
1142 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 17, NO. 6, AUGUST 2009

Environmental Sound Recognition With
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Abstract—The paper considers the task of recognizing envi-
ronmental sounds for the understanding of a scene or context
surrounding an audio sensor. A variety of features have been pro-
posed for audio recognition, including the popular Mel-frequency
cepstral coefficients (MFCCs) which describe the audio spectral
shape. Environmental sounds, such as chirpings of insects and
sounds of rain which are typically noise-like with a broad flat spec-
trum, may include strong temporal domain signatures. However,
only few temporal-domain features have been developed to char-
acterize such diverse audio signals previously. Here, we perform
an empirical feature analysis for audio environment characteriza-
tion and propose to use the matching pursuit (MP) algorithm to
obtain effective time–frequency features. The MP-based method
utilizes a dictionary of atoms for feature selection, resulting in a
flexible, intuitive and physically interpretable set of features. The
MP-based feature is adopted to supplement the MFCC features
to yield higher recognition accuracy for environmental sounds.
Extensive experiments are conducted to demonstrate the effec-
tiveness of these joint features for unstructured environmental
sound classification, including listening tests to study human
recognition capabilities. Our recognition system has shown to
produce comparable performance as human listeners.

Index Terms—Audio classification, auditory scene recognition,
data representation, feature extraction, feature selection, matching
pursuit, Mel-frequency cepstral coefficient (MFCC).

I. INTRODUCTION

R ECOGNIZING environmental sounds is a basic audio
signal processing problem. Consider, for example, appli-

cations in robotic navigation, assistive robotics, and other mo-
bile device-based services, where context aware processing is
often desired or required. Human beings utilize both vision and
hearing to navigate and respond to their surroundings, a capa-
bility still quite limited in machine processing. Many of today’s
robotic applications are dominantly vision-based. When em-
ployed to understand unstructured environments [1], [2] (e.g.,
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determining interior or exterior locations [3], [4]), their robust-
ness or utility will be lost if the visual information is com-
promised or totally absent. With the loss of sight, a vision-
based robot might not be able to recover from its displacement.
Knowing the context provides an effective and efficient way to
prune out irrelevant scenarios. There have been recent interests
in finding ways to provide hearing for mobile robots [5], [6] so
as to enhance their context awareness with audio information.
Other applications include those in the domain of wearables and
context-aware applications [7], [8], e.g., in the design of a mo-
bile device such as a cellphone that can automatically change the
notification mode based on the knowledge of user’s surround-
ings, like switching to the silent mode in a theater or classroom
[7] or even provide information customized to user’s location
[9].

By audio scenes, we refer to a location with different acoustic
characteristics such as a coffee shop, park, or quiet hallway.
Differences in acoustic characteristics could be caused by the
physical environment or activities of humans and nature. To en-
hance a system’s context awareness, we need to incorporate and
adequately utilize such audio information. A stream of audio
data contains a significant wealth of information, enabling the
system to capture a semantically richer environment on top of
what the visual information can provide. Moreover, to capture
a more complete description of a scene, the fusion of audio and
visual information can be advantageous, say, for disambigua-
tion of environment and object types. Audio signals could be
obtained at any moment when the system is functioning in spite
of challenging external conditions such as poor lighting or vi-
sual obstruction. Besides, they are relatively cheap to store and
compute than visual signals. To use any of these capabilities, we
have to determine the current ambient context first. Thus, the
determination of the ambient context using audio is the main
concern of this research.

Research in general audio environment recognition has re-
ceived some interest in the last few years [10]–[14], but the ac-
tivity is considerably less compared to that for speech or music.
Automatic unstructured environment characterization is still in
its infancy. Some areas of nonspeech sound recognition that
have been studied to various degrees are those pertaining to
recognition of specific events using audio from carefully pro-
duced movies or television tracks [15], [16]. Others include the
discrimination between musical instruments [17], [18], musical
genres [19], and between variations of speech, nonspeech and
music [20]–[22]. To date, only a few systems have been pro-
posed to model raw environmental audio without pre-extracting
specific events or sounds. In this paper, our focus is not in the
analysis and recognition of discrete sound events, but rather
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on characterizing the general acoustic environment types as a
whole. For readers interested in recognition of discrete sound
effects and specific audio events, we refer them to representa-
tive work by [15] and [16].

As with most pattern recognition systems, selecting proper
features is key to effective system performance. Audio signals
have been traditionally characterized by Mel-frequency cepstral
coefficients (MFCCs) or some other time–frequency represen-
tations such as the short-time Fourier transform and the wavelet
transform. The filterbanks used for MFCC computation approx-
imates some important properties of the human auditory system.
MFCCs have been shown to work well for structured sounds
such as speech and music, but their performance degrades in
the presence of noise. MFCCs are also not effective in analyzing
noise-like signals that have a flat spectrum. Environmental audio
contain a large and diverse variety of sounds, including those
with strong temporal domain signatures, such as chirpings of in-
sects and sounds of rain that are typically noise-like with a broad
flat spectrum that may not be effectively modeled by MFCCs.
In this work, we propose to use the matching pursuit (MP) algo-
rithm to analyze environmental sounds. MP provides a way to
extract time–frequency domain features that can classify sounds
where using frequency-domain only features (e.g., MFCCs) fail.
The process includes finding the decomposition of a signal from
a dictionary of atoms, which would yield the best set of func-
tions to form an approximate representation.

The MP algorithm has been used in a variety of applications,
such as video coding [23] and music note detection [24]. MP
has also been used in music genre classification [25] and clas-
sification of acoustic emissions from a monitoring system [26].
In our proposed technique, MP is used for feature extraction
in the context of environmental sound [27]. We investigate a
variety of audio features and provide an empirical evaluation
on 14 different environment types. It is shown that the most
commonly used features do not always work well with envi-
ronmental sounds while the MP-based features can be used to
supplement traditional frequency domain features (MFCC) to
yield higher automatic recognition accuracy for environmental
sounds.

The rest of this paper is organized as follows. Some relevant
previous work is discussed in Section II. and a review of dif-
ferent audio feature extraction methods is given in Section III.
The MP algorithm is described and MP-based features are pre-
sented in Section IV. Section V contains experimental evalua-
tion and empirical comparison of selected features. Section VI
presents results of a listening test for studying human abilities
recognizing acoustic environments, similar to those used in the
automatic recognition experiments. Finally, concluding remarks
and future research directions are given in Section VII.

