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Synthesis for High-Definition Video Coding
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Abstract—A technique for film grain noise extraction, modeling
and synthesis is studied and applied to high-definition video
coding in this paper. Film grain noise enhances the natural
appearance of pictures in high-definition video and should be
preserved in coded video. However, the coding of video contents
with film grain noise is expensive. In previous art, it was proposed
to enhance the coding performance by extracting film grain noise
from the input video at the encoder as a preprocessing step, and
by resynthesizing and adding it back to the decoded video at the
decoder as a postprocessing step. In a novel implementation of
this approach, we first remove film grain noise from image/video
with a variational denoising approach without distorting its
original content. Then, we present a parametric model (consisting
of a small set of parameters) to generate film grain noise that
is close to the actual one in terms of a couple of observed
statistical properties, such as the power spectral density and
the crosschannel spectral correlation. Under this framework, the
coding gain of denoised video is higher while the visual quality
of the final reconstructed video is well preserved. Experimental
results are provided to demonstrate the superior performance of
the proposed approach.

Index Terms—Denoising, film grain noise, image restoration,
noise synthesis, parametric model, texture coding, texture syn-
thesis, total variation.

I. Introduction

Film grain noise in motion pictures is caused by the
developing process of silver-halide crystals dispersed in photo-
graphic emulsion [1]. It is unavoidable in the analog film due
to the physical process. When we digitize and compress high-
resolution movie contents obtained by scanning the analog
film, such randomly distributed film grain noise is a major
burden to typical video coding methods. Since film grain noise
has a relatively large energy level in the high-frequency region,
it is more expensive to encode in the DCT domain. Besides, the
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underlying video suffers from inaccurate motion estimation.
A natural idea to overcome this problem is to remove film
grain noise as much as possible as a preprocessing step at the
encoder so as to achieve a higher coding gain for denoised
video [2]–[5].

A lot of efforts have been done for Gaussian noise detection
and removal. Under the assumption that film grain noise is
one of the Gaussian additive or multiplicative noise, many
existing denoising methods could be used. However, this
assumption does not hold since film grain noise has the
following distinctive properties [1], [3], [4], [6], [7].

1) It is temporally independent.
2) Its power spectrum density is close to pink noise.
3) It is spatially dependent.
4) It has strong crosscolor correlation in the RGB domain.
5) Its histogram is close to the Gaussian distribution.
6) It is dependent on the signal intensity.

Because of these properties, we need to develop a spe-
cific algorithm for film grain noise detection, modeling and
removal.

To remove the film grain noise from the original video
is however not enough. As high-resolution devices such as
HDTV are getting popular, film grain noise becomes percep-
tually important to human eyes since noise-removed video
tends to bring an unnatural feeling to people. As a result, we
should reproduce and render film grain noise at the decoder.
Previous paper following this line of thought will be reviewed
in Section II. In this paper, we consider a novel implementation
of this approach.

Specifically, we present a method to remove film grain noise
from general input video without distorting the underlying
video content. In the denoising process at the encoder, we
adopt a method based on the principle of total variation
minimization for film grain noise removal. It suppresses film
grain noise effectively so that the video coding gain can be
significantly increased. It is important to preserve the quality
of the original video content as much as possible. Otherwise,
it would lead to false extraction of film grain noise and,
consequently, inaccurate noise parameters. To achieve this
goal, we detect edges or fine texture regions of input video in
advance and extract (or remove) noise in smooth homogenous
regions only. In the meantime, we analyze film grain noise
using a parametric model and determine its parameters. Based
on the model and its parameters, artificial noise (which is
close to the extracted one) is generated and added back to
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Fig. 1. Overview of a film grain noise processing system.

the decoded video at the decoder. Furthermore, we provide a
method to measure the performance of film grain synthesis by
comparing the statistical information of distinctive properties
of film grain noise between the synthesized and extracted
noise.

The rest of this paper is organized as follows. The overall
structure of the proposed scheme with previous paper on
film grain noise removal and modeling is briefly reviewed in
Section II. Then, algorithms for noise removal and synthesis
are detailed in Section III and Section IV, respectively. Exper-
imental results are provided in Section V to demonstrate the
effectiveness of the proposed scheme with several performance
metrics. Finally, concluding remarks are given in Section VI.

II. Review of Previous Paper

Generally speaking, the film grain noise modeling scheme
for video coding consists of two parts: 1) noise removal
and extraction at the encoder; and 2) noise synthesis at the
decoder as shown in Fig. 1. These can be viewed as the
preprocessing and the postprocessing steps in video coding.
It is worthwhile to emphasize that it does not modify the
encoding and decoding modules in any adopted video coding
standard. The only additional information to be transmitted is
noise parameters, with which noise can be synthesized. Since a
small set of parameters can represent the whole image, or a set
of images in a GOP, the overhead of parameter transmission
is negligible. One method for parameter transmission was
proposed by Gomila et al. [3], [4] using the so-called SEI
messages, with which no auxiliary transmission channel is
needed. The detailed description of these two parts with
the proposed algorithms will be given in Section III for
noise removal and Section IV for noise synthesis, respec-
tively.

