent. From these observations,
we characterize connectivity to a sink in each hop level over time after the
initial node death.

• In the dense node deployment case with a multi-hop data gathering tree, the
finer-grained distance level workload distribution among survivor nodes over
time is analyzed by incorporating the effect of dynamic tree reconstruction
caused by the death of other nodes. With mathematical analysis, we can
predict the energy consumption distribution and the residual energy distri-
bution over time and space in a large-scale wireless sensor network with low
complexity. Besides theoretical analysis, we provide simulation results using
a realistic wireless link model. In addition, our first-hop node aging analysis
in a dense deployment provides the expression of the node density effect
on the network disconnection time and the prediction of disconnection time
caused by energy depletion.

The rest of this paper is organized as follows. Previous work on energy con-
sumption and lifetime analysis, and connectivity is reviewed in Section 2.
Section 3 provides hop-level analysis for sparse node deployment. Then, finer-
grained distance-level analysis for dense node deployment is discussed in Sec-
tion 4. Finally, conclusion and future research directions are presented in Sec-
tion 5.

2 Related Work

The energy consumption model and the network lifetime analysis until the
first node death have been studied in [8–11]. Heinzelman et al. [8] present a
general energy consumption model for communication components in a sensor
device and analyzed the cluster-based data gathering scheme. Bhardwaj and
Chandrakasan [9] discuss the upper bound of the network lifetime by consid-
ering the network topology and the data aggregation scheme. They used the
optimization model to compute the maximum lifetime of a sensor network.
Lotfinezhad and Liang [10] analyze the energy consumption of data forward-
ing with a distance level when all nodes are alive, and showed that high energy
consumption is required in the outer border of each hop level when a random
parent selection scheme is used. Several operational modes of a sensor node,
including sleep and active modes, are modeled in [11] as a Markov chain and
the energy dissipation level is computed with stationary probabilities of op-
erational modes. The data communication rate of a node is derived using a
network model, where parameters is obtained through iterations of a closed
loop of a node model, a wireless link interference model and a network model.
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Chen and Zhao [12] present the average network lifetime that incorporates the
average unused energy in the network and the expected energy consumption.
The lifetime expression is a general form that is independent of underlying
networks. Using the expression, they propose a lifetime maximization MAC
protocol. Zhang and Hou [13] study the node density and the lifetime upper
bound that maintains a certain portion of network area to be covered. Olariu
and Stojmenovic [14] present the discussion about the effect of the power at-
tenuation factor and the way to balance the energy expenditure across hop
levels by adjusting corona width in each hop level. Chen et al. [15] examine
the effect of increasing number of nodes on network lifetime and present the
optimal placement and number of nodes that maximize the network lifetime
divided by total number of nodes deployed. While there are several papers that
discuss the problem of non-uniform energy consumption across the network,
our focus is to examine the aging process dealing with the effect of node deaths
on the network and survivor nodes over time after the initial node death.

Many studies on connectivity have focused on identifying a proper radio range
to achieve the connectivity between any two nodes in an uniformly distributed
sensor environment at the deployment time [16, 17]. Gupta and Kumar [16]
present the condition for transmission power that ensures a network is con-
nected with probability one. Bettstetter [17] derives the expression for the
probability of the minimum node degree and a k-connected network of a cer-
tain radio range and node density using the Poisson point formulation. There
is some research on the network performance degradation process caused by
the node death [18,19]. Shakkottai et al. [18] use a node failure rate to derive
a bound on the probability for all nodes to be connected and the network to
be covered in a grid deployment. Their main result shows that the network
is connected and covered if the transmission radius multiplied by the square

root of the node survival probability is of order
√

log(n)/n. Kunniyur and

Venkatesh [19] analyze network devolution caused by node death and exam-
ined the transitional behavior of connectivity between live nodes. The battery
lifetime of nodes is assumed to be an independent random variable, which is
basically identical to the device reliability model. Our work focuses on the
connectivity aging process over time in the face of nodes death either due to
energy depletion or device failure.

3 Hop-Level Aging Analysis for Sparse Node Deployment

The aging process in a multi-hop data gathering tree with a sink is presented.
First, hop-level analysis for sparse node deployment is examined. It is assumed
that nodes are deployed uniformly at random. A data gathering tree is shown
in Fig. 1. It is formed such that all deployed sensor nodes are connected to
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a sink, and can be constructed as follows. First, we find the set of first hop
nodes that can directly connect to the sink within its radio range. Then, other
nodes select the parent nodes that are within their radio range and have a
shorter hop level from the sink to establish the forwarding path to the sink
[20]. In wireless sensor networks, major energy consumption activities include
communications, data processing and sensing. The communication plays a
dominant role in the battery energy consumption [21] as compared to other
activities, and the data gathering communication towards a sink accounts for
the major portion of communication in most wireless sensor networks. Thus,
the average number of children and descendants provides a good estimation of
workload in each hop level. We assume that every node periodically generates
one data unit and sends it to the sink in each data sampling round, which is
adopted as the discrete time unit t.