II. REVIEW OF PREVIOUS WORK

As compared to other areas in audio such as speech or music,
research on general unstructured audio-based scene recognition
has received little attention. To the best of our knowledge, only
a few systems (and frameworks) have been proposed to investi-
gate environmental classification with raw audio. Sound-based
situation analysis has been studied in [11], [13] and in [8], [28],

for wearables and context-aware applications. Because of ran-
domness, high variance, and other difficulties in working with
environmental sounds, the recognition rates fall rapidly with in-
creasing number of classes; representative results show recogni-
tion accuracy limited to around 92% for five classes [5], 77% for
11 classes [12], and approximately 60% for 13 or more classes
[11], [13].

The analysis of sound environments in Peltonen’s thesis
[13], which is closest to our work, presented two classification
schemes. The first scheme was based on averaging the band-en-
ergy ratio as features and classifying them using a K-nearest
neighborhood (kNN) classifier. The second uses MFCCs as
features and a Gaussian mixture model (GMM) classifier. Pel-
tonen noticed the shortcomings of MFCCs for environmental
sounds and proposed using the band-energy ratio as a way to
represent sounds occurring in different frequency ranges. Both
of these experiments involved classifying 13 different contexts
or classes. The classifiers and types of features compared were
similar to our experiments, but the actual type of classes were
different. Similar to their work, we also compared a variety of
different class types. In a subsequent paper by Eronen et al.
[11], they extended the investigation to audio-based context
recognition by proposing a system that classifies 24 individual
contexts. They subdivided 24 contexts into six higher-level
categories, with each category consisting of four to six contexts.
Peltonen et al. also performed a listening test and reported the
findings in [13]. Subjects were presented with 34 samples, each
one minute in duration, for the first experiment and 20 samples,
of three minutes each, in the second experiment. The tests
were mostly conducted in a specialized listening room. Their
listening experiment setup is different than the one presented
in this work, most notably in how the data were presented to
the subjects. The samples used in our study are the same 4 s
segments as used in our automatic classification system (details
are given in Section VI).

The work by Aucouturier et al. [14] also investigated on en-
vironmental type of sounds. Their focus is mainly to study the
differences between urban environments, or as the authors refer
to as urban soundscapes, and polyphonic music. In their system,
they propose to model the distribution of MFCCs using 50-com-
ponent GMMs and to use Monte Carlo approximation of the
Kullback–Leibler distance to determine the similarities between
urban and musical sounds. They studied the temporal and statis-
tical homogeneity of each of these classes and demonstrated dif-
ferences in the temporal and statistical structure for soundscapes
and polyphonic music signals. However, instead of defining four
general classes of urban sounds, (viz., avenue, calm neighbor-
hood, street markets, and parks.), they consider each location as
a single class. For example, a specific street (or location) would
be considered a class of its own. In contrast, our approach is to
consider different streets (or different locations of similar envi-
ronment) to be of the same class and propose features that fur-
thers generalization.

There has also been some prior work on using matching pur-
suit for analyzing audio for classification but quite limited. The
proposed approach by Ebenezer et al. [26] demonstrated the
use of MP for signal classification. Their framework classified
acoustic emissions using a modified MP algorithm in an actual



1144 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 17, NO. 6, AUGUST 2009

acoustic monitoring system. The classifier was based on a modi-
fied version of the MP decomposition algorithm. For each class,
appropriate learning signals were selected, the time- and fre-
quency-shifting of these signals forms their dictionary. After
the MP algorithm terminates, the net contribution of correla-
tion coefficients from each class is used as the decision statistic,
where the one that produces the largest value is the chosen class.
They demonstrated an overall classification rate of 83.0% for the
12-class classification case. However, the type and nature of the
sound classes are unclear since the test data were proprietary
(the classes were only identified by their numbers in the report).
Another system using MP was presented by Umapathy et al.
[25]. In this paper, they proposed a technique that uses an adap-
tive time–frequency transform algorithm, which is based on MP
with Gaussian functions. Their work is most similar to our pro-
posed technique in utilizing the parameters of their signal de-
composition to obtain features for classification. However, their
parameters to the decompositions were conducted with octave
scaling and was used to generate a set of 42 features over three
frequency bands. These features were then analyzed for the clas-
sification of six-class music genres using the linear discriminant
analysis (LDA) and were able to achieve an overall correct clas-
sification rate of 97.6%.

Our goal in this paper is to study different unstructured en-
vironmental sounds in a more general sense and to use MP to
learn the inherent structures of each type of sounds as a way to
discriminate the various sound classes.

III. BACKGROUND REVIEW

Several major feature extraction techniques for audio signal
processing are reviewed in Section III-A. Then, signal represen-
tation using the MP process is discussed in Section III-B.

A. Audio Features

One major issue in building an automatic audio recognition
system is the choice of proper signal features that are likely to
result in effective discrimination between different auditory en-
vironments. Environmental sounds in general are unstructured
data comprising of contributions from a variety of sources, and
unlike music or speech, no assumptions can be made about pre-
dictable repetitions nor harmonic structure in the signal. Be-
cause of the nature of unstructured data, it is difficult to form
a generalization to quantify them. Due to the inherent diverse
nature, there are many features that can be used, or are needed,
to describe audio signals. The appropriate choice of these fea-
tures is crucial in building a robust recognition system. Here,
we examine some of the commonly used audio signal features.
Broadly, acoustic features can be grouped into two categories:
time-domain (or temporal features) and frequency-domain (or
spectral features). A number of those have been proposed in the
literature.

Two widely used time-domain measures are given as follows.
[22].

• Short-time energy:

where is the discrete time audio signal, is the time
index of the short-time energy, and is the window of
length . Short-time energy provides a convenient repre-
sentation of the amplitude variation over time.

• Short-time average zero-crossing rate (ZCR):

where

Zero-crossings occur when successive samples have different
signs, and the ZCR rate is the average number of times the signal
changes its sign within the short-time window. We calculate
both energy and ZCR values using a window of 256 samples
with a 50% overlap, at an input sampling rate of 22 050 Hz.