The film grain noise modeling scheme for video coding was
first proposed by Gomila et al. [3], [4], where noise removal
was adopted as a preprocessing step in video encoding and
noise synthesis as a postprocessing step in video decoding.
This idea has been standardized by AVC [2], and even de-
ployed in commercial products for HD DVD in [8]. However,
there is some room for further improvement. First, they did
not provide any specific denoising method for film grain noise.
As will be described later in this section, most of previous de-
noising schemes aiming to the conventional Gaussian additive
noise is not sufficient to suppress film grain noise efficiently.
One approach proposed in [3] uses the reconstructed video
as its denoised version, which is attractable since it does not
need an additional denoising module. However, it is observed

that residual images usually contain image edges and some
structure information besides noise. Poorly extracted film grain
noise would lead to false estimation of noise parameters.

In the following, we will review image/video denoising
and noise synthesis techniques. Image restoration including
noise detection and removal has been one of active re-
search topics in image processing during last several decades.
The main objective of these algorithms is suppressing the
noise as much as possible without distorting the original
image, and various approaches have been proposed so far
[9]. When extending the denoising problem from image to
video, temporal correlation of noise should be considered.
Ozkan et al. [10] applied temporal filtering to noise suppres-
sion yet preserving image edges at the same time. The inte-
grated spatial and temporal filtering approach was examined
in [11], [12]. Temporal filtering methods in these papers were
built upon block motion estimation. Boo et al. [13] applied the
Karhunen–Loeve (KL) transform along the temporal direction
to decorrelate dependency between successive frames and then
used adaptive Wiener filtering to smooth frames. Most meth-
ods using temporal filtering work well for still or slow-motion
video since temporal filtering can be done nicely with accurate
motion information. However, large motion estimation errors
occurring in fast motion video tend to result in erroneous noise
estimation. Furthermore, it demands a large memory buffer to
implement temporal filtering.

Among hundreds of papers published on this topic, some of
them target at film grain noise processing, e.g. [7], [13]–[16].
It was assumed by Yan et al. [7], [15] and Al-Shaykh et al.
[14] that film grain noise is proportional to a certain power,
p, of the background signal intensity, which imposes strong
limitation on the extraction and modeling of film grain noise.
More recently, Moldovan et al. [16] proposed new algorithms
using Bayesian model to detect film grain noise, where film
grain noise is assumed to be of the beta distribution and
spatially independent. Under this assumption, an image can
be estimated by an iterative gradient descent method with a
predetermined model and proper parameters. This approach
is claimed to be robust against different image contents.
However, according to our observation, the distribution of film
grain noise is close to the Gaussian distribution and it is not
spatially independent.

In the denoising process, it is important to find out an edge
region of the image, since most of denoising algorithm tends
to blur the image, especially around the edge. There has been a
large amount of work for edge detection. In particular, Canny
[17] proposed an edge detection algorithm for noisy images.
More recently, a multilayer approach is used to reduce false
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Fig. 2. Block diagram of the preprocessing task.

detection due to noise. For example, Mallet et al. [18] used
local maxima of over complete wavelet transform coefficients
for edge detection. They proved that finding local maxima
is equivalent to multiscale Canny’s edge detector. Instead of
finding local maxima of wavelet coefficients, Xiong et al. [19]
used the cross-scale correlation for edge detection by multi-
plying cross-scale wavelet coefficients under the assumption
that the multiscale noise intensity is related in a logarithmic
ratio. However, this method would not work well for film
grain noise whose energy values deviate from the logarithmic
variation assumption. As more specific application for the film
grained image, Schallauer et al. [20] proposed new algorithms
to detect homogeneous image region, in which the block-
based 2-D DFT was adopted to detect the directionality of
edges and/or fine textures and, then, properties of film grain
noise are extracted only from homogenous regions. Since
film grain noise is isotropic while edges and fine textures
have strong directionality, 2-D DFT provides a good tool for
their distinction. However, the decision made based on several
points with four-different angles {0°, 45°, 90°, 135°} and a
couple of radial bands is not accurate enough to determine
the directionality, since the spectrum of image edges tends
to be across a wide range of frequency bands and sampled
values at fixed points in the DFT domain may lead to false
conclusion.

Two different methods were proposed for film grain
synthesis. One is to use the film grain database for the sake
of low complexity. The film grain pattern is first identified,
and the decoder generates a larger size of film grain from a
smaller size of film grain stock. However, the block-based
copy-and-paste method might yield artificial boundary
artifacts. Besides, the method is workable only when the
film stock information is known a priori. The other is to use
some models for blind film grain synthesis. Several methods
have been proposed, e.g., high-order statistics based [7],
[15], parametric-modeling-based [21]–[24] or patch-based
noise synthesis methods [25]–[28]. Since film grain noise can
be viewed as one type of random texture, the conventional
texture synthesis method can also be adopted. However, there
is one challenge. That is, since film grain noise has special
properties as mentioned in Section I, these criteria must be
considered and satisfied when synthesizing the film grain. So
far, there has been no effort to generate the film grain noise
based on the specific film grain properties.

