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Abstract. The particle level set method (PLSM) and the lattice Boltzmann method (LBM) 
have been two major physics-based liquid simulation techniques used in computer graphics to 
generate splendid and dynamic visual effects. PLSM suffers from a high computational cost 
which arises from the global pressure correction step whereas LBM requires a large amount 
of memory to store distribution functions. In this work, we propose a hybrid lattice Boltzmann 
method (HLBM), which integrates PLSM and LBM, to visualize realistic liquid motion with 
emphasis on the behavior of the liquid-gas interface. HLBM first runs the LBM solver, com-
putes macroscopic velocities, and extrapolates the velocity field to the gas region. Subsequently, 
the level set function and particles are advected by the extrapolated velocity field, and advected 
particles are used to correct errors in the level set function based on PLSM. Finally, the den-
sity difference between LBM and PLSM solvers is added to the distribution functions to cor-
rect the errors of LBM. We test the method for the broken dam and the water drop simula-
tions. The results show that HLBM improves the quality of the fluid simulation without in-
creasing the number of grids. Compared to the simulation using LBM with a grid resolution 
of 350 ,  the mean of the geometrical distance from the ground truth is 21.70% and 13.02% less 
using HLBM with the same number of grids, for the water drop and the broken dam simulations, 
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respectively. The simulation results also show that HLBM offers more splashy and dynamic 
visual effects than LBM without increasing the grid size.  

Keywords: lattice Boltzmann method, hybrid lattice Boltzmann method, level set method, 
particle level set method, fluid/liquid simulation, physics-based fluid simulation. 

1  Introduction 

Realistic liquid simulation is important for providing splendid and dynamic visual effects in computer 
games and special effects in movies. The physics-based approach approximates the laws of phys-
ics by numerical algorithms and creates realistic and plausible motion of animated liquids automati-
cally. It is more accurate than non-physics-based approaches because it generates complete infor-
mation and has the ability to simulate realistic and ideal conditions [1]. It is also easy to incorpo-
rate control mechanisms such as user interaction with the physics-based approach. Thus, the phys-
ics-based approach has recently become the mainstream in liquid simulation.  

The level set method (LSM) [2] was used for liquid simulation based on the Navier-Stokes equa-
tions. Later, it was improved by adding particles to correct errors, and the resulting method was 
called the particle level set method (PLSM) [3]. PLSM is one of the most popular fluid simulation 
methods because of its realistic and smooth representation of liquids. However, it suffers from the 
high computational complexity of solving the Poisson equation needed in the global pressure correc-
tion step to keep the velocity field divergence free[4]. Another liquid-simulation method is the lattice 
Boltzmann method (LBM), which originated from lattice gas cellular automata [5]. LBM provides 
a first-order explicit discretization of the Boltzmann equation in a discrete phase-space. The simu-
lation region of LBM is divided into a Cartesian grid of cells, each of which only interacts with cells 
of its direct neighborhood. In contrast, PLSM demands interaction of all cells in the global pressure 
correction step. Generally speaking, LBM is simpler and faster than PLSM with two shortcomings: 
1) it demands more memory to store distribution functions, and 2) it has tight time step restrictions.  

In this paper, we propose a hybrid lattice Boltzmann method (HLBM) that integrates LBM and 
PLSM to visualize realistic liquid motion with emphasis on the behavior of the liquid-gas interface. 
HLBM enables faster liquid simulation compared to PLSM because the global pressure correction 
step is not required, and requires less memory space compared to LBM because HLBM improves 
the quality of the liquid simulation without increasing the grid size. Experimental results showed 
that HLBM improves the quality of the fluid simulation without increasing the number of grids. 
Specifically, we test HLBM for the broken dam and the water drop simulations.The results show 
that HLBM improves the quality of the fluid simulation without increasing the number of grids at 
the expense of the slightly higher computational cost. Compared with the simulation using LBM 
with a grid resolution of 350 , the mean of the geometrical distance from the ground truth has been 
decreased by 21.70% and 13.02% for the water drop and the broken dam simulations, respectively, 
using HLBM with the same number of grids. The simulation results also show that HLBM offers 
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more splashy and dynamic visual effects than LBM without increasing the grid size. As mentioned 
before, LBM demands a larger memory space to store distribution functions. Thus, it is not suitable 
for a high quality liquid simulation with large grid size. However, HLBM improves the quality of the 
liquid simulation without increasing the grid size at the expense of the slightly higher computational 
cost. Thus, HLBM is suitable for a high quality liquid simulation with less memory space than LBM.  