Similarly, a variety of spectral features have been proposed.
These features are typically obtained by first applying a Fourier
transform [implemented as a fast Fourier transform (FFT)] to
short-time window segments of audio signals followed by fur-
ther processing to derive the features of interest. Some com-
monly used ones include the following.

• MFCC [29]: After taking the FFT of each short-time
window, the first step in MFCC calculation is to obtain
the mel-filter bank outputs by mapping the powers of the
spectrum onto the mel scale, using 23 triangular mel-fil-
terbanks, and transformed into a logarithmic scale, which
emphasizes the low varying frequency characteristics of
the signal. Typically 13 mel frequency cepstral coefficients
are then obtained by taking the discrete cosine transform
(DCT).

• Band Energy Ratio [11]: It is the ratio of the energy in
a specific frequency-band to the total energy. Eight log-
arithmic sub-bands are used in our experiments.

• Spectral Flux [19]: It is used to measure a spectral ampli-
tude difference between two successive frames.

• Statistical Moments [19], [30]: The commonly used statis-
tical moments include the following.
— Spectral Centroid measures the brightness of a sound.

The higher the centroid, the brighter the sound.
— Signal Bandwidth measures the width of the range of

signal’s frequencies.
— Spectral Flatness quantifies the tonal quality; namely,

how much tone-like the sound is as opposed to being
noise-like.

— Spectral Roll-Off quantifies the frequency value at
which the accumulative value of the frequency response
magnitude reaches a certain percentage of the total
magnitude. A commonly used threshold is 95%.

Another commonly used feature is linear prediction cepstral
coefficients (LPCCs) [31]. The basic idea behind linear predic-
tion is that the current sample can be predicted, or approximated,
as a linear combination of the previous samples, which would
provide a more robust feature against sudden changes. LPCC is
calculated using the autocorrelation method in this work [29].
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Fig. 1. Illustration of the decomposition of signals from six different classes as
listed, where the top-most signal is the original, followed by the first five basis
vectors.

Most previous efforts utilize a combination of some, or even
all, of the aforementioned features, to characterize audio sig-
nals. However, adding more features is not always helpful. As
the feature dimension increases, data points become sparser and
there are potentially irrelevant features that could negatively im-
pact the classification result. We showed in [5] that the use of all
features for classification does not always produce good perfor-
mance for the audio classification problems of our interest. This
in turn leads to the issue of selecting an optimal subset of fea-
tures from a larger set of possible features to yield the most ef-
fective subset. In [5], we utilized a simple feature selection algo-
rithm to obtain a smaller feature set to reduce the computational
cost and running time and achieve an acceptable, if not higher,
classification rate. Although the results showed improvements,
the features found after the feature selection process were found
to be specific to each classifier and environment type. A sim-
ilar phenomenon was observed in [13], where different feature
subsets were tried to increase the performance for each context
type. It was with these findings that motivated us to look for a
more effective and principled approach for determining an ap-
propriate representation for environmental sound classification.
Toward this goal, we propose the use of MP as a new feature
selection method.

B. Signal Representation With Matching Pursuit (MP)

The intuition behind our strategy is that there are underlying
structures that lie within signals of each type of environment,
and we could use MP to discover them. Different types of envi-
ronmental sounds have their own unique characteristics, making
the decomposition into sets of basis vectors to be noticeably dif-
ferent from one another. By using a dictionary that consists of
a wide variety of functions, MP provides an efficient way of
selecting a small set of basis vectors that produces meaningful
features as well as flexible representation for characterizing an
audio environment. Examples of the decompositions of signals
from six sound classes using Gabor atoms, described in Section
IV-B, is shown in Fig. 1, where the top five atoms are shown.

To achieve an efficient representation, we would like to obtain
the minimum number of basis vectors to represent a signal, re-
sulting in a sparse approximation. However, this is an NP-com-
plete problem. Various adaptive approximation techniques to
obtain such a signal representation in an efficient manner have
been proposed in the literature, including basis pursuit (BP)
[32], matching pursuit (MP) [33], and orthogonal matching pur-
suits (OMP) [34]. All of these methods utilize the notion of
a dictionary that capacitates the decomposition of a signal by
selecting basis vectors from a given dictionary to find the best
subset.

BP provides a framework that minimizes the L1-norm of co-
efficients occurring in the representation, but at a cost in linear
programming. Although it provides good representations, BP is
computationally intensive. By using a dictionary that consists
of a wide variety of elementary waveforms, MP aims at finding
sparse decompositions of a signal efficiently in a greedy manner.
MP is suboptimal in the sense that it may not achieve the sparsest
solution. Usually, elements in a given dictionary are selected by
maximizing the energy removed from the residual signal at each
step. Even in just a few steps, the algorithm can yield a reason-
able approximation with a few atoms, and the decomposition
will provide us with an interpretation of the signal structure. We
adopt the classic MP approach to generate audio features in our
study.

The MP algorithm was originally introduced by Mallat and
Zhang [33] for decomposing signals in an overcomplete dictio-
nary of functions, providing a sparse linear expansion of wave-
forms. As long as the dictionary is overcomplete, the expansion
is guaranteed to converge to a solution where the residual signal
has zero energy. The following description of the MP algorithm
is based on the descriptions from [32].

Let dictionary be a collection of parameterized waveforms
given by

where is the parameter set and is called an atom. The ap-
proximate decomposition of a signal can be written as

(1)

where is the residual. Given , and , our goal is to
find indices and compute , where , while
minimizing . Starting from initial approximation
and residual , the MP algorithm builds up a sequence
of sparse approximation stepwise.

Initially, the MP algorithm computes all inner products of
signal with atoms in dictionary . The atom with the largest
magnitude inner product is selected as the first element.
Thus, the atom selection criteria can be given as

After the first step, atom is subtracted from to yield
residual . Generally, at stage , the MP algo-
rithm identifies the atom that best correlates with the residual
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and then adds the scalar multiple of that atom to the current
approximation

(2)

where

and

After steps, one has a representation of the approximate de-
composition with residual as shown in (1).