3.1 Workload at Each Hop Level

As shown in Fig. 1, the area of the h-hop level from the sink can be computed
via

h2πr2 − (h− 1)2πr2 = (2h− 1)πr2, h = 1, 2, 3, · · · .
By assuming that the average number of nodes at each hop level is proportional
to its area, the average child number of a node in hop level h can be computed
as nc

h = 2h+1
2h−1

. Then, we can obtain the average number of descendants (nd
h) of

a node in hop level h as

nd
h =

L−1∑

i=h

(
i∏

j=h

nc
j) =

L2 − h2

2h− 1

where L is the maximum hop level from the sink.

Fig. 1. The illustration of a data gathering tree, where h represents the hop level
from the sink and r indicates the radio range of a sensor device.

If no data aggregation takes place during data forwarding, then the number of
descendants of a node would determine the communication workload. When
perfect data aggregation is performed, which aggregates multiple data received
from children into one data unit (e.g., MIN, MAX, SUM) [22], the number
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of packets handled by a node is determined by the number of children. Thus,
even in the case of perfect data aggregation the workload (amount of data
communication) in the first hop nodes is at least twice as much as that in the
other hop level nodes. Non-uniform density deployment and a sleep scheduling
scheme for balancing energy consumption among the hop levels may use this
approximate analysis of average workload. We further analyze the dynamic
energy consumption in finer-grained distance level in Section 4.

3.2 Device Reliability

A low-cost sensor device is vulnerable to failure due to external or internal
problems. Sensor devices can be deployed in diverse environments including
hostile areas. The external environment such as temperature, pressure, etc. can
produce device malfunctions. The device can also experience software failure,
which prevents some required operation.

In this work, we model the reliability of a sensor node using a classical distri-
bution known as the Weibull distribution [6]. Since the Weibull distribution
can provide diverse failure patterns over time with its parameters, it is ex-
tensively used in reliability modelling. The probability density function of the
Weibull distribution has the following form:

f(t) =
β

η
(
t

η
)β−1e−( t

η
)β

,

where β and η are the shape and the scale parameters, respectively. This
function indicates the likelihood of failure at time t. When β = 1, the f(t) is
equal to the exponential distribution. The reliability function of the Weibull
distribution is given by

R(t) = e−( t
η
)β

,

which is the complement of the cumulative distribution function of F (t) of
the Weibull density function. The reliability function is the probability that a
device is functioning at time t. The failure rate function is z(t) = f(t)/R(t),
which is the probability that an item fails when the item is functioning at time
t. When the shape parameter β = 1, the failure rate is constant, and when
β > 1, the failure rate increases over time. The sensor node survival function,
denoted by Si(t), characterizes the node aging process in a data gathering tree.
It is defined as the probability that node i is functioning at the data sampling
round t. This function is primarily dependent on the energy consumption rate
and the device reliability of a node. Initially, when t = 0, Si(0) = 1. For t > 0,
Si(t) is Ri(t) if there exists residual energy and Ri(t) is the reliability function
and otherwise, Si(t) = 0.

Let Ch
i (t) be the event where node i in hop level h is connected to the sink
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at time t. We use ph−1
i to refer to any candidate ascendent nodes available in

hop level h− 1 of node i in a dynamic data gathering tree, which is within a
radio range of node i. Then, we have

Pr(Ch
i (t)) =





Sh
i (t), h = 1,

P r(
⋃

Ch−1

ph−1
i

(t))Sh
i (t), h ≥ 2.

(1)

As given above, the probability that a node is connected to the sink is equal to
the probability that any of the candidate parents is connected and the node is
alive. The lower bound of Eq. (1) is the case where there is only one available
parent for all nodes in the forwarding path, and it can be written as

Pr(Ch
i (t)) ≥ (

h−1∏

k=1

Sk
pk

i
(t))Sh

i (t), h > 1 (2)

A more general expression for the connectivity probability at hop level h
over time, Pr(Ch(t)), which provides average value for each hop level, can
be expressed as

Pr(Ch(t)) =





Sh(t), h = 1,

(1− (1− Pr(Ch−1(t)))np)Sh(t), h ≥ 2,
(3)

where np is the expected number of available candidate parents in the upper
hop level. When np = 1, Pr(Ch(t)) becomes the lower bound as Eq. (2).

3.3 Analysis Validation

Fig. 2(a) shows the connection probability in a data gathering tree in each
hop level according to Eq. (3) where np is set to 2. In this figure, all nodes
have the uniform survival function that follows the Weibull reliability function
with η = 160 and β = 3 regardless of hop levels. The simulation results given
in Fig. 2(b) and the analytical results given in Fig. 2(a) are consistent in their
overall shape and the decreasing pattern of the differences between adjacent
hop levels. It is observed that the connection probability becomes similar as
hop level increases, which is characterized in the following subsection. The
simulation results are obtained as the average of 50 different random node
deployments where each simulation runs for 200 rounds with 1600 nodes which
are distributed uniformly at random. The radio range is set to provide around
9 neighboring nodes within the range on the average and the average furthest
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(a) Analytical result (b) Simulation result

Fig. 2. The percentages of node connection in each hop level to the sink in the case
of device reliability effect: (a) analytical and (b) simulation results.

hop level from the sink is around 16 in the complete circle network where the
sink is located at the center.

