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Codeword Design for
Ultra-Wideband (UWB) Precoding

Yu-Hao Chang, Shang-Ho Tsai, Xiaoli Yu, and C.-C. Jay Kuo

Abstract—A precoding technique applied to symbols trans-
mitted in an ultra-wideband (UWB) system can concentrate the
signal power at the receiver for a higher data detection rate. The
codeword design problem for optimal UWB precoding is investi-
gated in this work. After the problem formulation, we examine
its solution in the full-rank and the reduced-rank subspaces to
obtain different tradeoffs between the detection performance and
the amount of feedback messages. Furthermore, we propose two
subspace selection schemes, each of which corresponds to a code
design method. The resultant optimal codewords improve the
performance of previous work significantly at the expense of
a slightly increased amount of feedback messages. Finally, the
performance of a precoded UWB system with various codewords
is compared via computer simulation.

Index Terms—Ultra-wideband, UWB, precoding, time-reversal
prefilter, TRP, pre-Rake, channel phase precoding, CPP.

I. INTRODUCTION

THERE has been growing interest in applying the time-
reversal prefiltering (TRP) to the ultra-wideband (UWB)

communication system [1], [2], which is also known as pre-
RAKE diversity combining. The TRP transmitter prefilters
the transmit data with the time-reversed order of the channel
impulse response (CIR) so that the received signal power
is well concentrated at the receiver. As compared with the
conventional UWB system that employs tens or even hundreds
of RAKE fingers at the receiver [3], the number of RAKE
fingers required for symbol decoding is greatly reduced in
TRP-UWB so that a low-cost UWB receiver becomes feasible.

The TRP-UWB system demands the channel information
at the transmitter. It is however challenging to send back the
entire channel information from the receiver to the transmitter
due to the very large number of channel taps in an UWB
channel [3]. A novel UWB transceiver system, called the
channel-phase-precoded (CPP) UWB, was proposed in [4]
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to alleviate this problem. The CPP-UWB transmitter encodes
the data symbol with the reversed binary channel phase that
takes values of +1 or −1. Consequently, each antipodal phase
information of carrierless UWB channel taps is represented by
one bit so that the amount of feedback channel information is
significantly reduced. The use of the reversed phase codeword
leads to concentration of received signal power since all
channel taps are coherently combined.

By exploiting the concentrated power, CPP-UWB can
achieve a higher data rate by shortening the symbol interval
of the transmit data while maintaining a tolerable intersymbol
interference (ISI) level. Furthermore, it is possible to improve
the system performance by selecting the length of the binary
codeword to maximize the output signal-to-interference ratio
(SIR). A fast search algorithm to determine the optimal
codeword length was presented in [4]. The CPP-UWB system
with codeword length optimization (CPP-UWB/CLO) can
reduce the feedback amount furthermore since the optimal
code length is typcially less than the CIR length. CPP-UWB
is ideal for the case where the feedback channel capacity is
scarce.

A general precoding framework for UWB systems, where
the codeword can take any real value (which will be repre-
sented by 𝑚-bit data in practice), is considered in this work.
The purpose of using multiple bits for each codeword element
(rather than 1 bit in CPP-UWB) is to achieve a higher data
detection rate at the expense of slightly higher communication
and computational costs. We show that, by sending back a
codeword with a few taps, the resultant precoded UWB system
can achieve an excellent trade-off between performance and
complexity in comparison with partial pre-RAKE (PPR) UWB
[5] and CPP-UWB. In this context, the receiver, e.g., a
mobile station (MS), delivers the estimated codeword to the
transmitter, e.g., an access point (AP), without any precoding
in the feedback channel. The AP can employ a complicated
receiver structure, such as a Rake receiver, to combine signals
from different paths to decode the transmitted codeword. Since
the AP is able to perform the computational task, there is no
extra cost demanded at the transceiver.

After the problem formulation, we first derive the codeword
for a precoded UWB system that maximizes the output signal
power or minimizes the mean square errors (MSE) at the
decoder using the channel information. When we search the
solution in the full codeword space, the associated compu-
tational complexity and feedback overhead are higher. To
reduce these costs, we further explore a subspace approach
[6], [7] and develop a reduced-rank precoding technique.
That is, we search the optimal codeword from a suitably
projected subspace. The complexity and the feedback overhead
can be significantly reduced by the subspace approach. In
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Fig. 1. The block diagram of the proposed UWB system with precoding.

general, the subspace technique demands to send back the
basis vectors from the receiver to the transmitter for codeword
reconstruction, which could be expensive. Here, we show that,
when a proper basis set is used, the receiver only has to
send the channel phase information back to the transmitter for
codeword reconstruction. Thus, the additional communication
burden is very low, which makes the reduced-rank precoding
approach attractive. It is demonstrated by computer simulation
that the reduced-rank codeword design provides an excellent
tradeoff of a high data detection rate and a low communication
overhead.