Various dictionaries have been proposed to be used with MP,
including wavelets [35], wavelet packets [36], cosine packets
[37], Gabor dictionaries [33], multiscale Gabor dictionaries
[37], [38], Chirplets [39], and others. Most dictionaries are
complete or overcomplete, and the approximation techniques,
such as MP, allow for the combination of different dictionaries.
Examples of some basic dictionaries are: 1) frequency (i.e.,
Fourier functions), 2) time-scaled (i.e., Haar wavelets), and 3)
time–frequency, (i.e., Gabor functions). To encapsulate the non-
stationary characteristics of audio signals, we use a dictionary
of Gabor atoms to offer a more discriminant time–frequency
representation. In Section IV-B, we will discuss this in further
detail.

IV. FEATURE EXTRACTION WITH MATCHING PURSUIT (MP)

Desirable types of features should be robust, stable, and
straightforward, with the representation being sparse and phys-
ically interpretable. We will show that using MP will make this
representation possible. The advantages of this representation
are the ability to capture the inherent structure within each type
of signal and to map from a large, complex signal onto a small,
simple feature space. More importantly, it is conceivably more
invariant to background noise and could capture characteristics
in the signal where MFCCs tend to fail. In this section, we will
describe how MP features are obtained.

A. Extracting MP Features

Our goal is to use MP as a tool for feature extraction for
classification, and not necessarily to recover or approximate the
original signal for compression. Nevertheless, MP provides an
excellent way to accomplish either of these tasks. MP is a de-
sirable method to provide a coarse representation and to re-
duce the residual energy with as few atoms as possible. The
decomposition from MP also furnishes us with an interpreta-
tion of the signal structures. The strategy for feature extrac-
tion is based on the assumption that the most important infor-
mation of a signal lies in leading synthesizing atoms with the
highest energy, yielding a simple representation of the under-
lying structure. Since MP selects atoms in order by eliminating
the largest residual energy, it lends itself in providing the most
useful atoms, even just after a few iterations.

The MP algorithm selects atoms in a stepwise manner among
the set of waveforms in the dictionary that best correlate the
signal structures. The iteration can be stopped when the coeffi-
cient associated with the atom selection falls below a threshold
or when a certain number of atoms selected overall has been
reached. Another common stopping criterion is to use the signal

Fig. 2. Comparison of classification rates (with the GMM classifier) using the
first � atoms, where � � �� � � � � ��, as features while the MFCC features are
kept the same.

to residual energy ratio. In this paper, we chose atoms as the
stopping criterion for the iteration. MP features are selected by
the following process.

Based on our experimental setup, explained in Section V-A,
we use a rectangular window of 256 points with a 50% overlap.
This corresponds to the window size used for all feature extrac-
tion. We decompose each 256-point segment using MP with a
dictionary of Gabor atoms that are also 256 points in length.
We stop the MP process after obtaining atoms. Afterwards,
we record the frequency and scale parameters for each of these

atoms and find the mean and the standard deviation corre-
sponding to each parameter separately, resulting in four feature
values.

To select parameter in the stopping criterion, we plot the
classification performance as a function of in Fig. 2. It shows
a rise with an increasing number of features due to the increased
discriminatory power with the performance leveling off around
four or five atoms. Thus, we chose atoms in our ex-
periments and use the same process to extract features for both
training and test data. The decomposition of different signals
from the same environmental class might not be composed of
exactly the same atoms or order. However, since we are taking
the average of their parameters as features, the sequencing order
of atoms is neglected and the robustness of these features is en-
hanced by averaging. Using these atom parameters as features
abstracts away finer details and forces the concentration on the
most pronounced characteristics.

The above truncation process is similar to that of non-injec-
tive mapping. When mapping a large problem space into the
feature space, only a few significant features are considered, en-
abling us to disregard the rest. The most important information
in describing a signal could be found in a few basis vectors with
the highest energies, and the process in which MP selects these
vectors are exactly in the order of eliminating the largest residual
energy. This means that even the first few atoms found by MP
will naturally contain the most information, making them to be
more significant features. This also allows us to map each signal
from a larger problem space into a point in a smaller feature
space. Any data items are similar as long as their representation
in the feature space are similar or close in proximity.
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Fig. 3. (a) Decomposition of signals using MP (the first five basis vectors) with
dictionaries of Fourier (left), Haar (middle), and Gabor (right), and (b) approxi-
mation (reconstruction) using the first ten coefficients from MP with dictionaries
of Gabor(top), Haar (middle), and Fourier (bottom).

B. MP Dictionary Selection

Examples of the MP decomposition using different dictio-
naries are compared in Fig. 3. The first five atoms obtained from
the MP decomposition with Fourier, Haar, and Gabor dictio-
naries are shown in Fig. 3(a). Since the Fourier representation is
formed by the superposition of non-local signals, it demands a
large number of atoms for cancellation to result in a local wave-
form. In contrast, the Gabor representation is formed by a band-
limited signal of finite duration, thus making it more suitable
for time–frequency localized signals. The Gabor representation
was shown in [40] to be optimal in the sense of minimizing the
joint two-dimensional uncertainty in the combined spatial-fre-
quency space. The effectiveness of reconstructing a signal using
only a small number of atoms is compared in Fig. 3(b), where
ten atoms are used. Gabor atoms result in the lowest reconstruc-
tion error, as compared with the Haar or the Fourier transforms
using the same number of coefficients. Due to the nonhomoge-
neous nature of environmental sounds, using features with these
Gabor properties would benefit a classification system. Based on
the above observation, we choose to use the Gabor function in
this work.

Gabor functions are sine-modulated Gaussian functions that
are scaled and translated, providing joint time–frequency lo-

calization. Mathematically, the discrete Gabor time–frequency
atom is written as

where . is a normaliza-
tion factor such that . We use to
denote parameters of the Gabor function, where , and
correspond to an atom’s position in scale, time, frequency, and
phase, respectively. The Gabor dictionary in [33] was imple-
mented with atom parameters chosen from dyadic sequences of
integers. The scale , which corresponds to the atom width in
time, is derived from dyadic sequence , and
the atom size is equal to .

We chose the Gabor function with the following parameters
in this work,

(with so that
the range of is normalized between 0 and 0.5), and
the atom length is truncated to . Thus, the dictionary
consists of Gabor atoms that were generated
using scales of and translation by quarters of atom length .