In order to examine the effect of energy depletion of nodes on connectivity,
we also performed two different energy consumption cases - with perfect data
aggregation and without data aggregation with the same network simulation
setup (50 different random deployments of 1600 nodes) as device random fail-
ure case. Energy consumption of a node i during the sampling round at t can
be calculated using the number of communicated data units and the constant
energy operation assumption as

Ei(t) = Erx · ni(t) + Etx · (1 + ni(t)) + Eother

= 2c1 · Eelec · ni(t) + c2 · Eamp · (1 + ni(t)) · rκ + Eother, (4)

where Erx and Etx denote the amount of energy consumption per data unit for
receiving and transmitting, respectively, Eother is the energy consumption for
non-communication operations such as sensing. ni(t) represents the amount of
data packet received from the children of the node i. As explained in Section
3.1, ni(t) would be proportional to the number of children in case of perfect
data aggregation or to the number of descendants in the case without data
aggregation. Please note that a data unit generated by itself is added to the
number of data packets received in data transmission. Furthermore, it was
described in [8] that data transmission and reception can be expressed by an
electronic operation and an amplifying operation. They are accounted for by
Eelec and Eamp, respectively. Finally, c1 and c2 are constant factors and κ is
the path loss exponent in Eq. (4). Eq. (4) can be re-written to the following
simplified expression:

E(d, t) = E1 · n(d, t) + E2 · (1 + n(d, t)) · rκ + Eother, (5)
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where E1 is the energy required for distance-independent operations, and E2 is
the energy for the amplifying portion. The parameters of the network are given
below. κ = 2, E1 = 1, E2 = 0.001 and Eother = 1. Please note that E1 and
E2 are chosen based on the work in [8], where Eelec = 50nJ/bit and Eamp =
100pJ/bit/m2. Simulation results for energy depletion cases are presented in
Appendix A.

3.4 Connectivity Aging Function

(a) Device failure effect (b) Energy depletion effect

Fig. 3. The log-log plot of the percentages of node connection to the sink in each
hop level over time as node death occurs due to (a) the device failure effect (80%
of the node becomes disconnected with over 45% of the node deaths), and (b)
the energy depletion effect, where perfect data aggregation is performed (80% of
the node becomes disconnected with over 18% of the node deaths. The curves are
obtained by the least-squares approximation.

A power-law relationship is observed between the connectivity and the hop
level when node death occurs due to device failure from the log-log plots in
Fig. 3(a). The figure shows that the probability of connection to a sink de-
creases in proportion to the hop level with an exponent as node death occurs.
The least-squares approximation using linear regression provides straight lines
that fit simulation data in these two plots. The power law between connec-
tivity and the hop level can be well conjectured from this observation. Fig.
3(a) shows up to 45% node death case since around 45% of node death re-
sults in the disconnection of almost 80% of nodes. This power-law relation
can be explained as follows. In the device uniform random failure case, the
same percentage of node death occurs in all hop levels, which are included in
disconnected nodes. In addition, as hop levels increase, the percentage of con-
nected nodes decreases and its decreasing rate in the longer hop level saturates
faster than the exponentially decaying curve, which is the lower bound of the
connectivity function as shown in Eq. (2), since multiple candidate parents
exist to re-construct the data forwarding path to the sink.
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In case of the energy depletion effect with perfect data aggregation in Fig.
3(b), the longer hop level nodes show higher connectivity to the sink since most
node deaths occur in the closer hop levels to the sink. Since over 80% of nodes
become disconnected after 18% of node death, the connectivity up to 18%
of node death is shown in this figure. The reason for the higher connectivity
in the longer hop level up to 15% of node death in the figure is that most
energy depletion occurs in the hop levels closer to the sink, which decreases the
connectivity in those hop levels, while most nodes in the longer hop level are
alive and find alternate routes to the sink which result in higher connectivity.
However, as more node deaths occur (over 17% of node death), a similar power-
law relationship is observed. If no data aggregation is performed, most of initial
node deaths occur in the first-hop nodes and this results in drastic connectivity
loss of all hop level nodes which have maintained higher connectivity except
the first-hop level nodes. On the other hand, with perfect data aggregation,
energy depleted nodes exist in all hop levels with much less difference than in
the case without data aggregation.

Definition 1 The connectivity aging function, denoted by Pr(Ch(t)), is
defined as the probability that a node in hop level h is connected to the sink at
time t.

When nodes die due to the uniform random device failure, the connectivity
aging function Pr(Ch(t)) at time t decreases as hop level h increases at each
time instance. Their relationship can be expressed as

Pr(Ch(t)) ∝ h−H(t), H(t) ≥ 0, (6)

where H(t) is called the hop connectivity exponent and −H(t) indicates the
slope of the log-scale plot for the percentage of nodes that are connected to
the sink with respect to the hop level at each time. As to the device reliabil-
ity effect, H(t) also depends on the device reliability function, which can be
characterized by the Weibull distribution according to the device’s character-
istics and environmental conditions as explained in Section 3.2. Sparse node
deployments, e.g., 10 or less neighboring nodes, would result in the above re-
lationship. Generally speaking, more densely deployed networks can maintain
higher connectivity to the sink in the longer hop level nodes against node
death.

The multi-hop tree structure for data gathering to a sink requires a proper
function of first hop nodes to maintain the connectivity from the other nodes.
In the sparse node deployment case, frequent redeployment will be needed
to preserve the longer-hop’s connectivity to a sink since the small fraction of
node death can cause the connectivity loss in the longer hop levels. This can
be characterized and predicted using the presented power-law relation in the
case of random device failure. On the other hand, dense node deployment can
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maintain the initial network connectivity from longer hop level until most of
the first-hop nodes die, which is examined in the next section.