The rest of the paper is organized as follows. In Section 2, both LBM and PLSM are described 
along with their basic algorithm. The proposed HLBM is detailed in Section 3. Simulation results 
are presented in Section 4. Finally, concluding remarks are given in Section 5.  

2  Lattice Boltzmann and Particle Level Set Methods 

2.1  Lattice Boltzmann Method!

The Boltzmann equation [6] is a subject in statistical physics that describes the behavior of a gas 
on a microscopic scale. The Boltzmann equation with the Bhatnagar-Gross-Krook (BGK) collision 
approximation [7] can be written as 

1 ( )f f f g
t

ξ
λ

∂ + ⋅∇ = − − ,
∂

 (1)

where ( )f f tξ= , ,x  is the single-particle distribution function, ξ  is the microscopic velocity, λ  
is the relaxation time due to collision, and g is the Boltzmann-Maxwell distribution function. Dis-
cretizing time and phase space, Eq. (1) can be rewritten as 

( ) ( )
( ) ( )

eq
i i

i i i
f t f tf t t f t

τ
, − ,+ , + = , − ,x xx e x x! !  (2)

where t!  and x!  represent the time and the spatial step sizes, respectively. ( )eq
if t,x  is the equi-

librium distribution function used to represent a stationary state of the fluid. The rate of change 
toward equilibrium is 1 τ/ , the inverse of the relaxation time, and it is chosen to produce the de-
sired value of fluid viscosity. The equilibrium distribution function can be derived using the Tay-
lor expansion of the Maxwell distribution [8]. The Navier-Stokes equations can be derived from 
the Boltzmann equation by a multi-scale analysis called the Chapman-Enskog expansion when the 
Knudsen number is smaller than one [9,10].  

The basic algorithm of LBM consists of two steps: the streaming step and the collision step [11]. 
These are usually applied in association with no-slip boundary conditions in domain boundaries or 
obstacles. Also, the free surface boundary condition is adopted in the simulation of the two phase 
flow. LBM restricts the particle movement to a limited number of directions. A three dimensional 
model with 19 velocities, which is commonly denoted by D3Q19, will be used in this paper.  
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Fig. 1. Illustration of the streaming step and the collision step for a fluid cell proposed by Thürey[12] 

The D3Q19 model has 19 velocity vectors 1 19( )..e  with length 0 1( )e , length 1 2 7( )..e , and length 

8 192( )...e  Each velocity vector has its own floating point distribution function, if , which repre-
sents the fraction of particles moving with velocity ie . Thus, in the D3Q19 model, there are parti-
cles not moving at all 1( ),f  moving with speed 1 2 7( ),f .. and moving with speed 8 192( ).f ..  

During the streaming step, all distribution functions (DFs) are advected with their respective 
velocities. This results in a movement of the floating point value to the neighboring cells as shown 
in Fig. 1 from [12]. Formulated in terms of DFs, the streaming step can be written as  

( ) ( )i i if t t f x t∗ , + = − , ,x x e! !  (3)

where x!  is the size of a cell and t!  is the time step-size.  
The streaming step alone is not enough to simulate the behavior of an incompressible fluid, since it 

is governed by the on-going collision of particles with each other as well. The collision step accounts 
for this by weighting DFs of a cell with eq

if . The equilibrium DFs represent a stationary state of the 
fluid. They depend on the density and the velocity of the fluid, which are computed by the summa-
tion of all DFs in one cell from the incompressible model of [13] as 

andi i if fρ = , = .! !u e  (4)