It is worthwhile to mention that our goal is to simplify
the decoding complexity of the UWB receiver by precoding.
Since only one sample per transmit bit is exploited at the
receiver for symbol decoding, better system performance can
be achieved if more received samples are combined at the
receiver. However, such a scheme would demand a more
complicated receiver architecture, such as a Rake receiver with
multiple fingers. In addition, having more Rake fingers may
only improve the system performance by a small margin since
it is shown later that almost 78% of the total channel power
is concentrated at the peak by the rank-1 codeword.

The rest of this work is organized as follows. The system
model is presented in Sec. II. The full-rank and the reduced-
rank codeword design problems are examined in Sec. III and
Sec. IV, respectively. The issue of basis selection is discussed
in Sec. V. Simulation results are shown in Sec. VI. Finally,
concluding remarks are given in Sec. VII.

II. SYSTEM MODEL

A carrierless tap-delay-line (TDL) channel model in [8] is
adopted here, which can be written as

ℎ(𝑡) =

𝐿−1∑
𝑖=0

ℎ𝑖𝛿(𝑡− 𝑖Δ) =
𝐿−1∑
𝑖=0

𝑝𝑖𝛼𝑖𝛿(𝑡− 𝑖Δ), (1)

where ℎ𝑖 = 𝑝𝑖𝛼𝑖, 𝐿 is the total number of resolved signal
paths, 𝛿(𝑥) is the Dirac delta function of 𝑥, Δ is
the multipath resolution that is chosen to be the time spread
of one pulse waveform (i.e., the signal pulse width), 𝑝𝑖 ∈
{+1,−1} 1 with equal probability is the 𝑖th channel phase and
𝛼𝑖 is the corresponding amplitude component. Parameter 𝛼𝑖

is modelled as a Rayleigh random variable whose probability
density function (PDF) is 𝑓𝛼𝑖(𝑥) =

𝑥
𝜎2
𝑖
𝑒−𝑥2/2𝜎2

𝑖 . In addition,
the average power of ℎ𝑖 decreases exponentially with respect

1The phase of a signal, 𝑥, is typically defined in complex baseband as
arctan{Im(𝑥)/Re(𝑥)}. Here, we consider the real baseband signal and view
the sign of the signal as its phase information. Thus, the proposed system is
restricted to the baseband system.

to its index 𝑖, i.e., 𝐸{𝛼2
𝑖 } = 2𝜎2𝑖 = Ω𝛾𝑖, where 𝐸{𝑥} is

the expected value of random variable 𝑥, Ω is the power
of the first tap and 𝛾 = 𝑒−Δ/Γ, and where Γ is a decay
time constant. Four different Γ values that correspond to four
suggested UWB channel models; namely, CM 1∼CM 4 in
[9], were given in [8]. In the current context, it is assumed
that the channel coherent time is long enough so that the
channel remains unchanged during the transmission of one
package of data symbols. It is worthwhile to point out that
the equal-distance TDL channel model adopted is suitable for
the indoor environment, where the multipath components are
dense and the inter-arrival time is small. Thus, we can treat all
propagation paths within a regular time grid as one effective
channel tap [10], [11].

The block diagram of the precoded UWB system is shown
in Fig.1. The 𝑖th antipodal data symbol 𝑏(𝑖) with power 𝑃 , i.e.,
𝐸{𝑏(𝑖)2} = 𝑃 , is encoded by codeword c = [𝑐0, ⋅ ⋅ ⋅ , 𝑐𝐿−1]

𝑇

and then modulated by pulse waveform 𝑤𝑠(𝑡) of unit power.
Consequently, the transmit signal is of the following form

𝑥𝑠(𝑡) =
∞∑

𝑖=−∞
𝑏(𝑖)

𝐿−1∑
𝑗=0

𝑐𝑗𝑤𝑠(𝑡− 𝑗Δ− 𝑖𝑇𝑠), (2)

where 𝑇𝑠 = 𝑀Δ is the symbol interval which is assumed to
be an integer multiple of the pulse width. Note that the main
difference between CPP-UWB in [4] and the system in Fig. 1
is the constraint imposed on codeword c = [𝑐0, ⋅ ⋅ ⋅ , 𝑐𝐿−1]

𝑇 .
Elements 𝑐𝑖, 0 ≤ 𝑖 ≤ 𝐿−1, take the value of+1 or −1 in CPP-
UWB but they can be any real number in the current system.
Thus, the current system provides a more general framework
than that in [4].