4 Distance-Level Dynamic Aging Analysis for Dense Node Deploy-
ment

(a) Case I (b) Case II

Fig. 4. Selection of a new parent after energy depletion of the current parent (a)
Case I: Select a new parent in the live upper hop level (b) Case II: Select a new
parent in the previously same hop level

In comparison to the sparse node deployment case, the dense node deployment
case shows the larger difference of energy consumption amount among nodes
of the same hop level, which leads to slower and gradual energy depletion
of nodes over time. Thus, in this section, we examine finer-grained distance
level node aging in a data gathering tree by analyzing the dynamic energy
consumption change beyond the initial node death with tree re-construction.
Then we examine the effect of the workload distribution and the node density
on the aging process in the first-hop nodes, which determine the connection
of the whole network.

4.1 Finer-grained Dynamic Aging Analysis

In the following analysis, we consider the distance-level dynamic change of the
number of descendants caused by the re-construction of the data gathering tree
due to the death of other nodes. This process is illustrated in Fig. 4, where
the center is the sink location and r is the radio range, and other notations
are summarized in Table 1.

It was observed in [10] that energy consumption is the highest at the border of
each hop level when the random parent selection scheme is used for minimum-
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Table 1
Summary of notation for a multi-hop communication tree.

d distance from the sink

c distance from the sink at which the children of a node at d is located

n(d, t) number of descendants of a node at distance d and sampling round t

n0(d, t) n(d, t) with the children that join before initial node death

n1(d, t) n(d, t) with the children that newly join from the next hop area

n2(d, t) n(d, t) with the children that newly join from the previous same hop area

A(c) upper hop area within the radio range of a node at c

A1(c, t) live upper hop area within the radio range

A2(c, t) live same hop area within the radio range

D(c, t) energy depleted upper hop area within the radio range

dh
max(t) maximum distance of live nodes in hop level h

∆d distance unit

C(d, c) area between c−∆d and c and within the radio range of a node at d

hop data gathering tree construction as discussed in Section 3. The workload
difference among nodes of the same hop level leads to gradual energy depletion
of nodes from the border of each hop level and the workload change over time.
The maximum distance of live nodes at hop level h over time is denoted by
dh

max(t).

Fig. 4 shows two cases of data gathering tree re-construction caused by energy
depletion of some nodes.

• Case I:
Consider a node in hop level h + 1 at distance c1 from the sink that has a
parent node in area D(c1, t), where all nodes deplete their energy. Thus, it
has to select a new parent in area A1(c1, t), where nodes still have energy.
This re-construction process increases the energy consumption of live nodes
in that area.

• Case II:
Consider another node at distance c2, which is located between dh

max(t) + r
and dh+1

max(t). If all nodes in the upper hop region within its radio range
deplete their energy, nodes that lose their parent should select a new parent
in area A2(c2, t), which was in the same hop level previously, to forward the
data towards the sink. This process splits one hop level into two.

To compute the expected number of children that are connected to a node,
we can follow the analysis in [10], which provides the average number of de-
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scendants of a node at distance d from the sink before any node death. This
number is denoted by n0(d). Let Pr(A(c)) be the probability that a node at
distance c from the sink selects one node in the upper hop area A(c) to the
sink within its radio range following [10], which is presented in Appendix B.

We use n1(d, t) to denote the newly added number of descendants of a node
at d for the first case in Fig. 4, where nodes at c1 select a new parent in area
A1. Pr(D(c, t)) is the probability that node c1 selected a parent which was

located in area D(c, t) in the upper hop area, which is D(c1,t)
D(c1,t)+A1(c1,t)

. Then, we
have

n1(d, t) =
d+r∑

c=hr+∆d

{C(d, c)λ(1 + n(c, t))Pr(D(c, t))Pr(A1(c, t))}, (7)

where (h−1)r < d < dh
max(t), h is the hop level of the node at d, λ is the node

density, C(d, c) is the area between c − ∆d and c from the sink and within
the radio range of the node at d, and n(c, t) is the number of descendants of
a node at c, which can be calculated recursively. Basically, if the children of
a node at d exist in the area from hr to d + r and within its radio range, we
add the number of their descendants.

If there is no node available in the upper hop level, a child node will select a
parent among nodes in the same hop level, which is the second case given in
Fig. 4. As shown in the figure, node c2 will select a new parent in area A2(c, t).
Let n2(d, t) be the newly added number of descendants from the same hop level
before initial node death. Then, we can derive the following

n2(d, t) =
dh
max(t)∑

c=dh−1
max(t)+r+∆d

{C(d, c)λ(1 + n(c, t))Pr(A2(c, t))}, (8)

where (h− 1)r < d < dh−1
max(t)+ r. In words, if the children of a node at d exist

in the area from dh−1
max(t) + r to dh

max(t) and within its radio range, we add the
number of their descendants.