The collision of molecules in a real fluid is approximated by linearly relaxing the DFs of a cell 
towards their equilibrium state. Thus, each if  is weighted with the corresponding eq

if  as 

( ) (1 ) ( ) eq
i if t t w f t t wf∗, + = − , + + ,x x! !  (5)

where w is a parameter that controls the viscosity of the fluid. Fig. 1 illustrates the streaming and 
collision steps for a fluid cell proposed by Th u"" rey[14]. Values computed by Eq. (5) are stored as 
DFs for time t t+! . Since each cell needs the DFs of its adjacent cells from the previous time step, 
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two arrays for DFs (i.e., the current and the last time steps) are usually used. Thus, LBM requires 
a large amount of memory to store those floating point DFs.  

To model the solid-liquid interface, we implement the no-slip boundary condition by applying 
the link bounce back rule that results in the placement of the boundary halfway between the fluid 
and obstacle cells [14]. If the neighboring cell at ( )it+x e!  is an obstacle cell during streaming, the 
DF from the inverse direction of the current cell is used. That is, we change Eq. (3) to 

( ) ( )i if t t f t∗ , + = , ,x x#!  (6)

where the subscript of i#  denotes the value for the inverse direction of a value with subscript i.  
Simulation of free surfaces demands a distinction between regions that contain fluid and re-

gions that contain only gas. This is done by marking cells that contain no fluid as empty in the flag 
field. As with obstacle cells, the DFs of these cells are completely ignored in the simulation. How-
ever, in contrast to boundary cells, the fluid might move into this empty area at some point in the 
simulation. To track the fluid motion, another cell type is introduced, which is called the interface 
cell. These cells form a closed layer between fluid and empty cells. Then, we can track mass ex-
change between the interface and gas cells. Furthermore, the mass of a cell, which is calculated for 
the next time step, is used to update the cell type [12,15].  

2.2  Level Set Method!

The level set (LS) is an implicit function to construct the surface between fluids, which has the 
characteristics of the signed distance function. The level set method (LSM) was introduced to the 
computer graphics community by Osher and Fedkiw [2]. LSM discretizes the Navier-Stokes equa-
tions (NSEs) and tracks interfaces during simulation. NSEs for incompressible fluids can be de-
scribed by 

0∇ ⋅ = ,u  (7)

and 

$
$

$
2 1( ) ,

diffusion forceadvection
pressure

p f
t

ν
ρ

∂ = − ⋅∇ + ∇ − ∇ +
∂
u u u u%&'&(  (8)

where u , p , ν  and ρ  represent the velocity, pressure, viscosity coefficient and density of flu-
ids, respectively, and f  is an external force, such as the gravitational force. Eq. (7) is called the 
continuity equation because the velocity field of incompressible fluids is divergence free. Eq. (8) is 
the momentum conservation equation consisting of four terms: advection, diffusion, pressure and 
force [16]. To make the velocity field divergence free, we have to solve the Poisson equation with 
the Neumann boundary condition over the entire computational domain [4]. The Poisson equation 
becomes a sparse linear system when spatially discretized, and it can be solved using the precondi-
tioned conjugate gradient method, which incurs a large computational cost.  
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The level set function, φ , evolves by an externally given velocity field, u , which is obtained 
by the numerical solution to the NSEs. The evolution equation of the level set function is called 
the level set equation, which can be written as 

0tφ φ+ ⋅∇ = .u  (9)

Eq. (9) can be spatially discretized using the 5th order accurate Hamilton-Jacobi weighted essen-
tially non-oscillatory (HJ-WENO) scheme [17] and temporally discretized using the 3rd  order total 
variation diminishing Runge-Kutta (TVD-RK) scheme as done in [3].  