Finally, it is worthwhile to mention that a similar idea was
used for speech coding [29], where inactive voice signal is
preprocessed before encoding, and noise is added back to the
decoded signal for the comfort of human perception.

III. Film Grain Noise Removal

For film grain noise removal, we use the total variation
minimization method to suppress film grain noise. Since a
denoising process might distort areas that have sharp transi-
tion between neighboring pixels in the original image, it is
important to identify regions of image edges before applying
the denoising algorithm. Then, we can perform denoising
selectively in smooth regions only. Moreover, the denoising
process based on the total variation minimization principle
could be more complete with some prior information of noise.
Here, we propose to use the independence of film grain in
the temporal domain to identify prior noise information. The
overall preprocessing task at the encoder can be divided into
three steps: 1) extract noise characteristics using the temporal
information; 2) identify smooth regions of the image; and
3) denoise each image with prior noise information. The
preprocessing module is shown in Fig. 2, and each processing
step will be detailed below.

A. Extraction of Noise Characteristics

It is important to identify the accurate film grain charac-
teristics, since the proposed denoising algorithm is conducted
using the noise prior. Generally, it is nontrivial to identify
them in that the film grain noise is not given in this stage.
However, what we want to obtain is just statistical properties
of film grain noise, and it can be indirectly exploited without
computing film grain itself.

To obtain film grain characteristics, we assume an additive
model of film grain noise of the following form:

Un
o = Un + Nn(Un) (1)

where Uo is the observed image, U is the original image and
N is the film grain noise, and superscript n denotes the frame
index. Since film grain noise is signal-dependent, noise N(·)
is a function of image U. If blocks of two consecutive frames
are static, we can find the differential noise, Nd , as

Nn
d = Nn − Nn−1

= (Un
o − Un) − (Un−1

o − Un−1)
≈Un

o − Un−1
o

(2)

since Un ≈ Un−1. The static area is identified by analyzing
motion vectors of a set of nonoverlapping blocks, where
motion vectors are computed in noise suppressed images as
done in [11].

Since film grain noise is almost temporally independent and
spatially Gaussian distributed as mentioned in Section I, dif-
ferential noise Nd is another Gaussian noise with its variance
twice as large. Then, all statistical values of film grain noise,
such as variance, autocorrelation and crosscolor correlations
can be easily obtained from temporally differential noise Nd .
It is also worthwhile to point out that the extracted noise
characteristics remain stable for a long sequence of image
frames. In practice, they can be use for the whole video
sequence or, at least, for a large number of consecutive
image frames. In other words, it is unnecessary to estimate
the noise parameters frequently. Furthermore, as compared to
other previous paper that performs filtering along the temporal
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Fig. 3. Detection of nonsmooth regions in an image.

direction directly, the fact that only static areas of consecutive
frames are considered in noise extraction makes our algorithm
more robust in the presence of object motion.

B. Enhanced Edge Detection

For input image sequences that contain film grain noise,
simple edge detection methods such as the Sobel or the Prewitt
filter does not work well since these filters are sensitive to
local noise. Note that we need to identify the edge region of
noisy image, so that some additional process is necessary to
suppress noise as much as possible to facilitate edge detection.
In this manner, an enhanced edge detection method using
multiresolution filters is described below.

To extract edges from the input image effectively, we
consider a set of filters to maximize frequency selectivity.
These filters are built upon a pair of low- and high-pass filters
as

h =
1

8
[−1 2 6 2 − 1], g1 =

1

2
[1 0 − 1]. (3)

Then, we can construct three filters by f1 = h∗g1, f2 = h∗g2,
f3 = h ∗ g3 accordingly, where ∗ is the convolution operation
and g2 and g3 are the upsampled filters of g1 as

g2 =
1

2
[1 0 0 0 − 1], g3 =

1

2
[1 0 0 0 0 0 − 1].

These filters are applied along the horizontal as well as the
vertical directions to detect edges of all possible orientations.
This process is similar to the overcomplete wavelet decompo-
sition. In [6], we proposed to use a multiresolution overcom-
plete wavelet decomposition with simple integer-valued low-
and high-pass filters. However, we found that its frequency
selectivity is not good enough so that it could miss some signal
with specific frequency bands. Instead, these filters are chosen
to improve frequency selectivity while keeping integer-valued
filter coefficients.

By following the terminology used in wavelet theory, the
application of filter fi, i = 1, 2, 3, horizontally and vertically
can generate LHi and HLi output images. Then, the edge
energy map is calculated by

EEi = ( |LHi|p + |HLi|p )1/p, i = 1, 2, 3 (4)

Fig. 4. Process of fine texture detection.

Fig. 5. Film grain noise synthesis with scaled white noise.

Fig. 6. First frames of HD (1920×1080) test sequences. (a) Rolling toma-
toes. (b) Playing cards. (c) Old town cross.

and the unified edge energy map is obtained by

EE = max[ EE1, EE2, EE3 ] (5)

where the maximum operation is performed pixel-by-pixel.
Then, the binary edge map (EM) is obtained by thresholding,
i.e., if the value of EE(i, j) at pixel position (i, j) is larger
than a predetermined threshold, it is set to an edge point.