Areas C(d, c), D(c, t), A(c), A1(c, t) and A2(c, t) can be computed based on
geometry. These calculations is presented in Appendix B. Then, the average
number of descendants of a node at d, denoted by n(d, t), is the sum of three
types of descendants obtained above, i.e. n(d, t) = n0(d, t)+n1(d, t)+n2(d, t).
Energy consumption E(d, t) during the sampling round at t can be calculated
as Eq. (5) and the value E(d, t) of nodes in a live region is recomputed when-
ever energy depletion of some node occurs. The energy depletion time of nodes
is determined by the cumulative effect of the energy consumption dynamics
among nodes over time.
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Fig. 5. The energy consumption distri-
bution as a function of time and the dis-
tance from the sink.

Fig. 6. The residual energy distribution
(in terms of percentages) as a function
of time and the distance from the sink.

4.2 Understanding Network Aging via Case Study

We evaluate the performance of a wireless sensor network based on our analysis
conducted above by considering an example. The parameters of the network
are given below. The radio range r is 25m, the network radius is 100m from
the sink, a total of 500 nodes are deployed and the other parameters follow
the values used in Section 3.3.

The energy consumption distribution as a function of time and the distance
from the sink is shown in Fig. 5. As shown in the figure, the energy consump-
tion rate is significantly larger for nodes in the first and the second hop levels
of the sink. As time increases, nodes in the initial second hop area are split
into two groups. One is directly connected to the first hop nodes while the
other is not due to the energy depletion of nodes in the border of the first
hop area. It is also worthwhile to point out the high energy consumption for
nodes in the second hop close to the first hop border, which is caused by the
rapid increase of newly joined descendants, n2(d, t), from the same hop area
previously.

The residual energy distribution as a function of time and the distance from
the sink is shown in Fig. 6. Initially, energy depletion occurs in the border of
each hop level. For the region in the second hop level, the residual energy of
nodes in the area near to the first hop level becomes smaller rapidly.

The maximum energy consumption and the percentage of nodes connected to
the sink in the first hop level are shown in Fig. 7. We observe the sharp increase
of maximum energy consumption in the first hop nodes at t = 40, which is
followed by the sudden loss of all network connections. Thus, by observing
a rapid increase of the maximum energy consumption rate, we can predict
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an immediate transition to complete network connection loss. Due to a large
variation of workload in a dense deployment under a random parent selection
scheme, we see that there is a substantial amount of time between the initial
energy depletion of a node and the complete network disconnection.
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Fig. 7. The maximum energy consumption (the dashed line) and the percentage of
nodes connected to the sink (the solid line) in the first hop level.

4.3 Computer Simulation with Realistic Wireless Links

In this subsection, we perform computer simulation with 500 nodes and 100
different random deployments by incorporating a realistic wireless link model
given in [23]. This model provides the packet reception rate along the distance
by considering the path loss exponent, the shadowing effect, and the physical
communication schemes. The key parameters used in the simulation are listed
in Table 2.
Table 2
Parameters of realistic wireless link model (PRR: packet reception rate).

Parameters Simulation Values

Transmitting power -3dBm

Shadowing effect standard deviation 2

Path loss exponent 2.7

Transitional region start(PRR=0.9) 16.4m

Transitional region end(PRR=0.1) 38.5m

Modulation FSK

Encoding scheme MANCHESTER

The residual energy values of nodes at the same distance unit are averaged
and plotted in Fig. 8 for each random deployment when 10% of nodes are
disconnected from the sink. The figure presents the results of 100 runs. We
see a large variation of residual energy values at the same distance. Even
though a similar trend is observed by analysis described in Section 4.1 , the
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Fig. 8. The residual energy distribution
at time with 10% connection loss. The
solid line represents the average resid-
ual energy
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Fig. 9. Energy consumption of the
first-hop nodes as a function of time.
Each line represents the energy con-
sumption of a node along time.

variation obtained by analysis is smaller. This can be explained by the fact
that, besides the mixture of hop levels around the border areas, there exists
a large variation in the number of children connected to nodes at the same
distance in the simulation. The large variation of workload results in earlier
death of some nodes in the second hop area as compared to that in analysis.

Simulation results of energy consumption of nodes in the first hop level as
a function of time are shown in Fig. 9. Each line represents the energy con-
sumption of a node in the first hop level along time. We see a wide range of
variations in the initial energy consumption and the energy depletion time.
Energy depletion of nodes with larger workload causes workload shift to re-
maining nodes. In addition, there exists a sharp increase of maximum energy
consumption over time, which is consistent with the analytical result shown
in Fig. 7.

The average residual energy over 100 simulation runs with random deployment
is shown in Fig. 10, where each line represents a case when 1%, 5%, and 90%
of the nodes are disconnected from a sink. Furthermore, analytical (indicated
by dash lines) and simulation (indicated by solid lines) results are compared.
Generally speaking, simulation and numerical results show similar pattern
except for nodes in the border areas between two consecutive hop levels. In
the simulation using a realistic wireless link model, some nodes in these border
areas can be directly linked to a node in the upper hop level while others at
the same distance cannot. As a result, the border area that is close to the next
longer hop level in simulation has a higher residual energy than that obtained
analytically. In contrast, the border area that is close to the upper hop level
has a lower average residual energy in simulation than that in analysis. To
conclude, the mixture of hop levels at the same distance around border areas
due to a realistic wireless link model results in a smoother residual energy
distribution along the distance from the sink.
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Fig. 10. The average residual energy with realistic wireless links, where analytical
and simulation results are indicated by dash and solid lines, respectively.
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Fig. 11. (a),(b) The separate average residual energy of nodes in 2nd and 3rd hop
levels with realistic wireless links. Analytical and simulation results are indicated
by dash and solid lines, respectively, and (c) the distribution of 2nd and 3rd hop
level nodes at each distance unit.