After the signal is transmitted through the channel, the
received signal 𝑦(𝑡) can be represented as

𝑦(𝑡) =

∞∑

𝑙=−∞
𝑏(𝑙)

𝐿−1∑

𝑗=0

𝐿−1∑

𝑘=0

𝑐𝑗ℎ𝑘𝑤𝑟(𝑡− 𝑙𝑇𝑠 − (𝑗 + 𝑘)Δ) + 𝑛(𝑡),

where 𝑤𝑟(𝑡) is the received pulse waveform of unit power
and 𝑛(𝑡) is a zero mean white Gaussian noise process whose
two-sided PSD is equal to 𝑁0/2. The receiver digitalizes
the received signal by matching the pulse waveform 𝑤𝑟(𝑡),
sampling the matched-filter output at the chip rate, and then
amplifying the resultant digital signal by a factor of 𝑔. The
amplifier is used to strike a balance between the channel gain
and noise power suppression [12]. As a result, the matrix
representation of the received signal can be written as

r(𝑖) = 𝑔Hc𝑏(𝑖) + 𝑔I(𝑖) + 𝑔n(𝑖), (3)

where H is the (2𝐿 − 1) × 𝐿 Toeplitz matrix whose first
column contains h = [ℎ0, ⋅ ⋅ ⋅ , ℎ𝐿−1]

𝑇 as the first 𝐿 ele-
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ments and zero afterwards, r(𝑖) = [𝑟0(𝑖), ⋅ ⋅ ⋅ , 𝑟2𝐿−2(𝑖)]
𝑇 ,

I(𝑖) = [𝐼0(𝑖), ⋅ ⋅ ⋅ , 𝐼2𝐿−2(𝑖)]
𝑇 is the interference vector for

transmit symbol 𝑏(𝑖), and n(𝑖) = [𝑛0(𝑖), ⋅ ⋅ ⋅ , 𝑛2𝐿−2(𝑖)]
𝑇 is

the AWGN vector for the same transmit symbol, where each
element of n(𝑖) is with zero mean and variance 𝑁0/2. Let
𝖍 = Hc = [𝔥0, ⋅ ⋅ ⋅ , 𝔥2𝐿−2]

𝑇 , where

𝔥𝑖 =

{ ∑𝑖
𝑗=0 𝑐𝑖−𝑗ℎ𝑗 0 ≤ 𝑖 ≤ 𝐿− 1∑2𝐿−2−𝑖
𝑗=0 𝑐𝐿−1−𝑗ℎ𝑖+𝑗−𝐿+1 𝐿 ≤ 𝑖 ≤ 2𝐿− 2 ,

(4)
we can represent 𝐼𝑙(𝑖) and 𝑟𝑙(𝑖) explicitly as

𝐼𝑙(𝑖) =

⌊𝑙/𝑀⌋∑
𝑗=1

𝔥𝑙−𝑗𝑀 𝑏(𝑖+𝑗)+

⌊(2𝐿−2−𝑙)/𝑀⌋∑
𝑗=1

𝔥𝑙+𝑗𝑀 𝑏(𝑖−𝑗) (5)

and 𝑟𝑙(𝑖) = 𝑔𝔥𝑙𝑏(𝑖) + 𝑔𝐼𝑙(𝑖) + 𝑔𝑛𝑙(𝑖), where ⌊𝑥⌋ is the
floor function of 𝑥. To demonstrate the performance gain due
to the increase of the feedback information as compared to
CPP-UWB, we adopt the same receiver structure as the CPP
receiver, i.e., a single tap filter, in this work. In other words, the
receiver directly applies the zero decision threshold to 𝑟𝐿−1(𝑖)
to decode the 𝑖th transmit symbol, i.e., 𝑏̂(𝑖) = sign{𝑟𝐿−1(𝑖)}.
Another advantage of the simple receiver structure is its low
implementational complexity, which is a desirable feature for
the UWB receiver.