We attempt to keep the dictionary size small since a large
dictionary demands higher complexity. For example, we choose
a fixed phase term since its variation does not help much.

By shifting the phase, i.e., ,
each basis vector only varies slightly. Since we are using the
top few atoms for creating the MP-features, it was found not
necessary to incorporate the phase-shifted basis vectors.

A logarithmic frequency scale is used to permit a higher res-
olution in the lower frequency region and a lower resolution in
the higher frequency region. We found the exponent 2.6 in
experimentally given the parameter setting of the frequency in-
terval. We wanted to have a finer granularity below 1000 Hz as
well as enough descriptive power in the higher frequency. The
reason for finer granularity in lower frequencies is because more
audio object types occur in this range, and we want to capture
finer differences between them.

We can observe differences in synthesizing atoms for dif-
ferent environments, which demonstrates that different envi-
ronments exhibit different characteristics, and each set of de-
compositions encapsulates the inherent structures within each
type of signal. For example, because the two classes, On boat
and Harbor, contain ocean sounds, the decompositions are very
similar to each other. Another example is between Nature-day-
time and Near highway. Both were recorded outdoors; therefore,
there are some similarities in the subset of their decomposition
but because the Near highway class has the presence of traffic
noise, this has led to distinctively different atoms with higher
frequency components, compared to Nature-daytime. When we
compared them with differing classes, e.g., Nature-nighttime
and Near highway, the decompositions are noticeably different
from one another. Therefore, we utilize these set of atoms as a
simple representation to these structures.

C. Computational Cost of MP Features

For each input audio signal, we divide into overlapping
windows of length , and MP is performed on each of these
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windows. At each iteration, the MP algorithm computes the
inner product of the window of signals (or residuals) with all
atoms in the dictionary. The cost of computing all inner prod-
ucts would be . During this process, we need to record
the highest correlation value and the corresponding atom. We
terminate the MP algorithm after iterations, yielding a total
cost of . By keeping the dictionary size small with
constant iteration number and window size , the computa-
tional cost is a linear function of the total length of the signal.
Thus, it can be done in real time.

V. EXPERIMENTAL EVALUATION

A. Experimental Setup

We investigated the performance of a variety of audio fea-
tures and provide an empirical evaluation on 14 different types
of environmental sounds commonly encountered. We used
recordings of natural (unsynthesized) sound clips obtained
from [41] and [42]. We used recordings that are available in
WAV formats to avoid introducing artifacts in our data (e.g.,
from the MP3 format). Our auditory environment types were
chosen so that they are made up of nonspeech and nonmusic
sounds. It was essentially background noise of a particular
environment, composed of many sound events. We do not
consider each constituent sound event individually, but as many
properties of each environment. Naturally, there could be in-
finitely many possible combinations. To simplify the problem,
we restricted the number of environment types examined and
enforced each type of sound to be distinctively different from
one another, which minimized overlaps as much as possible.
The fourteen environment types considered were: Inside restau-
rants, Playground, Street with traffic and pedestrians, Train
passing, Inside moving vehicles, Inside casinos, Street with
police car siren, Street with ambulance siren, Nature-daytime,
Nature-nighttime, Ocean waves, Running water/stream/river,
Raining/shower, and Thundering.

We examined the performance of the MP features, extracted
as described in Section IV, a concatenation of the MP-features
and MFCCs to form a longer feature vector, MP MFCC
(16), and a variety of commonly used features, which includes
MFCC (12), MFCC (12), LPC (12), LPC (12), LPCC(12),
the band energy ratio, frequency roll-off set at 95%, spectral
centroid, spectral bandwidth, spectral asymmetry, spectral
flatness, zero-crossing, and energy. We adopted the GMM
classification method in the feature space for our work. With
GMMs, each data class was modeled as a mixture of several
Gaussian clusters. Each mixture component is a Gaussian
represented by the mean and the covariance matrix of the data.
Once the model was generated, conditional probabilities were
computed using

where is the datapoints for each class, is the number
of components, is the prior probability that datum was

generated by component , and is the mixture compo-
nent density. The EM algorithm [43] was then used to find the
maximum likelihood parameters of each class.

We also investigated the K-nearest neighbor (kNN) classifi-
cation method. kNN is a simple supervised learning algorithm
where a new query is classified based on the majority class of
its nearest neighbors. A commonly used distance measure is
the Euclidean distance

In our experiments, we utilized separate source files for
training and test sets. We kept the 4-s segments that were
originated from the same source file separate from one another.
Each source file for each environment was obtained at different
locations. For instance, the Street with traffic class contains four
source files which were labeled as taken from various cities. We
required that each environment contained at least four separate
source recordings, and segments from the same source file were
considered a set. We used three sets for training and one set for
testing. Finally, we performed a fourfold cross validation for the
MP features and all commonly used features individually for
performance comparison. In this setup, none of the training and
test items originated from the same source. Since the recordings
were taken from a wide variety of locations, the ambient sound
might have a very high variance. Results were averaged over
100 trials. These sound clips were of varying lengths (1–3 min
long), and were later processed by dividing up into 4-s segments
and downsampled to 22 050 Hz sampling rate, mono-channel
and 16 bits per sample. Each 4-s segment makes up an instance
for training/testing. Features were calculated from a rectangular
window of 256 points (11.6 ms with 50% overlap.

B. Experimental Results

We compare the overall recognition accuracy using MP,
MFCC, and their combination for 14 classes of sounds in
Fig. 4. As shown in this figure, MFCC features tend to operate
on the extremes. They perform better than MP features in
six of the examined classes while producing extremely poor
results in the case of five other classes; namely, a recognition
rate of 0% for four classes, Casino, Nature-nighttime, Train
passing, and Street with ambulance and less than 10% for
Thundering. MP features perform better overall, with the ex-
ception of two classes (Restaurant and Thundering) having the
lowest recognition rate at 35%. One illustrative example is the
Nature-nighttime class, which contains many insect sounds of
higher frequencies. Unlike MFCCs that recognized 0% of this
category, MP features were able to yield a correct recognition
rate of 100%. Some of these sounds are best characterized by
narrow spectral peaks, like chirps of insects. MFCC is unable
to encode such narrow-band structure, but MP features are
effective in doing so. By combining MP and MFCC features,
we were able to achieve an averaged accuracy rate of 83.9%
in discriminating fourteen classes. There are seven classes that
have a classification rate higher than 90%. We see that MFCC
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Fig. 4. Overall recognition rate (GMM) comparing 14 classes using MFCC only, MP only, and MP�MFCC as features. (0% recognition for four classes using
MFCC only: Casino,Nature-nighttime,Train passing, and Street with ambulance).

and MP features complement each other to give the best overall
performance.