Since the proposed noise extraction and removal algorithm
depend on the edge map, it is critical to find a reliable edge
threshold value. Recall that the edge threshold depends on the
signal intensity due to the unique property of film grain noise.
For example, 8-bit image should need 256 different threshold
values according to its signal intensity. To the threshold value,
we set the initial threshold to 3 for all signal intensities, and
adaptively update them according to the noise level in smooth
areas (i.e., where the edge map value is equal to 0). The update
formula is given by

Thnew[L] = (1 − w) · Thold[L] + w · c · EE (6)

where weighting coefficient w is set to a small number
(e.g., 10−4) to avoid abrupt change, L is the background
signal luminance, coefficient c is a scaling factor used to
adjust the input value, and EE is the current edge energy
value obtained by the above-mentioned method. Note that
the updating process is done pixel-by-pixel manner, i.e., each
threshold value corresponding to pixel illumination L is a
scaled mean of EE by c. It is observed that threshold values
converge after 4–5 frames with the updating process and this
algorithm is not sensitive for initial threshold value. Under the
assumption that film grain noise is Gaussian distributed, we
can show analytically that c = 2.5 would help detect more
than 99% of film grain noise. Details of the analysis and its
experimental verification are given in the Appendix.
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Fig. 7. Edge-regions by threshold method (top); fine texture region (middle) and final edge map (bottom). (a) Rolling tomatoes. (b) Playing cards.

In the implementation, we use the luminance channel to get
the edge map rather than processing each RGB color channel
individually, and quantize the signal pixel value U(i, j) by step
size Qs = 8 via

L = floor(U(i, j)/Qs). (7)

As a result, a total of 32 different threshold values are used
to determine the edge map.

In the last stage of edge detection, an additional postpro-
cessing module is added after thresholding to minimize the
false detection of edge pixels. That is, all isolated pixels are
detected and eliminated under the assumption that edge pixels
are connected with each other. In spite of the postprocessing,
there might still be misclassified pixels. One possible example
is that film grain noise may have a wider spatial dependency
than edge detection kernels, by which misclassified pixels are
likely to be connected. As a result of false decision, the overall
coding gain would be degraded slightly, and the regenerated
noise will be added to the original decoded noise as edge
regions. However, regions with false decision are often small,
and the overall coding performance will not be significantly
affected.

C. Fine Texture Detection

When detecting smooth regions using the edge energy map
for denoising, the main difficulty is that we often misclassify
fine texture regions into smooth regions. It is desirable to

treat fine texture regions the same as edge regions, since
the fine texture pattern is perceptually visible when it has
strong periodicity in the spatial domain in spite of its low-
edge energy. That is, we should not perform the denoising
algorithm on them. However, since the edge energy of these
texture pixels tends to be low, they may not be detectable
by thresholding. To address this problem, we include the fine
texture detection task as shown in Fig. 3, in which periodicity
property of fine texture is explored for its detection. Finally,
the nonsmooth region is obtained by taking the union of
detected edges and fine texture regions.

The fine texture detection process is illustrated in Fig. 4.
First, the edge energy map is binarized by its local median to
even identify low-intensity texture. Then, we check whether
there is strong autocorrelation R(m, n) along 8 different di-
rections denoted by vector (m, n). In the discrete domain, we
approximate the 8 directions by

(m, n) ∈ D

= {(1, 0), (2, 1), (1, 1), (1, 2), (0, 1), (−1, 2), (−1, 1), (−2, 1)}.
Since film grain noise has no directionality, the maximum
correlation value of film grain noise is smaller than that of
the fine texture. However, there may be some false alarm
if the correlation value of film grain noise becomes larger.
To improve the robustness of our algorithm, we check the
correlation value twice. That is, if |R(p, q)| gives the maxi-
mum correlation value, we compute the correlation value for
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Fig. 8. Close-up view of the original (left) and the denoised (right) images. (a) Rolling tomatoes. (b) Playing cards.

|R(2p, 2q)|, too. The final decision is made based on the
product of |R(p, q)| and |R(2p, 2q)|.

This procedure can be explained mathematically as follows.
The correlation value of a pixel c can be written as

Mc = |Rc(p, q)| · |Rc(2p, 2q)|,
where (p, q) = arg max

(m,n)∈D

|Rc(m, n)|. (8)

A pixel c will be determined as fine texture when it satisfies

Mc > β · MNd (9)

where Nd is the differential noise obtained in (2). This condi-
tion says that the threshold value for fine texture detection
is directly dependent on the autocorrelation value of the
estimated grain noise. In our implementation, we fix β = 2,
which means a pixel is assumed as fine texture if its maximum
correlation value is at least twice as large as the maximum
correlation of film grain noise.

As discussed above, our approach relies on the periodicity of
fine texture under the assumption that strong periodicity boosts
the perception of fine texture. On the other hand, low-intensity
nonperiodic fine texture would be missed by the proposed
algorithm. Spatially nonperiodic but temporally continuous
low-intensity texture should be handled by temporal-based
filtering, which is out of our current scope.