It is worthwhile to point out that, when 𝑇𝑠 ≥ 𝐿Δ, 𝑟𝐿−1(𝑖)
contains no ISI. On the other hand, if 𝑇𝑠 < 𝐿Δ, 𝑟𝐿−1(𝑖)
contains signals from 𝑏(𝑖) as well as 𝑏(𝑖 − 𝐿1), ⋅ ⋅ ⋅ , 𝑏(𝑖 − 1)
and 𝑏(𝑖 + 1), ⋅ ⋅ ⋅ , 𝑏(𝑖 + 𝐿1) where 𝐿1 = ⌊(𝐿− 1)/𝑀⌋. As a
result, the system performance degrades due to the presence
of ISI at 𝑟𝐿−1(𝑖).

III. OPTIMAL CODEWORD DESIGN

Since only one received sample, i.e., 𝑟𝐿−1(𝑖), is used to
decode the 𝑖th transmit data, the receiver can reduce its
sampling rate by taking one sample in every 𝑇𝑠 interval in
a synchronized environment. Then, we can further simplify
(3) to be

𝑟𝐿−1(𝑖) = 𝑔c𝑇 H̄b(𝑖) + 𝑔𝑛𝐿−1(𝑖), (6)

where b(𝑖) = [𝑏(𝑖+ 𝐿1), ⋅ ⋅ ⋅ , 𝑏(𝑖), ⋅ ⋅ ⋅ , 𝑏(𝑖− 𝐿1)]
𝑇 and H̄ is

a 𝐿× (2𝐿1 + 1) matrix formed by transposing matrix H and
keeping the (𝐿 + 𝑘𝑀)th column in H𝑇 (−𝐿1 ≤ 𝑘 ≤ 𝐿1),
and removing all other irrelevant columns in H𝑇 . The signal
part of 𝑟𝐿−1(𝑖) is 𝑔c𝑇 h̄𝑏(𝑖), where h̄ = [ℎ𝐿−1, ⋅ ⋅ ⋅ , ℎ0]𝑇 is
the reversed channel vector.

If the CIR is known to the receiver, the receiver can compute
the optimal codeword according to some criterion and send
it back to the transmitter via a reliable feedback channel.
In the following, we consider two criteria; namely, signal
power maximization (SPM) and output mean-squared error
minimization (MMSE).

A. Codeword for Signal Power Maximization (SPM)

Based on a channel realization, we can construct codeword
c𝑠𝑝𝑚 that maximizes the signal power at 𝑟𝐿−1(𝑖) subject to
the unit-power constraint on c, i.e.,

c𝑠𝑝𝑚 = argmax
c

(
h̄𝑇 c𝑏(𝑖)

)2
s.t. c𝑇 c = 1. (7)

Since the receiver gain amplifies both the signal power and
the noise power at the same time, we simply set 𝑔 = 1 in (6).
The solution to (7) can be easily shown as

c𝑠𝑝𝑚 =
h̄

∣∣h̄∣∣ , (8)

where ∣∣x∣∣ is the 2-norm of vector x. Please note that c𝑠𝑝𝑚
is the unit-power reversed channel vector, i.e., the time-
reversal prefilter (TRP) [1] or pre-Rake [2], [5]. Although
c𝑠𝑝𝑚 maximizes the signal power at 𝑟𝐿−1(𝑖), it may not
suppress possible ISI efficiently when 𝑇𝑠 < 𝐿Δ. In this case,
a codeword that suppresses potential ISI while maintaining
high signal power concentration is desirable.

B. Codeword for Mean-Squared Error Minimization (MMSE)

Another codeword design scheme is to minimize the mean-
squared error (MSE) at the receiver output [12]. According
to (6), the optimal codeword, c𝑚𝑚𝑠𝑒, and the amplifier gain,
𝑔𝑚𝑚𝑠𝑒, are chosen to minimize the value of 𝜀 with unit-power
c; namely,

(c𝑚𝑚𝑠𝑒, 𝑔𝑚𝑚𝑠𝑒)

= argmin
c,𝑔
𝐸
{∣𝑏(𝑖)− 𝑔c𝑇 H̄b(𝑖)− 𝑔𝑛𝐿−1(𝑖)∣2

∣∣h}
s.t. c𝑇 c = 1. (9)