Generally speaking, LSM enables a smooth surface representation because of the nature of the 
level set function. However, the volume of liquid decreases severely during simulation.  

2.3  Particle Level Set Method!

The particle level set method (PLSM) was proposed by Enright et al. [3] to overcome the volume 
loss problem of LSM. PLSM is a thickened front tracking algorithm that uses massless marker 
particles to assist LSM in tracking flow characteristics in under-resolved regions around the inter-
face. Particles are labeled by the corresponding level set values with the positive or the negative 
sign. Positive particles are located in the band near the interface which has positive level set func-
tion values. Negative particles are located in the band near the interface which has negative level 
set function values. Those particles work to correct errors of the level set functions by comparing 
the level set functions from escaped particles and grid points [3].  

To keep the level set function as a signed distance function in simulation, the fast marching 
method (FMM), which systemically advances the front in an upwind fashion, is used because of 
its simplicity and efficiency [18]. FMM is also used for velocity extrapolation, which extends the 
velocity to grid points around the interface, to avoid the introduction of any discontinuities in the 
speed close to the interface [19].  

3  Hybrid Lattice Boltzmann Method 

As explained in Section 2.2, liquid simulation using LSM enables smooth surface representation but 
it suffers from a huge computational cost because of the global pressure correction step to solve the 
Poisson equation for the entire computational domain. On the other hand, liquid simulation using 
LBM has an efficient basic algorithm and preserves mass as discussed in Section 2.1. However, it 
suffers from a small time step restriction and a high memory requirement [12]. In this section, we 
propose a hybrid algorithm that integrates LBM with PLSM for more realistic and faster liquid 
simulation. 

To combine LBM with PLSM, we first need to find the macroscopic velocity field to advect the 
level set function and particles. The macroscopic velocity of each cell can be calculated using 
Eq. (4) and the distance from the center of each cell to the fluid interface can be calculated using 
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the marching cube algorithm [20]. Thus, the level set function can be advected using the macro-
scopic velocity field. And the semi-Lagrangian advection scheme [16] is used for the advection 
method. However, the macroscopic velocities of a lattice cell can be calculated only for fluid and 
interface cells. In other words, the velocities of a gas cell are always zero using Eq. (4) because 
the distribution functions at x , ( )if x , are all zero. As the level set functions have to be defined in 
both the gas and fluid regions, velocities from the fluid have to be extrapolated into the gas region 
with the fast marching method as described in Section 2.3. 

Table 1. Multi-resolution density calculation up to 3rd  level for the PLSM part. Here, we use F, IF, and G to 
denote fluid, interface, and gas cells, respectively, and ρ  is density of the current (sub) cell 

step 1  If current cell is F, 1ρ =   

 Else if current cell is G, 0ρ =   

 Else if current cell is IF, split the cell into 34  sub-cells  

 1cm and check whether the sub-cell is F, G, or, IF  

step 2  If current sub-cell is F, 31 4ρ = /   

 Else if current sub-cell is G, 0ρ =   

 Else if current sub-cell is IF, split the sub-cell into 34  sub-sub-cells  

 1cm and check whether the sub-sub-cell is F, G, or, IF  

step 3  If current sub-sub-cell is F, 61 4ρ = /   

 Else if current sub-sub-cell is G, 0ρ =   

 Else if current sub-sub-cell is IF, 61 2 1 4ρ = / × /   

step 4  Find the sum of ρ  for entire cell  

 

 

Fig. 2. Multi-resolution density calculation up to 3rd  level, where the left figure shows the original profile of 
cells and the right figure shows the multi-resolution density calculation. Symbols F, IF, and G denote 
fluid, interface, and gas cells, respectively 
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The hybrid lattice Boltzmann method (HLBM) is described below. 

– Step 1: Run the LBM solver, where the streaming and the collision steps are performed using 
Eq. (3) and Eq. (5), respectively. The obstacle and free surface boundary conditions are also ap-
plied, and the distribution functions of the next time step, ( )if t t, + ∆x , for each lattice are cal-
culated.  