For completeness, we compared the results from the two dif-
ferent classifiers, namely GMM and kNN. We examine the re-
sults from varying the number of neighbors and using the
same for each environment type. The overall recognition
rate by varying are given in Fig. 5. The highest recognition
rate was obtained using , with an accuracy of 77.3%.
We could observe the performance slowly flattens out and fur-
ther degrades as we increase the number of neighbors. By in-
creasing , we are in fact expanding the radius of its neighbors.
Extending this space makes it more likely the classes would
overlap. In general, the results from GMM outperforms those
from using kNN. Therefore, we will concentrate on GMM for
the rest of our experiments. Using GMM allows for better gen-
eralization. kNN would perform well if the data samples are
very similar to each other. However, since we are using different
sources for testing and training, they might be similar in their
overall structure but not finer details.

To determine the model order of GMM, we examine the re-
sults by varying the number of mixtures. Using the same settings
as the rest of the experiments, we examined mixtures of 1–10,
15, and 20 and used the same number of mixtures for each envi-
ronment type. The overall recognition rates are given in Table I.
We see that the classification performance peaks around five
mixtures and the performance slowly degrades as the number of
mixtures increases. The highest recognition rate for each class
across the number of mixtures was obtained with 4–6 mixtures.
They were equal to 4, 5, 5, 5, 5, 5, 6, 5, 4, 4, 5, 6, 5, 5 for the
corresponding classes: Nature-daytime, Inside moving vehicles,
Inside restaurants, Inside casinos, Nature-nighttime, Street with
police car siren, Playground, Street with traffic, Thundering,
Train passing, Raining/shower, Running water/stream, Ocean

Fig. 5. Overall recognition accuracy using kNN with varying number of� .

waves, and Street with ambulance. We also experimented with
this combination of mixtures numbers, and the results is given as
mixed in Table I. Since the latter requires tailoring to each class,
we decided to just use five mixtures throughout all of our exper-
iments to avoid making the classifier too specialized to the data.
We performed an analysis of variance (ANOVA) on the classifi-
cation results. Specifically, we used the t-test, which is a special
case of ANOVA for comparing two groups. The t-test was run
on each of the 14 classes individually. The t-tests showed that
the result of the two systems was significant with for
all 14 classes.

An interesting benchmark is shown in Fig. 6, where we ran
the same experiments using all features, including MP, MFCC,
and other commonly used features as stated in Section V-A. The
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TABLE I
RECOGNITION ACCURACY USING GMM WITH A VARYING NUMBER OF MIXTURES, USING MFCC AND MP FEATURES

Fig. 6. Overall recognition accuracy comparing MP, MFCC, and other commonly used features for 14 classes of sounds using kNN and GMM as classifiers.

TABLE II
CONFUSION MATRIX FOR 14-CLASS CLASSIFICATION USING MP FEATURES AND MFCC WITH GMM

average recognition accuracy is approximately 55.2%, which is
much worse than using combined MFCC and MP features. This
confirms our discussion in Section III-A; namely, adding more
features may not be always helpful.

C. Confusion Matrix and Pairwise Classification

Results presented in Section V-B are averaged values from
all trials together. To further understand the classification per-
formance, we show results in the form of a confusion matrix,

which allows us to observe the degree of confusion among dif-
ferent classes. The confusion matrix given in Table II is built
from a single arbitrary trial, constructed by applying the classi-
fier to the test set and displaying the number of correctly/incor-
rectly classified items. The rows of the matrix denote the envi-
ronment classes we attempt to classify, and the columns depict
classified results. We see from Table II that Restaurant, Casino,
Train, Rain, and Street ambulance were more often misclassi-
fied than the rest. We could further point out that the misclassifi-
cation overlaps between pairs, such as those of Inside restaurant
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TABLE III
RECOGNITION ACCURACY FOR PAIRWISE CLASSIFICATION USING GMM

TABLE IV
COMPARISON OF RECOGNITION ACCURACY BETWEEN MFCC, MP, AND MFCC�MP FEATURES FOR PAIRWISE CLASSIFICATION OF FIVE-CLASS

EXAMPLES. FOR EACH PAIR OF CLASSES, THE THREE RECOGNITION ACCURACY VALUES CORRESPOND TO: (LEFT) MFCC, (MIDDLE) MP,
(RIGHT) MFCC�MP FEATURES. ALL VALUES ARE IN PERCENTAGES

and Inside casino and of Rain and Steam (Running River). Inter-
estingly, there exists a one-sided confusion between Train and
Waves, where samples of Train were misclassified as Waves, but
not vice versa.

Generating a confusion matrix provides a convenient way to
understand the performance of features and classifiers. How-
ever, since it is obtained from all classes, it is difficult to ob-
serve more subtle details. In many instances, we are interested
in determining where misclassification actually occurs; namely,
whether it is originating from the classifier or the ambiguity of
extracted features. To address this, we use a pairwise classifica-
tion method to observe the interaction between all possible pairs
of classes. Pairwise classification is a series of two-class prob-
lems in a one-against-one manner, instead of the one-against-all
method used to construct the confusion matrix. By examining all
exhaustive pairs of classes and finding the most difficult ones,
we show the pairwise classification results in Table III. For most
pairs of classes, we obtained a correct classification rate higher
than 90%. Only cases with correct classification rates less than

90% are listed in Table III. A simple two-class classification
result is around 58% in differentiating classes between inside
restaurant or casino, which is not much better than random
guessing.