By applying the Lagrange multipliers to (9) [12], we get

c𝑚𝑚𝑠𝑒 =
1

𝑔𝑚𝑚𝑠𝑒

(
H̄H̄𝑇

+
𝑁0

2𝑃
I𝐿

)−1

h̄ (10)

and

𝑔𝑚𝑚𝑠𝑒 =

√
h̄𝑇
(

H̄H̄𝑇
+
𝑁0

2𝑃
I𝐿

)−2

h̄, (11)

where I𝐿 is the identity matrix of size 𝐿 × 𝐿. Although the
expression of the MMSE codeword in (10) is similar to that
in [12], we would like to emphasize that it is derived with
a different objective here. In [12], the optimal prefilter was
designed to suppress all off-peak signals. However, it may not
be able to minimize the output MSE in (10). In contrast, our
MMSE codeword is designed to minimize the output MSE.

It is worthwhile to emphasize that the codeword of SPM
or MMSE precoding is a function of the current channel
response. Therefore, both schemes are suitable when the
channel is quasi-stationary. If the channel response changes,
additional overhead for channel update is needed. In addi-
tion, both SPM and MMSE codeword schemes reduce the
multipath combining complexity of the conventional Rake
receiver at a different cost. That is, the SPM codeword scheme
demands additional feedback overhead to send the estimated
channel response to the transmitter while the MMSE scheme
needs extra computational power to calculate the MMSE
solution. However, the MMSE codeword is superior to the
SPM codeword from the interference suppression prospective
and the receiver can select the proper codeword based on the
complexity and performance trade-off.
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IV. REDUCED-RANK CODEWORD DESIGN

We can choose an 𝐿 × 𝑑 matrix, denoted by M𝑑, whose
columns are orthonormal to each other, and consider projec-
tions onto a subspace via

h̄(𝑑)
=M𝑇

𝑑 h̄ (12)

and
H̄(𝑑)

=M𝑇
𝑑 H̄, (13)

which are projections of h̄ and H̄ onto M𝑑, respectively.
Then, the reduced-rank codeword for c𝑠𝑝𝑚 and c𝑚𝑚𝑠𝑒 in the
subspace spanned by M𝑑 can be written as

ĉ(𝑑)𝑠𝑝𝑚 =
M𝑇

𝑑 h̄

∣∣M𝑇
𝑑 h̄∣∣ , (14)

and

ĉ(𝑑)𝑚𝑚𝑠𝑒 =
1

𝑔
(𝑑)
𝑚𝑚𝑠𝑒

(
H̄(𝑑)H̄(𝑑),𝑇

+
𝑁0

2𝑃
I𝑑

)−1

h̄(𝑑)
, (15)

respectively, where

𝑔(𝑑)𝑚𝑚𝑠𝑒 =

√
h̄(𝑑),𝑇

(
H̄(𝑑)H̄(𝑑),𝑇

+
𝑁0

2𝑃
I𝑑

)−2

h̄(𝑑)
, (16)

Since the size of matrix in (15) to be inverted is only 𝑑× 𝑑,
its computational cost is lower than that in (10).

Once codeword ĉ(𝑑)𝑠𝑝𝑚 or ĉ(𝑑)𝑚𝑚𝑠𝑒 is found, the receiver can
send it back to the transmitter with an overhead lower than
sending the full-rank code, i.e., c𝑠𝑝𝑚 or c𝑚𝑚𝑠𝑒. After receiving
𝑑 coefficients ĉ(𝑑)𝑠𝑝𝑚 or ĉ(𝑑)𝑚𝑚𝑠𝑒, the transmitter can synthesize

the 𝐿× 1 codeword c(𝑑)𝑠𝑝𝑚 or c(𝑑)𝑚𝑚𝑠𝑒 by

c(𝑑)𝑠𝑝𝑚 =M𝑑ĉ
(𝑑)
𝑠𝑝𝑚 and c(𝑑)𝑚𝑚𝑠𝑒 =M𝑑ĉ

(𝑑)
𝑚𝑚𝑠𝑒. (17)

It can be shown easily that the peak power 𝑃 (𝑑)
𝑠𝑝𝑚 generated

by c(𝑑)𝑠𝑝𝑚 and the output MSE achieved by c(𝑑)𝑚𝑚𝑠𝑒 are

𝑃 (𝑑)
𝑠𝑝𝑚 = 𝑃 ∣∣M𝑇

𝑑 h̄∣∣2 (18)

and

𝜀
(𝑑)
𝑚𝑖𝑛 = 𝑃

(
1− h̄(𝑑),𝑇

(
H̄(𝑑)H̄(𝑑),𝑇

+
𝑁0

2𝑃
I𝑑

)−1

h̄(𝑑)

)
.