When the residual energy distributions of nodes in hop levels 2 and 3 are
separated as shown in Fig. 11, we observe a good match between simulation
and analysis results. Fig. 11(c) gives the node distribution in hop levels 2 and
3, which shows the mixture of hop levels in the border area from the distance
35 to 60, and around 90% of nodes in each hop level reside in the theoretical
hop level.

To conclude, we observe a larger workload variation at the same distance
level and a mixture of hop levels in the simulation using a realistic wireless
link model. These factors lead to smoother energy consumption and residual
energy distribution as compared to our analytical results. Generally speaking,
results in simulation and analysis are consistent with each other in the general
trend.

4.4 First-hop Node Aging Analysis

As discussed in the previous sections, there exist workload differences among
nodes in the same hop level using a random parent selection scheme for the
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data gathering tree construction. This results in gradual energy depletion
among nodes and workload shift from energy-depleted nodes to survivor nodes
until the complete network connection loss is reached as shown in Fig. 9. Here,
workload represents the amount of data packets to be handled by the node
from its descendants in the data gathering tree in order to forward them to
the sink. In this section, we characterize these aging phenomena, including en-
ergy depletion time and workload shift, of the first-hop nodes with closed-form
expressions. In particular, we would like to address the following questions.

(1) How does the workload of each survivor node in the first-hop change over
time when some nodes with a higher workload deplete their equipped
energy?

(2) How to estimate the energy depletion time of nodes with a given workload
distribution?

(3) How much longer does a node with the smallest workload portion survive
after the initial node death?

(4) What is the effect of the node density and the radio range on the aging
phenomenon?

Through a dynamic data gathering tree construction process, the workload
of energy-depleted nodes in the first-hop level is re-distributed to remaining
survivor nodes. Based on the observation in Section 4.1, the newly added
workload is roughly proportional to the initial workload distribution. That is,
since energy depletion occurs from the furthest distance from the sink in the
first-hop, the amount of newly added workload to survivor nodes rises sharply
as the distance from the sink increases since the region has more candidate
children as given in Eq. (7). Thus, to simplify this first-hop analysis, we assume
that the workload of each survivor node keeps increasing in proportion to the
initial workload distribution by sharing the workload of energy depleted nodes.

The system model for the first-hop analysis and several basic properties can
be stated below.

• When all nodes survive, the first-hop nodes are ordered by their workload
1,2,..,i, ..,f , where f is the total number of first-hop nodes, and their work-
load probability distribution is given by p1 ≥ p2 ≥ ... ≥ pf with

∑f
i=1 pi = 1.

As discussed in the previous section, workload of a node is approximately
proportional to the number of descendants attached to the node in the data
gathering tree. Workload probability indicates the ratio of its own workload
to total workload that should be handled by all the first-hop nodes. We
do not assume any specific workload distribution. It can be uniform for all
first-hop nodes or different among nodes as discussed in the distance-level
aging analysis in Section 4.1.

• Let N be the total number of nodes deployed and W be the total workload in
the first hop per data gathering round. It is assumed that the total workload

18



in the first hop nodes is proportional to the data units generated by their
descendants on a data gathering tree, which is identical to the number of
descendants. Thus, we have W = α(N − f), where α is a proportional
constant.

• The workload of node i at data sampling round t can be computed as
Li(0) = Wpi,

∑f
i=1 Li(t) = W .

• The energy depletion time of node i can have the following order: D1 ≤
D2 ≤ ... ≤ Df , since the workload of a node determines its energy depletion
time; Node with larger workload consumes energy faster. If all the first-hop
nodes have the same portion of workload, then the energy depletion time
would be the same.

By assuming that the workload of each survivor node keeps increasing in
proportion to the initial workload distribution by sharing the workload of
energy depleted nodes, we can obtain the workload function of node i over t
as

Li(t) =





Wpi, if 0 ≤ t < D1,

Wpi

1−
j∑

m=1

pm

, if Dj ≤ t < Dj+1, 1 ≤ j < i,

0, if t ≥ Di,

(9)

where j indicates a node that has more workload than i.

Energy depletion time of node 1, which has the largest workload, can be ob-
tained by D1 = B

Wp1
, where B is the total workload of a battery. Furthermore,

for node i ≥ 2, its energy depletion time Di can be obtained from Di−1 and
the remaining battery capacity divided by its total workload that has been
increased after Di−1 as

Di = Di−1 +
B−

∑i−1

m=1

(
(Dm−Dm−1)Li(Dm−1)

)

Li(Di−1)
, i ≥ 2. (10)

Actually, we can obtain the energy depletion time of node i using only the
initial workload distribution without relying on the recursive formula shown
in Eq. (10). That is, Di can be written as

Di =
B

Wpi

(
1 + (i− 1)pi −

i−1∑

m=1

pm

)
, i ≥ 2, (11)

which can be proved by induction as in Appendix C.
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The energy depletion time of node f , which is the last surviving node with
the smallest workload in the first hop level, can be computed by (11). That
is, we have