We investigate more closely the effectiveness of MP fea-
tures by presenting the pairwise classification results for five
classes of environmental sounds, with 20 data samples each.
By examining a smaller problem, we could observe the subtle
details of their classification performance. The five classes are
Playground, Nature-daytime, Nature-nighttime, Stream/river,
and Raining. Table IV shows ten pairwise classification results
between five classes. For each pair of classes, recognition
rates are given in three boxes. They correspond to the use of
different features for classification: MFCC features only (left),
MP features only (middle) and joint MFCC and MP features
(right). The use of joint MFCC and MP features tends to result
in a higher accuracy rate. One impressive example is observed
in discriminating Rain/shower and Nature-daytime, the use of
MFCC and MP-features alone results in only an accuracy rate
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Fig. 7. Sample of the short-time energy function from each of the example five
classes. (a) Nature-nighttime. (b) Nature-daytime. (c) Playground. (d) Raining.
(e) River/stream.

of 50%. However, the use of two types of features jointly leads
to an accurate classification rate of 98.4%.

D. Comparison of Time-Domain Features

Some environment sounds may include strong temporal do-
main signatures such as those from chirpings of insects and
raining, which are noise-like with a broad flat spectrum. These
characteristics might be better captured with temporal type fea-
tures. When compared with spectral features, there are fewer
temporal-domain features used to characterize audio signals.
Two commonly used temporal features are the short-time energy
and the zero-crossing rate [22]. In this paper, we present new
temporal features based on MP. In this subsection, we would
like to compare these three features.

Fig. 7 provides an example of the short-time energy function
of signals from five different classes. However, it may not pro-
vide an effective discriminant feature as illustrated in Fig. 8(a),
where we show the energy range of twenty data samples for five
sound classes. We see from Fig. 8(a) that the energy range of
Nature-nighttime resembles a flat line. This is due to the high
frequency in the chirping of insects, making it similar to a con-
stant sound. The large variation within each type of sounds also
makes it difficult to determine the effectiveness of each feature
for each sound type. The zero-crossing rate can be useful to sep-
arating some classes such as Nature-nighttime and Raining from
the rest of the classes as shown in Fig. 8(b). However, the other
three types have very similar properties and, thus, they are more
difficult to distinguish.

MP features provide a more flexible and effective way to
extract temporal features of environmental sounds using time-
and frequency-localized representation. For illustration, the
mean distribution of three types of MP parameters are shown
in Fig. 9. We see that these MP features form clearly separable
clusters among themselves. For example, the Nature-nighttime
class makes a cluster in the higher frequency and smaller scales
due to the fact that insects have high-pitched repeating chirps.
In contrast, running streams of water produce a lower frequency

Fig. 8. Temporal features: (a) the energy range and (b) the zero-crossing rate.
(Figures (a) and (b) share the same legend.)

sound, and they are mapped to the lower frequency and higher
scale region in the figure.

Using similar experiment settings as in Section V-A, we per-
form classification on these five classes using GMM. We ob-
tained results of 75.3%, 84.0%, and 89.7% for MFCC only,
MP-features only, and the combined MFCC+MP-features, re-
spectively. Similar to previous findings, including MP-features
with MFCCs in the feature vector increases classification per-
formance than using MFCCs alone. To achieve a better under-
standing of how combining MFCCs with individual MP-feature
descriptors helps with classification, we can observe the results
in first row of the Table V, where we perform the classification
using the input feature vector as a combination, or more specif-
ically concatenation, of MFCCs with one (or two) of the de-
scriptors at a time. We use mean-F and std-F to denote the mean
and standard deviation for the frequency indices and likewise,
mean-S and std-S for the scale indices. Table V shows how the
descriptors contributes to the overall classification. We further
observe how each descriptor affects certain classes by repeating
the experiment with pairwise classifications as listed in Table V.
We see that the effect of each descriptor is different for each pair
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TABLE V
COMPARISON OF RECOGNITION ACCURACY BETWEEN MFCC AND MFCC WITH INDIVIDUAL MP FEATURES

FOR PAIRWISE AND OVERALL CLASSIFICATION OF THE FIVE-CLASS EXAMPLES USING GMM, IN PERCENTAGE

Fig. 9. MP features (i.e., the mean value of the corresponding parameters) in
feature space.

of environments. To further examine the effects, we plotted the
values to each of the descriptor in Fig. 10.

The mean-S can be viewed as an indication of the overall am-
plitude of the signal. It depends on the loudness of the signal or
how far away the microphone is from the sound source. The
std-S descriptor provides us with a way to disclose the vari-
ability of the energy in the time–frequency plane. The values
for static type of noises, such as those of constant raining, are
higher than diverse noises. Another interesting observation is
that out of the four descriptors, std-S was the only one that sep-
arates out much of the Nature-daytime class from the others,
which was the most difficult to do with the other descriptors.
The mean-F might be similar to that of the centroid as it rep-
resents where the energy on the frequency axis. Although, the
mean-F only describes the frequency, but it still proved to be
useful when combined with MFCC. One of the reason is that
MFCCs model the human auditory system and do poorly when
modeling nonspeech type noise. Mean-F furnishes us with a de-
scription of the basic frequency without being modeled based on
any auditory system. Std-F expresses the frequency range. If the
sound frequency is narrow, std-F is low, i.e., running stream. An
interesting example is for the class, between Nature-Nighttime
and Thundering, where using MFCCs alone yields 0%. How-
ever, we can see in Table V that adding the mean-F to the fea-
ture vector helps significantly. In this case, mean-S was less im-
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Fig. 10. Individual MP feature descriptor values: mean-F (top left), std-F (top right), mean-S (bottom left), std-S (bottom right).

portant in discriminating between Nature-Nighttime and Thun-
dering, which also indicates that it is not relying on the ampli-
tude of the signal. We can see that although different descriptors
might be better for certain pair of classes, it would be difficult,
and too specific, to selectively choose them, but from Table V,
we can conclude that using all the frequency and scale descrip-
tors provides us with extra information for discriminating be-
tween difficult classes.

VI. LISTENING TESTS

A. Test Setup and Procedure

A listening test was conducted to study human recognition
capability of these environmental sounds. Our motivation was
to find another human-centric performance benchmark for our
automatic recognition system. Our test consisted of 140 audio
clips from 14 categories, with ten clips from each of the classes
described in Section V-A. Audio clips were randomly picked
from the test and training sets, and the duration varied between
2, 4, and 6 s. A total of 18 subjects participated in the test. They
were volunteers and had no prior experience in analyzing envi-
ronmental sounds. Participants consisted of both male and fe-
male subjects with their ages between 24–40. About half of the
subjects were from academia while the rest were from nonre-
lated fields. Four of the subjects were involved in speech and
audio research.