(19)
Codeword c(𝑑)𝑠𝑝𝑚 and c(𝑑)𝑚𝑚𝑠𝑒 are truly optimal in terms of
maximizing the signal power and minimizing the output MSE,
respectively, for a subspace spanned by M𝑑. However, as
compared to the full-rank code, i.e., c𝑠𝑝𝑚 and c𝑚𝑚𝑠𝑒, they are
only suboptimal since some useful signal power is dropped by
subspace filtering. Furthermore, both the transmitter and the
receiver need the information of M𝑑. It is in general costly to
send back the basis information.

In the following, we will describe a simple method where
the transmitter and the receiver can compute basis vectors
for projection matrix M𝑑 individually with a small amount
of feedback information. The reversed channel vector h̄ can
be expressed as

h̄ = P̄ā, (20)

where P̄ = diag[𝑝𝐿−1, ⋅ ⋅ ⋅ , 𝑝0] is a diagonal matrix whose 𝑖th
diagonal element is the phase of the (𝐿− 𝑖)th path that takes
values of +1 or −1 and ā = [𝛼𝐿−1, ⋅ ⋅ ⋅ , 𝛼0]

𝑇 is the reversed

order of the amplitude vector. The autocorrelation of ā can be
found by

Rā = 𝐸{āā𝑇 } = Ω

⎡
⎢⎢⎢⎣
𝛽2(𝐿−1) 𝛼𝛽2𝐿−3 ⋅ ⋅ ⋅ 𝛼𝛽𝐿−1

𝛼𝛽2𝐿−3 𝛽2(𝐿−2) ⋅ ⋅ ⋅ 𝛼𝛽𝐿−2

...
...

. . .
...

𝛼𝛽𝐿−1 𝛼𝛽𝐿−2 ⋅ ⋅ ⋅ 1

⎤
⎥⎥⎥⎦ ,
(21)

where 𝛼 = 𝜋/4 and 𝛽 = 𝛾1/2 = 𝑒−Δ/2Γ. The eigen-
decomposition of Rā can be written as

Rā = EāΛāE𝑇
ā , (22)

where Λā = diga[𝜆0, ⋅ ⋅ ⋅ , 𝜆𝐿−1] is the diagonal matrix of 𝐿
eigenvalues with 𝜆0 ≥ ⋅ ⋅ ⋅ ≥ 𝜆𝐿−1, and Eā = [ẽ0, ⋅ ⋅ ⋅ , ẽ𝐿−1]
is a matrix whose columns are the corresponding eigenvectors.

A set of full-rank basis vectors can be written as

M = [e0, ⋅ ⋅ ⋅ , e𝐿−1] = P̄Eā = [P̄ẽ0, ⋅ ⋅ ⋅ , P̄ẽ𝐿−1], (23)

where e𝑚 = P̄ẽ𝑚, 0 ≤ 𝑚 ≤ 𝐿 − 1. The desired projection
matrix M𝑑 is formed by collecting 𝑑 columns from M, i.e.,
M𝑑 = [e𝑖0 , ⋅ ⋅ ⋅ , e𝑖𝑑−1

], where 0 ≤ 𝑖0 < ⋅ ⋅ ⋅ < 𝑖𝑑−1 ≤ 𝐿− 1.
It is worthwhile to comment that, although a simplified

channel model is used to illustrate the proposed reduced-rank
precoding scheme, our method can be applied to other channel
models as long as their second-order statistics is available
at both ends of the link. We will study the performance
of the proposed precoding scheme with a more practical
channel model as proposed in [13] in the simulation section.
In addition, since autocorrelation matrix Rā is a function of
Γ and Δ only, the eigen-decomposition of Rā in (22) can be
computed off-line. The selection of 𝑑 from 𝐿 basis vectors
will be detailed in the next section.

In this work, we do not attempt to quantify the value of 𝑑
as a function of 𝐿 since their relationship is a non-linear one.
Instead, their relationship will be determined by the simulation
shown in Sec. VI.