Df =
Bf

W
=

B

α(N/f − 1)
, (12)

which is the total battery energy divided by the average workload. According
to this expression, the workload distribution does not affect the energy deple-
tion time of the last survivor node, which is the time when a whole network
is disconnected from the sink. This result leads to an interesting point. That
is, by increasing or decreasing the node density with a fixed radio range to
maintain the maximum hop levels, the disconnection time of the last first-
hop node will remain the same. If we only consider the average workload in
a hop level and the average energy depletion time of nodes in the same hop,
the average energy depletion time of the first-hop nodes remains the same re-
gardless of the node density. Our result does not deal with this trivial case of
average time, but the complete network disconnection time that is the energy
depletion time of the last survivor node. The calculation presented in Eq. (12)
incorporates the dynamic changes of workload and its increasing rate, which
are dependent on the earlier energy depletion times of all nodes with more
workload, recursively as in Eq. (10). In addition, the above result holds for
any arbitrary workload distribution.

Also, we can obtain the time duration of the aging process by measuring the
ratio of the lifetime of node f , the last survivor node, and the lifetime of
node 1, the first energy depleted node. From Eq. (10) and Eq. (12), we have
Df

D1
= f · p1, which depends on the number of first-hop nodes and the fraction

of the largest workload. If perfect workload balancing can be performed on
first-hop nodes, where pi = 1/f , then the energy depletion time will be the
same, which is desirable. Simultaneous energy depletion of first-hop nodes can
also be achieved by heterogeneous energy capacity deployments according to
workload.

5 Conclusion and Future Work

The aging process in a multi-hop data gathering tree with a sink was studied
thoroughly in this work. Both hop-level analysis for sparse node deployment
and finer-grained distance-level analysis for dense node deployment were ex-
amined. The effect of the workload distribution and the node density on the
aging process in the first-hop nodes was also analyzed. Besides theoretical
analysis, we provided simulation results using a realistic wireless link model.
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Several important results are summarized below.

• For the hop-level analysis in a sparse node deployment, three conditions of
node death; namely, energy depletion without data aggregation, with data
aggregation and due to device failure, were examined for the connectivity
aging per hop level over time. The existence of multiple alternate paths to
the sink leads to a power law relation, where the probability of connection
to the sink decreases in proportion to the hop level with an exponent, as
node death occurs. This relation holds in the device failure case as well as
in the late stage of the energy depletion case with data aggregation.

• By incorporating dynamic data gathering tree re-construction, aging anal-
ysis in densely deployed networks enables fast and accurate prediction of
the energy consumption distribution and the residual energy distribution in
a large-scale network over time after initial node death. Besides theoretical
analysis, we provided simulation results using a realistic wireless link model
presented by [23]. A good match between analytical and simulation results
was demonstrated. Energy consumption in live nodes significantly changes
over time as the data gathering tree as well as the hop level structure change
due to node death.

• A network with a high node density can provide a resilient connection
against node failure and energy depletion. However, there may exist high
skew in the workload distribution among nodes in the same hop level. It
was shown by the first-hop analysis that the increased node density with a
fixed radio range does not affect the complete network disconnection time
due to energy depletion of all first hop nodes.

There are several open problems to be studied in the future. First, we have not
incorporated the MAC operations and transmission delay in analysis in our
current research. If the duration of a sampling round is large, the effect of MAC
contention would be relatively small. Second, no transmission range is adjusted
in our analysis. If transmission range adjustment is allowed after a parent is
randomly selected among the upper hop level, then faster energy depletion
would occur in the outer region of each hop level. Finally, if different localized
topology construction schemes are adopted as described in [20], it affects the
aging process. However, the complete network disconnection due to energy
depletion of all first-hop nodes will occur at a similar time as predicted by Eq.
(12). The main difference would be the time of the initial energy depletion of
a node with the largest workload.

In order to provide a long-term operation of wireless sensor networks that
experience the aging phenomenon as studied in this work, aging control and
network maintenance are needed so as to achieve the required information
utility throughout the target period. Maintenance may involve a significant
cost, which could be more than the initial deployment cost. As analyzed and
characterized in our work, in the sparse node deployment case, frequent rede-
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ployment will be needed to preserve the initial network performance since the
small fraction of node death can cause the significant connectivity loss in the
longer hop levels. On the other hand, dense node deployment can maintain
the initial network connectivity from longer hop level until the most first-hop
nodes die. Ultimately, we intend to provide a cost-effective maintenance plan
that maximizes information extraction throughout a target long-term deploy-
ment period with overall cost and performance requirements.

A Simulation Results for the Sparse Node Deployment Case

(a) Device failure effect (b) Energy depletion effect
(Data aggregation)

(c) Energy depletion effect
(No data aggregation)

Fig. A.1. The percentages of dead nodes in each hop level over time: (a) the uni-
form random device failure case, (b) the energy depletion case with perfect data
aggregation, and (c) the energy depletion case without data aggregation. Note that
the x-axis scale in Fig. (c) is finer than that in Fig. (a) and (b).

(a) Device failure effect (b) Energy depletion effect
(Data aggregation)

(c) Energy depletion effect
(No data aggregation)

Fig. A.2. The percentages of live nodes and connected nodes in each hop level
over time: (a) the uniform random device failure case, (b) the energy depletion
case with perfect data aggregation, and (c) the energy depletion case without data
aggregation. Note that the x-axis scale in Fig. (c) is finer than that in Fig. (a) and
(b).