Each subject was asked to complete 140 classification tasks
(the number of audio clips) in the course of this experiment. In
each task, subjects were asked to evaluate the sound clip pre-
sented to them by assigning a label of one of 15 choices, which

includes the 14 possible scenes and the others category. In addi-
tion to class labeling, we also obtained the confidence level for
each of the tasks. The confidence levels were between 1 and 5,
with 5 being the most confident. The order in which sound clips
were presented was randomized to minimize any bias. The test
was set up so that the first 14 clips were samples of each of
the classes and was not included in calculating the final results.
They were used to introduce subjects to the variety of sounds to
be examined and to accustom them to different categories.

The user interface was a web page accessible via a browser
with internet connection. Users were asked to use headphones
so as to reduce the amount of possible background noise. The
test was performed without any time limit, and users were able
to break and return at any time. For each task, the results are ex-
pressed as an entry consisting of four data items: 1) the original
environment type, 2) the audio clip duration, 3) user labeled en-
vironment type, and 4) user confidence level.

B. Test Results

The results from the listening test are shown in Fig. 11. The
overall recognition rate was 82.3%, and the recognition accu-
racy for each individual environment ranged from 50% to 100%.
The three best recognized scenes were Nature-daytime (98%),
Playground (95%), and Thundering (95%). On the other hand,
the four most difficult scenes were Ocean waves (65%), Inside
Casino (70%), Inside moving vehicles (73%), and Street with
traffic (74%). The listening test showed that humans are able
to recognize everyday auditory scenes in 82% of the cases. The
confusions were mainly between scenes that had similar types of
prominent sound events. We can also examine the performance
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Fig. 11. Recognition accuracy of 14 classes from the listening test.

of each sound class as an effect of the duration in Fig. 11. The
overall average recognition rates were 77%, 82%, and 85% for
an audio clip duration of 2, 4 and 6 s, respectively. There is a
larger difference in the rates between 2 and 4 s, but less between
4 and 6 s. A longer duration permits the listener more opportu-
nities to pick up prominent sounds within each clip. However,
the duration effect becomes less important as it passes a certain
threshold.

One of the main reasons for misclassification was due to
misleading sound events. For example, the scene Street with
traffic was recorded with different types of traffic, which was
frequently recognized as Inside moving vehicles, and vice
versa. The recordings from Inside moving vehicles consist of
different vehicles passing, which included a variety of vehi-
cles like passenger sedans, trucks, and buses. Another reason
for misclassification arises from the similarity between two
different sounds and the inability of human ears to separate
them. For example Ocean waves actually sounds very similar
to that of Train passing. Another problem comes from subjects’
unfamiliarity of a particular scene. For example, some users
reported that they have never set foot inside a casino. Thus, the
sound event Inside casino was mislabeled by them as Inside
restaurant due to the crowd type of the ambient sound.

The confusion matrix for the test is given in Table VI. The
rows of the matrix are the presented environmental scenes while
the columns describe the subject responses. All values are given
in percentages. Confusion between scenes was most noticeably
high between Street with police car and Streets with ambulance,
between Raining and Running water, and between Street with
traffic and Inside moving vehicles.

The highest off-diagonal value occurs when Streets with po-
lice car is recognized as Street with ambulance. Confusion be-
tween sirens from police cars and ambulance was not due to
the actual discrimination between the two sound classes but

rather some people were semantically confused between the
two sirens. In other words, the discrimination between the two
classes requires background knowledge of subjects. Many users
reported afterwards that they were second guessing the type of
emergency vehicles that sirens were originating from. Confu-
sion also occurred between scenes that are filled with crowded
people, such as Inside restaurant and Inside casino.

Besides recognition accuracy, we are also interested in the
relationship between the user confidence level and the audio
clip duration. The results are shown in Fig. 12. If we compare
Figs. 11 and 12, a lower confidence translates to a lower recog-
nition rate, and vice versa. The confidence of listeners increases
as we extend from 2 to 4 s, but there is only a slight increase from
4 to 6 s. The average confidence for each class, out of a possible
5, is 3.7, 4.2, and 4.4 for 2 s, 4 seconds, and 6 s, respectively.
The lowest scores with the largest discrepancy between 2 and 4
s comes from the pair of Waves and Street with traffic. In gen-
eral, a higher confidence is displayed with audio clips that are
longer than 2 s.

The listening test shows that human listeners were able to
correctly recognize 82% of ambient environment sounds for a
duration of 4 s. Under the condition of 4-s clips, our automatic
recognition system achieved a rate of 83%, which demonstrates
that our recognition system has comparable performance to that
of human listeners.

The results of our listening test and those in [11] are dis-
similar. As indicated in the studies in [11], their results were
higher for humans than that obtained from the computer system.
Whereas in our case, the results were fairly similar between
human and computer recognition. One possible reason for the
differences is that their experimental setup was different than
the one presented here, most notably in the length of the data
presented to the subjects. The data presented to the users in our
setup are the same segments as used in our automatic classifi-
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TABLE VI
RECOGNITION PERFORMANCE FROM THE LISTENING TEST

Fig. 12. User confidence in the listening test.

cation system, which was 4 seconds long, while the samples in
Eronen’s experiments were 30 s to 1 min long. Given that hu-
mans may have prior knowledge to different situations that can
be advantageously used in classification, allowing them a much
longer time to listen to the audio sample increases the likelihood
that they would find some audio cue within each segment as to
the environmental context in question.

VII. CONCLUSION

The paper reports a novel feature extraction method that uti-
lizes matching pursuit (MP) to select a small set of time–fre-
quency features, which is flexible, intuitive and physically in-
terpretable. MP features can classify sounds where the pure

frequency-domain features fail and can be advantageous com-
bining with them to improve the overall performance. Extensive
experiments were conducted to demonstrate the advantages of
MP features as well as joint MFCC and MP features in envi-
ronmental sound classification. The experimental results show
promising performance in classifying 14 different audio envi-
ronments, and shows comparable performance to human classi-
fication results on a similar task. Our work provides competitive
performance for multi-audio category environment recognition
using a comprehensive feature processing approach.
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