D. Denoising With Total Variation (TV) Minimization

As mentioned in Section I, film grain noise has many spe-
cific properties, and it is desirable to exploit these properties
in noise removal. Traditionally, linear spatial smoothing filters
such as the Gaussian filter have been widely used as the
denoising filter. Their performance is however limited since
a linear filter is not effective in detecting and extracting low-
frequency energy of film grain noise. Here, we proposed to
use a nonlinear filtering approach based on the variational
principle for film grain denoising, especially total variation
(TV) minimization method. Note that the denoising process
is only applied in smooth regions, which are detected by
methods discussed in Sections III-B and III-C. For more
references about the TV method, we refer to [9], [30]–
[32].

1) Denoising With TV Minimization: The variational ap-
proach with TV minimization [32] is an effective nonlinear
denoising algorithm. It can preserve edges well while remov-
ing background noise. In addition, it can provide a complete
solution if the noise prior is given, which is suitable in our
current context. The algorithm is detailed below. For the
additive noise model in (1), we want to reconstruct the noise-
free image Un based on observed noisy image Un

o . Then, the
solution of the ill-posed inverse problem can be obtained by



OH et al.: ADVANCED FILM GRAIN NOISE EXTRACTION AND SYNTHESIS FOR HIGH-DEFINITION VIDEO CODING 1723

Fig. 9. Comparison of the squared-root of the PSD for extracted noise using several algorithms. (a) Green. (b) Red. (c) Blue.

TABLE I

Comparison of Extracted Noise Power by Different Algorithms

Temporally Extracted Spatio-Temporal Filter Gaussian Filter General TV Method Proposed TV Method
G 5.10 3.95 3.75 4.56 4.89

Rolling tomatoes R 5.71 4.22 3.97 5.10 5.49
B 16.72 7.44 5.98 13.50 15.28
G 9.86 4.97 4.40 6.74 6.80

Playing cards R 6.95 4.32 3.82 5.07 5.23
B 38.20 19.56 18.23 28.56 29.64

Old town Y 13.41 9.65 10.12 12.87 12.88

solving the optimization problem

min
U

∫
�

|∇U|dU, s.t. ||U − Uo||2 = σ2 (10)

where function U : � → R, � is a nonempty bounded
open set in R2, ∇ is the differential operator [30], [32], and
superscript n is dropped for simplicity. In this case, noise
is assumed to be white. By Lagrange’s theorem, the best
estimator can be written as

Û = arg min
U

[∫
�

|∇U|dU +
λ

2
||U − Uo||2

]

= arg min
U

⎡
⎣∫

�

√
U2

x + U2
ydu +

λ

2

∫
�

(U − Uo)2du

⎤
⎦ .

(11)

To solve the above problem, the Euler-Lagrange differential
equation is used as a necessary condition, and the update
process is given by

Ut = div(
∇U

|∇U| ) − λ(U − Uo)

=
∂

∂x

Ux√
U2

x + U2
y

+
∂

∂y

Uy√
U2

x + U2
y

− λ(U − Uo)

(12)

where λ is the Lagrangian multiplier, which is iteratively
updated via

λ =
1

σ2

∫
�

div(
∇U

|∇U| ) (U − Uo) dU. (13)

2) Film Grain Denoising With TV Minimization: It is
worthwhile to point out that the conventional TV-based denois-
ing algorithm is not enough since it does not take the properties
of film grain noise into account. Our main contribution in
this paper is to exploit the distinctive properties of film grain
and incorporate them as a constraint in the denoising process.
Specifically, Properties 2, 3 and 5 can be used in a single
channel input image, i.e., the gray (or luminance) channel.
With assuming that film grain noise has Gaussian distribution
by Property 5, we can find a coloring matrix P to estimate
the spatial correlation of noise among neighborhood pixels by
Properties 2 and 3, such that

U − Uo = P w (14)

where P is a linear transform and w is white Gaussian noise,
so that the spectrum of Pw matches with that of the extracted
noise. Then, (11) can be rewritten as

Û = arg min
U

[
F (U) +

λ

2
(U − Uo)T R−1(U − Uo)

]
(15)

where R = PPT is the autocorrelation matrix of (U − Uo).
This whitening process helps estimate the noise behavior in
the spatial domain, and it eventually leads to better noise
suppression. To reduce the computational complexity, we
approximate it by computing only 9 × 9 local blocks in the
implementation.

If the input image is a color image of RGB three chan-
nels, we can use Property 4, i.e., the crosscolor correlation)
furthermore to improve the noise estimation. We first find the
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Fig. 10. Comparison of signal dependency between extracted and synthesized noise for the Rolling tomatoes sequence. (a) Green. (b) Red. (c) Blue.

Fig. 11. Comparison of the square root of PSD between extracted and synthesized noise for the Rolling tomatoes sequence. (a) Green. (b) Red. (c) Blue.