Fig. A.1 shows that a higher death rate appears in the hop levels closer to
the sink in the energy depletion case. To simulate the energy depletion case
without data aggregation, we increase the initial battery capacity 20 times as
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large as that for the data aggregation case due to its faster energy depletion
and network disconnection. We observe much faster energy depletion especially
in the first-hop nodes as shown in Fig. 1(c) with the finer scale of the x-axis.

Fig. A.2 shows that, when the same ratio of nodes discontinue their function-
ing, the node death caused by energy consumption even with perfect data
aggregation has a more significant impact on network performance than the
device reliability effect. This figure presents the percentage of nodes connected
to the sink in each hop level. A much lower degree of node death causes sig-
nificant connection loss due to energy depletion. When no data aggregation is
performed, the majority of connections are lost even with less than a 2% rate
of node death. This is because significantly more workload is given to nodes
in the first hop level as compared to the case of data aggregation.

B Geometric Calculation for Dynamic Data Gathering Construc-
tion

The probability, Pr(A(c)), that a node at distance c from the sink selects
one node in the upper hop area A(c) to the sink within its radio range
was derived in [10] as Pr(A(c)) =

∑∞
k=1

1
k
Pr(N(A(c)) = k|N(A(c)) ≥ 1) =

e−λA(c)

1−e−λA(c)

∑∞
k=1

(λA(c))k

k!k
. Furthermore, areas C(d, c), D(c, t), A(c), A1(c, t) and

A2(c, t) can be computed using geometry. These results are summarized as
follows.

• Calculation of C(d, c).

C(d, c) =
∫ c
c−∆d 2 cos−1(d2+l2−r2

2ld
)l dl.

• Calculation of A(c), which is the upper hop area within the radio range of
a node at c distance from the sink.
First, we have w01 = cos−1

(
r2+c2−(hr)2

2rc

)
, w02 = cos−1

(
hr2+c2−r2

2hrc

)
. Then, we

obtain

A(c) = r2(w01 − sin(2w01)/2) + (hr)2(w02 − sin(2w02)/2).

• Calculation of A1(c, t), which is the area within A(c) except for the energy
depletion area D(c, t) (= A(c)− A1(c, t)).

First, we have w11 = cos−1
(

r2+c2−dh
max(t)2

2rc

)
, w12 = cos−1

(
dh
max(t)2+c2−r2

2cdh
max(t)

)
.

Then, we get

A1(c, t) = r2(w11 − sin(2w11)/2) + dh
max(t)

2(w12 − sin(2w12)/2).

• Calculation of A2(c, t), which is the same hop area within the radio range
of a node at c.
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First, we have w21 = cos−1

(
(dh−1

max(t)+r)2+c2−r2

2c(dh−1
max(t)+r)

)
, w22 = cos−1

(
r2+c2−(dh−1

max(t)+r)2

2rc

)
.

Then, we find

A2(c, t) = (dh−1
max(t) + r)2(w21 − sin(2w21)/2) + r2(w22 − sin(2w22)/2)

−{r2(w′
01 − sin(2w′

01)/2) + ((h− 1)r)2(w′
02 − sin(2w′

02)/2)}

where w′
01 and w′

02 are obtained by replacing h in w01 and w02 with h − 1,
respectively.

C Proof of Energy Depletion Time of the First-hop Nodes

First, for i = 2, we have D2 = D1 + B−D1L2(0)
L2(D1)

= B
Wp1

+
(B−(B/Wp1)Wp2)(1−p1)

Wp2

= B
Wp2

(
1 + p2 − p1

)
, where the second equality is due to Eq. (9). Thus, Eq.

(11) holds for i = 2. Now, assuming that Eq. (11) holds for any integer k ≥ 2,
i.e.

Dk =
B

Wpk

(
1 + (k − 1)pk −

k−1∑

m=1

pm

)
, (C.1)

we would like to prove that Eq. (11) also holds for Dk+1. The energy depletion
time interval between k and k − 1 is

Dk −Dk−1 =
B

W

( 1

pk

− 1

pk−1

)(
1−

k−1∑

m=1

pm

)
. (C.2)

Furthermore, the consumed battery energy of k + 1 until Dk can be obtained
using Eq. (C.2) and Eq. (9) as

k∑

m=1

((Dm−Dm−1)Lk+1(Dm−1)) = Bpk

k∑

m=2

(
1

pm

− 1

pm−1

) +
Bpk

p1

= B
pk+1

pk

. (C.3)

The same result can also be obtained from the fact that Lk+1 is increased while
maintaining the ratio of pk+1/pk to Lk till node k reaches energy depletion.
Thus, from Eq. (C.3), Eq. (9) and Eq. (C.1), we have

Dk+1 = Dk +
B −∑k

m=1

(
(Dm −Dm−1)Lk+1(Dm−1)

)

Lk+1(Dk)
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=
B

Wpk

(
1 + (k − 1)pk −

k−1∑

m=1

pm

)
+

(
B −B pk+1

pk

)(
1−

k∑

m=1

pm

)

Wpk+1

=
B

Wpk+1

(
1 + kpk+1 −

k∑

m=1

pm

)

Thus, we conclude that Eq. (11) holds for Dk+1. The proof is completed.
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