– Step 2: Calculate Macroscopic velocities for the current time step, ( )t,u x , using Eq. (4).  
– Step 3: Extrapolate the velocity field, ( )t,u x , to the gas region because LBM does not have 

velocities for the gas region. This extrapolated velocity field, ( )ext t,u x , is required for the ad-
vection of PLSM because the semi-Lagrangian advection scheme needs velocities of the gas 
region along with velocities of the liquid region.  

– Step 4: Advect the level set function, ( )tφ ,x , and particles, ( )k tp , by the extrapolated velocity 
field, which is calculated in the previous step. The level set function are advected using the 
semi-Lagrangian advection scheme and particles are advected using the 3rd  order TVD-RK 
method.  

– Step 5: Correct errors of the level set function using advected particles in PLSM.  
– Step 6: Calculate two different density fields obtained from the LBM and the PLSM solvers. 

For the LBM part, the density of each cell, LBρ , can be calculated by the sum of distribution 
functions using Eq. (4). For the PLSM part, the density of each cell, PLSρ , is calculated using 
multi-resolution density calculation scheme up to 3rd  level as described in Table 1. Fig. 2 also 
shows 2D example of the density calculation method.  

– Step 7: Add the density difference between the LBM and the PLSM solvers to distribution 
functions to correct errors of LBM as 

 

Fig. 3. Overview of the hybrid lattice Boltzmann method, where the dotted box (green) represents the over-
view of LBM only. In next time step, ( )HLBM

if t t, + ∆x  is used as an input distribution function instead 
of ( )if t t, + ∆x  
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( ) ( )

( ) ( )HLBM PLS LB
i i

t t t t
f t t f t t

M
ρ ρ, + ∆ − , + ∆, + ∆ = , + ∆ + ,x x

x x  (10)

– where if  and HLBM
if  represent distribution functions from LBM and HLBM, respectively. In 

Eq. (10), LBρ  and PLSρ  are densities calculated from LBM and PLSM, respectively. Note that M 
is equal to 19 for the 3 19D Q  model. 
Fig. 3 shows a schematic overview of the HBLM algorithm, where ( )k tp  represents the particle 

with id k at time t. In the next time step, ( )HLBM
if t t, + ∆x  is used as an input distribution function 

instead of ( )if t t, + ∆x .  

4  Simulation Results 

For fluid animation, the Boltzmann equation needs to be solved numerically using a system 
called the fluid solver. We use the El’Beem solver, a free surface fluid solver based on LBM, for 
this purpose [21]. For the hybrid LBM (HLBM) solver, we added PLSM modules such as level set 
functions, particles, velocity extrapolation, and error correction to the El’Beem solver. After run-
ning the HLBM solver, we get binary obj files which can be imported to Blender [22], a free open 
source 3D content creation suite. Blender can modify material properties such as color, and render 
the scene using its internal rendering engine. Simulation results in this paper were obtained using a 
PC with a 2.2GHz CPU and 4GB RAM.. 

Fig. 4 shows 4 frames from the broken dam simulation using LBM (the top row) and HLBM 
(the bottom row). Both LBM and HLBM were run with a resolution of 350  with real world size 
0 1 m. , 50 frames/sec, and the no-slip boundary condition. For each frame using LBM, the fluid 
solver and surface generation took 20 seconds and the rendering of the 600 600×  image took 80 
seconds. For the simulation of HLBM, we used 64 particles for each cell with 6 xφ| |< !  as an 
initial condition. The fluid solver and surface generation took 24 seconds and the rendering of the 
600 600×  image took 85 seconds for each frame using the internal raytracing renderer in Blender. 
Thus, the simulation time using HLBM was about 20 % longer than LBM.  