G-channel noise data as the reference, and obtain R- and B-
channel noise data based on the given extracted noise infor-
mation of G-channel. For this case, we have two constraints at
the same time so that the minimization process for B-channel
can be modified as

ÛB = arg min
UB

[F (UB) + λ1(UB − UBo)T R−1
B (UB − UBo)

+ λ2(UG − UGo)T R−1
GB(UB − UBo)] (16)

where λ1 and λ2 are updated similarly to that in (13).

IV. Film Grain Noise Modeling and Synthesis

Film grain noise modeling and synthesis are discussed
in this section. For noise modeling, a few parameters are
determined to represent the extracted noise and transmitted
to the noise synthesizer at the decoder.

A. AR Noise Model

There is no commonly agreed objective metric to measure
the closeness of the synthesized and the real film grain noise.
Thus, this is often done by visual inspection. As a result,
film grain noise modeling is a challenging problem. There
are several factors to be considered, including the spatial
power spectrum density, the noise probability density, and the
crosscolor correlation as mentioned in Section I.

TABLE II

Comparison of the Crosscolor Correlation

Rolling tomatoes Playing cards

Extracted Synthesized Extracted Synthesized
G-R 0.85 0.92 0.21 0.25
G-B 0.95 0.97 0.80 1.23

In this paper, for film grain noise modeling, we consider
the following AR model:

N(i, j, c) =
∑

i′

∑
j′

∑
c′

ai′j′c′ · N(i − i′, j − j′, c − c′) (17)

which is a 3-D AR model with the 2-D spatial correlation
and the 1-D spectral correlation. Please note that the AR
model is an IIR filter, which in general has a better frequency
representation than a FIR filter. The power spectrum of syn-
thesized noise can be controlled by the frequency response
of the IIR filter with a white input signal. Furthermore, the
AR model as given in (17) includes both the spatial and the
crosscolor correlation naturally. Generally speaking, the model
can capture the desired properties of film grain noise well.

A set of AR parameters is obtained by following the Yule–
Walker AR estimation method from the extracted noise at the
encoder. Since film grain noise has the same characteristics
over a sequence of image frames, a set of AR parameters
is sufficient for the noise synthesis purpose. Besides, we
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TABLE III

Quality Rating on a 1−5 Scale

Rating Impairment Quality

5 Imperceptible Excellent
4 Perceptible, not annoying Good
3 Slightly annoying Fair
2 Annoying Poor
1 Very annoying Bad

only need a small number of coefficients for the AR model.
Empirically, we choose values of (i′, j′, c′) to be

(1, 0, 0), (0, 1, 0), (1, 1, 0), (−1, 1, 0), (2, 0, 0),

(0, 2, 0), (0, 0, 1).

This choice results in a causal filter in the raster scanning order
so that it is convenient for noise synthesis and the overhead
of coding these parameters is very low.

B. Signal-Dependent Noise Synthesis

The synthesized noise by the given AR model has no
information about the background signal. Since film grain
noise has the signal dependency property, we should modify
the synthesized noise according to the decoded signal. Ba-
sically, scaling factors are obtained from the extracted noise
like AR parameters, and both are transmitted to the decoder
as the side information. Then, we can scale synthesized
noise based on its background signal intensity according to
the transmitted scaling factors. However, it is not easy to
preserve the crosscolor correlation by treating the signal-
dependent noise directly. That is, if we scale the synthe-
sized noise according to the background signal, it is likely
to modify the crosscolor correlation as well. To preserve
the crosscolor correlation as much as possible in generating
signal-dependent noise, the scaled excitation as shown Fig. 5
is adopted. That is, instead of scaling the synthesized film
grain noise, we scale the excitation white signal before noise
synthesis.

Film grain synthesis using the AR model was first proposed
by Gomila et al. [3], [4] and standardized in AVC [2]. How-
ever, they did not fully utilize specific film grain properties in
the AR model, e.g., the signal-dependent property as we do
here. Moreover, they showed the advantage of the AR model
only using a subjective approach. In contrast, we will show
statistical properties of synthesized film grain noise in this
paper (see Section V-B).

C. Output Image Construction

The noise synthesizer generates film grain noise that has
properties similar to the extracted one according to the proce-
dures described above. Then, the final output image is obtained
by

Uout(i, j) = Udecod(i, j) + Ngen(i, j) (18)

where Udecod is the decoded image and Ngen is film grain
noise generated by the AR model. Since the signal-dependent

Fig. 12. Comparison of subjective test results, where A denotes the coding
result using the conventional H.264/AVC reference codes and B denotes the
coding result using the proposed method.

Fig. 13. Coding bit-rate savings comparison of different algorithms as a
function of quantization parameters (QP). (a) Rolling tomatoes, smooth
regions: 72.5%. (b) Playing cards, smooth regions: 19.5%. (c) Old town cross,
smooth regions: 37.8%.
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Fig. 14. Close-up of the original images (left) and the resynthesized images (right). (a) Rolling tomatoes. (b) Playing cards.

property has been considered in noise synthesis, a simple
summation of the decoded image and synthesized noise is
adopted in (18).