Fig. 5 shows 4 frames from the water drop simulation using LBM (the top row) and HLBM (the 
bottom row). Both cases were run with a grid resolution of 350  with real world size 0 1 ,m.  50 frames/ 
sec, and under the no-slip boundary condition. LBM took about 22 seconds for the fluid solver and 
surface generation and 91 seconds to render each frame to the 600 600×  image. HBLM took 25 
seconds for the fluid solver and surface generation and rendering took 95 seconds per frame. The 
simulation time of HLBM is 13.6 % higher than LBM.. 

As we see from Figs. 4 and 5 however, the visual quality of the simulations is improved using 
HLBM at the expense of a little bit higher computational cost. In particular, HLBM enables a 
more splashy effect because the resolution of the fluid simulation is increased by adding particles. 
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Fig. 4. The broken dam simulation using LBM (the top row) and HLBM ( the bottom row) with a resolution 
of 350 .  The columns from the left to the right represent the 1 ,st  the 6 ,th  the 11 ,th  and the 16th  frames, 
respectively 

 

Fig. 5. The water drop simulation using LBM (the top row) and HLBM (the bottom row) with a resolution of 
350 .  The columns from the right to the left represent the 1 ,st  the 6 ,th  the 11 ,th  and the 16th  frames, 

respectively 

Fig. 6 shows the 11th  frame of the broken dam simulation using LBM (the upper left) and HLBM 
(the upper right), and the 17th  frame of the water drop simulation using LBM (the lower left) and 
HLBM (the lower right). For the broken dam simulation, we see a more splashy effect of HLBM 
at the right wall of the image. This splashy effect is also present at the water drop simulation, espe-
cially at the center of the image. Also, the liquid surface has finer detail with HLBM than that with 
LBM. 
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Fig. 6. The 11th  frame of the broken dam simulation using LBM (the upper left) and HLBM (the upper right) 
and the 17th  frame of the water drop simulation using LBM (the lower left) and HLBM (the lower right) 

To quantify the visual improvement of HLBM over LBM, we first obtained the ground truth for 
the broken dam and the water drop examples using LBM with a very high resolution grid (i.e., 

3150 ) and the same initial and boundary conditions. Then, we got simulation results using LBM 
and HLBM with grids of a lower resolution. They include: LBM with a resolution of 350 ,  LBM with 
a resolution of 360 , LBM with a resolution of 364 , and HLBM with a resolution of 350 .  Finally, we 
used MeshDev [23] to compare the geometric distances between the computed results and their ground 
truth values.  

The mean and the variance of the geometrical distances are given in Table 2 and Table 3, re-
spectively. Based on the data in Table 2, we plot the mean of the geometrical error as a function of 
the frame number in Figs. 7 for the broken dam and water drop cases, respectively. We have the 
following observations.  
– For the water drop case, the geometrical distance is significantly larger at the 16th  frame com-

pared to other frames since this is a very splashy frame. Similarly, for the broken dam case, the 
31st  frame is a splashy frame and it also has a larger geometrical distance than other frames. Thus, 
we conclude that the error becomes larger for splashier frames.  
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– For the broken dam case, the mean error of HLBM with a grid resolution of 350  is 13.02% lower 
than that of LBM with a grid resolution of 350 ,  and 0.96% lower than that of LBM with a grid 
resolution of 360 .  HLBM with a resolution of 350  performs almost the same as LBM with a 
resolution of 360 .  

– For the water drop case, the mean error of HLBM with a resolution of 350  is 21.70% lower than 
that of LBM with a resolution of 350 ,  but 6.95% higher than that of LBM with a grid resolution 
of 360 .  
One reason for the performance difference between the broken dam and the water drop cases 

could be that the water drop case has a splashier effect than the broken dam case, which lowers the 
accuracy of the calculation of the mean error using MeshDev. 