It is worthwhile to mention that, since the film grain noise of
edge areas is not removed at the encoder, to add synthesized
noise to the edge areas of the decoded image as shown in
(18) could cause some problem. However, we observe that
noise in edge regions is much less visible than noise in
nonedge regions due to the masking effect so that this issue is
negligible. Besides, the decoded image is a reconstruction of
the smoothed version of the original image. Regardless of the
compression method used, film grain noise in edge regions is
actually suppressed during the encoding process.

V. Experimental Results

The film grain noise removal and synthesis processes can be
integrated with any typical coding method. We use the JM(ver
11) software [33] of the H.264/AVC reference as the codec
module in the experiment. We choose two RGB formatted
color and one grey high-definition (HD) video sequences as
test sequences. Each sequence has 30 frames, and the first
frames of sequences are shown in Fig. 6. Each sequence has
different film grain noise characteristics and different type of
contents. For example, Rolling tomatoes sequence has lots
of smooth regions, Playing cards sequence mostly consists

of textured region, and Old town cross has both smoothed
sky and textured buildings so that they provide a set of good
test examples to evaluate our proposed scheme. For more
experimental results and visual performance evaluation, please
visit http://sites.google.com/site/btoh77/FGN.

A. Smooth Region Detection and Denoising

Fig. 7 shows edge maps of the first frame of sequences,
where the results of edges extraction and fine texture extraction
with the final edge map are given. They demonstrate that our
algorithm can detect most of edge regions and fine texture
regions successfully. Fig. 8 shows the close-up view of the
denoised first frame of each sequence. It is worthwhile to
mention that the proposed denoising algorithm is not sensitive
to video contents or algorithm parameterization, since the TV
minimization method automatically finds and updates the λ

value, which is one of the main advantages as compared with
other regularization methods.

To demonstrate the superior performance of the proposed
denoising algorithm, we consider the power spectrum density
(PSD) of extracted film grain noise. That is, we use the
temporally extracted noise as the ground-truth and compare
it with: 1) Gaussian filtered noise; 2) spatio-temporal filtered
noise [11]; 3) noise extracted by the traditional TV algorithm
[32]; and 4) noise extracted by the proposed TV algorithm.
The squared-roots of PSD of noise extracted by different
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algorithms, where the 2-D power spectrum density is projected
to 1-D, are shown in Fig. 9. We see that the TV minimization
method outperforms the traditional smoothing filter and the
spatio-temporal filter.

The superiority of the proposed TV algorithm can be
stated below. First, the proposed TV method using spatial
correlation and crosscolor correlation detects film grain noise
more accurately, especially for low-frequency energy of noise.
Since most energy of film grain noise lies in the low-frequency
band as mentioned in Section III, the proposed TV method
works well. Second, the power of extracted noise using the
TV method is closest to the ground truth. To illustrate this
point, we compare the power of noise extracted by various
algorithms in Table I. To conclude, the proposed TV algorithm
can efficiently suppress film grain noise and improve the
coding gain, which will be discussed in Section V-C.

B. Film Grain Noise Synthesis

For synthesized noise evaluation, the conventional metrics
such as the MSE or PSNR value are not useful. Here,
we consider several criteria to evaluate the performance of
different synthesis methods based on unique properties of
film grain noise given in Section I. Out of the six properties,
temporal independency and Gaussian distribution are automat-
ically satisfied, since we use the independent and identically
distributed (i.i.d.) Gaussian noise as the excitation signal. In
the frequency domain, the power spectrum density determines
the visual appearance of noise. Since the signal with stronger
low-frequency components is more visible to human eyes
while film grain noise has higher low-frequency components,
it is important to resynthesize noise to have a similar power
spectrum density. Likewise, the spatial distribution of noise
plays an important role for human perception in the spatial
domain. In the RGB domain, the correlation between three
color channels should be considered in noise generation. Even
though pixels in the RGB domain have different values, the
same film grain noise is physically created at each pixel and
the crosscolor correlation should be preserved. In addition, the
background signal with a different intensity has different noise
power, which is also perceptually visible. All these criteria will
be considered and tested one by one in the following.

Among these criteria, the matching of crosscolor correlation
appears to be the most important one since it leads to intensity
compensation between color channels. Due to this reason,
we use the white signal scaling to preserve the crosscolor
correlation as mentioned in Section IV-C. The crosscolor
correlation values between the extract and synthesized noise
are compared in Table II. The signal dependency property is
compared in Fig. 10 while the power spectrum density of the
extracted and synthesized noise with the seven-coefficient AR
model as described in Section IV-A is compared in Fig. 11.
As shown in these two figures, their power spectrum density
plots are similar. We can make these curves closer to each
other using a higher order AR model or more complicated
model such as ARMA model at the cost of higher complexity.
Since the performance of a more complicated model is not
significantly better, the 7-coefficient AR model is accurate
enough as far as the power spectrum density is concerned.

Fig. 15. Distribution of film grain noise and its edge energy values in
a typical sub-band, where the LH sub-band is used as an example.
(a) Distribution of film grain noise in the LH subband. (b) Distribution of
edge energy values in the LH subband.