Table. 2. The mean of the geometrical distance to the ground truth, where results were obtained using LBM 
with a grid resolution of 350 , LBM with a grid resolution of 360 , LBM with a grid resolution of 

364 , and HLBM with a grid resolution of 350  and geometrical distances were calculated for every 
fifth frame 

frame number 1 6 11 16 21 26 31 36 41 

broken dam LBM 350   1.3905 1.3983 1.3958 1.3853 1.8460 1.8010 1.8129 1.5937  1.3257  

broken dam LBM 360   0.8951 0.9615 1.3301 1.2225 1.5318 1.5781 1.8747 1.4580  1.3989  

broken dam LBM 364   0.8075 0.8977 1.1926 1.0811 1.4502 1.5414 1.6588 1.5370  1.2923  

broken dam HLBM 350   1.0595 1.0957 1.1883 1.1699 1.5155 1.5584 1.7826 1.5315  1.2318 

water drop LBM 350   1.9095 1.9687 1.8346 2.0708 1.8280 1.9787 1.9620 1.9264  1.9271 

water drop LBM 360   1.2617 1.4168 1.3258 1.7971 1.4298 1.4253 1.3824 1.3462  1.3581 

water drop LBM 364   1.1299 1.1837 1.0890 1.3264 1.3137 1.2559 1.2067 1.1423  1.1450 

water drop HLBM 350   1.4388 1.5026 1.3983 1.9262 1.4577 1.4862 1.4888 1.4507  1.4789 

Table 3. The variance of the geometrical distance to the ground truth, where results were obtained using LBM 
with a resolution of 350 ,  LBM with a resolution of 360 ,  LBM with a resolution of 364 ,  and HLBM 
with a resolution of 350 ,  and geometrical distances are calculated for every fifth frame 

frame number 1 6 11 16 21 26 31 36 41 

broken dam LBM 350   0.8071 1.0939 0.9880 1.0442 1.8604 1.9892 2.3704 1.9391 1.0136  

broken dam LBM 360   0.3840 0.5090 1.0040 0.8678 1.3458 1.8347 3.6313 1.6073 1.2040  

broken dam LBM 364   0.2716 0.4542 1.2410 0.6734 1.4046 1.8883 2.9675 2.2410 1.1349  

broken dam HLBM 350   0.4892 0.6729 0.9241 0.8014 1.4740 1.6775 3.2785 1.9424 0.9815  

water drop LBM 350   1.5986 1.7722 1.6713 2.7791 1.4224 1.8309 1.8254 1.8262 1.8622  

water drop LBM 360   0.8145 0.8276 0.9576 8.4270 1.3640 1.1492 0.9811 1.0047 1.0170  

water drop LBM 364   0.5123 0.5578 0.5955 1.9227 2.8787 1.4572 0.9623 0.7333 0.7101  

water drop HLBM 350   0.9064 1.0187 0.9350 9.0859 1.9982 1.0485 1.0499 1.0188 1.0830  
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As for the computational complexity, the simulation time of LBM with a grid resolution of 360  
demands 1.7 times more simulation time than LBM with a grid resolution of 350 .  On the other hand, 
HLBM with a grid resolution of 350  takes about 1.2 times more simulation time than LBM with a 
grid resolution of 350 .  Thus, the proposed HLBM improves the quality of the simulation without 
increasing the computational cost much. 

 

Fig. 7. The mean of the geometrical error as a function of the frame number for LBM with a grid resolution of 
350  (the red line), LBM with a grid resolution of 360  (the green line), LBM with a grid resolution of 364  

(the blue line), and HLBM with a grid resolution of 350  (the black line) 

5  Conclusion 

The PLSM requires a high computational cost to solve the Poisson equation from the global pres-
sure correction step. Although LBM is simpler and faster than PLSM, it demands a larger amount 
of memory. In this work, we integrated LBM and PLSM and derived a new method, called HLBM, 
to overcome these difficulties. It was shown by experimental results that HLBM can offer a splashy 
and dynamic visual effect with the aid of PLSM. Furthermore, it can improve the quality of the fluid 
simulation of LBM without increasing the grid size.  
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