Finally, we also evaluate the results by subjective quality
testing method with Table III as proposed in [34]. Based on
the subjective quality rating, we selected 10 experts and 10
nonexperts, and asked them to compare the original video with
1) conventionally decoded video with QP = 24, and 2) output
video by the proposed framework, i.e., denoised, decoded with
QP = 24 and noise added sequence. We show the subjective
test results in Fig. 12, where each shaded bar and its middle
dotted line represent the 95% confidence interval and its mean
value, respectively.

C. Coding Gain Improvement

We show the bit-rate savings as a function of the quan-
tization parameter (QP) in Fig. 13 for different denoising
algorithms with similar output video quality. Here, we have
tested 30 frames (1sec) for each case with one intra-coded
(I) frame and 29 predicted coding (P) frames. In Fig. 13, we
also provide the portion of smooth regions, since the bit-rate
saving is directly affected by this portion. We see that the film
grain denoising algorithm significantly reduces the coding bit-
rate, especially for smaller QP values, and denoising with the
proposed TV minimization method demands the lowest bit-
rate for the same QP .
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Finally, we show parts of two image frames and their
corresponding resynthesized counterparts in Fig. 14 for
visual performance comparison, where resynthesized images
are obtained by adding the synthesized film grain noise to
decoded images with QP = 24. Since the whole image is
too big to reveal the advantage of the proposed algorithm,
we only show the close-up views that cover the homogenous
region (for the sequence of Rolling tomatoes) and the edge
region (for the sequence of Playing cards), respectively.

VI. Conclusion and Discussion

A novel approach to HD video coding based on film grain
noise extraction, modeling, resynthesis was presented. There
are several important contributions in our proposed scheme.
First, the edge-preserving denoising technique is used for
film grain noise extraction. The edge-detection filters and
the fine texture detection algorithm allowed us to separate
nonsmooth regions from smooth regions in an image. Second,
the denoising method based on the modified total variation
(TV) minimization method using specific film grain properties
was designed to suppress film grain noise efficiently without
distorting the original image. Third, noise characteristics were
extracted by temporal difference, and they can be used in the
denoising process. Last, a novel film grain noise synthesis
algorithm was obtained by using the AR model excited by
scaled white noise. It was shown that the coding gain is
much improved by encoding the denoised image sequence.
Furthermore, we show that the synthesized film grain noise
is subjectively satisfactory to human eyes and argue that it is
objectively similar to observed film grain noise in terms of its
statistical properties.

All time-consuming tasks are implemented at the encoder
in our proposed algorithm. Only simple noise synthesis and
addition is needed at the decoder. Thus, the additional com-
plexity required by consumer electronic devices is negligible.
Moreover, it demands only a small number of parameters per
frame or per GOP as the overhead. As a result, the proposed
film grain noise model can be easily added to the any current
video coding standards.

Appendix

To analyze and determine threshold values discussed in
Section III-B, we have to determine the distribution of film
grain noise first. It is observed that the distribution of film grain
noise is close to the Gaussian distribution. Furthermore, the
distribution of film grain noise in each sub-band is also close
to the Gaussian distribution, which is experimentally verified
in Fig. 15(a) for the LH sub-band. A similar observation
holds for other sub-bands. Note also that sub-bands LH and
HL are independent of each other, since film grain noise is
isotropic. For the following analysis, we assume that both LH

and HL sub-bands has the normal distribution with zero-mean
and standard deviation σ.

The distribution of the edge energy map of film grain noise
can be derived based on the above assumptions. By choosing
p = 2 in (4), EE represents the Euclidian distance of the
corresponding pixels in LH and HL sub-bands. It is known

that EE has the following Rayleigh distribution

P(EE � t) = 1 − e
− t2

2σ2 . (19)

This is experimentally verified in Fig. 15(b). Thanks to
the explicit distribution function, threshold value th can be
determined by setting variable r as

P(EE � th) = 1 − e
− th2

2σ2 = r,

th =
√

−2 log(1 − r) · σ. (20)

In the Rayleigh distribution, its mean is determined by σ,
i.e., m = σ

√
π/2. Thus, the threshold value can be finally

determined by (21). For example, if we want to include exactly
99% of grain noise (i.e., r = 0.99), the scaling coefficient c in
(6) should be set to 2.42 due to the following relationship:

th =
√

−2 log(1 − r) ·
√

2/π · m. (21)

As another option, we may use the median value instead
of the mean value since the median is proven to be more
robust with respect to outlier signals or noise. In the edge map
decision step, there must be false decision, which may lead
to undesired perturbation of the threshold value. Under such
a scenario, we may use the median to determine the threshold
value. Being similar to the previous case, the median is also
determined by σ, i.e., med = σ

√
log 4. Then, the threshold

value can be determined as

th =
√

−2 log(1 − r) ·
√

1/ log 4 · med. (22)

It is worthwhile to point out that the median-based algorithm
needs additional memory to store the signal distribution while
the mean-based method can be performed without additional
memory due to the dynamic updating process by specified
in (6).
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