V. BASIS SELECTION ALGORITHMS

The choice of proper 𝑑 basis vectors, e𝑖0 , ⋅ ⋅ ⋅ , e𝑖𝑑−1
, for

reduced-rank codeword design plays an important role in the
system performance. In this section, we consider two selection
algorithms.

A. Basis Selection for SPM Codeword

The following proposition provides a basis selection algo-
rithm for the construction of the SPM codeword c(𝑑)𝑠𝑝𝑚 in a
𝑑-dimensional subspace.
Proposition 1: We can maximize the average signal power at
𝑟𝐿−1(𝑖) by constructing projection matrix M𝑑 using the first
𝑑 column vectors in M.
Proof: By substituting M𝑑 = P̄M̃𝑑 and M̃𝑑 = [ẽ𝑖0 , ⋅ ⋅ ⋅ , ẽ𝑖𝑑−1

]
into (18), we can further simplify (18) to

𝑃 (𝑑)
𝑠𝑝𝑚 = 𝑃

(
ā𝑇 M̃𝑑M̃

𝑇

𝑑 ā
)
. (24)
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The average value of 𝑃 (𝑑)
𝑠𝑝𝑚 can be calculated as

𝑃 (𝑑)
𝑠𝑝𝑚 = 𝐸{𝑃 (𝑑)

𝑠𝑝𝑚} = 𝐸
{
𝑃
(
ā𝑇 M̃𝑑M̃

𝑇

𝑑 ā
)}

= 𝑃 tr
{
𝐸{M̃𝑇

𝑑 āā𝑇 M̃𝑑}
}
= 𝑃𝑡𝑟

{
M̃

𝑇

𝑑 RāM̃𝑑

}

= 𝑃

𝑑−1∑
𝑚=0

𝜆𝑖𝑚 . (25)

Since 𝜆0 ≥ ⋅ ⋅ ⋅ ≥ 𝜆𝐿−1, we can select 𝑖𝑚 = 𝑚, 0 ≤ 𝑚 ≤
(𝑑− 1), to maximize 𝑃 (𝑑)

𝑠𝑝𝑚.
By Proposition 1, we obtain the optimal codeword c(𝑑)𝑠𝑝𝑚 in

the subspace spanned by the first 𝑑 columns of M. It is inter-
esting to compare the system performance with another basis
set. In the following proposition, we consider the standard
basis, which is formed by some 𝑑 columns from the 𝐿 × 𝐿
identity matrix.
Proposition 2: When the standard basis is used in subspace
filtering to compute c(𝑑)𝑠𝑝𝑚, the average signal power at 𝑟𝐿−1(𝑖)
is not greater than

𝑃

𝐿−1∑
𝑚=𝐿−𝑑

𝜇𝑚, (26)

where 𝜇𝑚 is the average power of the 𝑚th element in h̄, i.e.,
𝜇𝑚 = 𝐸{ℎ2𝐿−1−𝑚} = Ω𝛾𝐿−1−𝑚. In other words, (26) is the
upper bound for the average signal power at 𝑟𝐿−1(𝑖).
Proof: The proof is similar to that in Proposition 1 and thus
omitted here.

To compare the signal power accumulated by these two
basis sets in Proposition 3, we need the following lemma.
Lemma 1: The eigenvalues of Rā are bounded by{

𝜆0 > Ω
𝜆𝑖 < Ω𝛽2𝑖 for 1 ≤ 𝑖 ≤ (𝐿− 1). (27)

Proof: The proof is given in Appendix VIII-A.
Proposition 3: If the codeword dimension 𝑑 is less than 𝐿,
the basis set given in Proposition 1 generates a higher peak
power at 𝑟𝐿−1(𝑖) than the standard basis set.
Proof: The proof is given in Appendix VIII-B.

Actually, the first basis vector e0 in (23) contributes much
more signal power than all other basis vectors, which can be
characterized by the following proposition.
Proposition 4: The signal power generated by c(1)𝑠𝑝𝑚 accounts
for about 78% of the total power spread in the channel as Δ
becomes infinitesimal. Furthermore, we have ẽ0 ≈ b

∣∣b∣∣ , where
b is defined in (36).
Proof: The proof is given in Appendix VIII-C.

It is worthwhile to point out that Proposition 4 is derived
under the assumption that Δ is very small as compared with
the decay time constant Γ. As we vary the value of Γ to
represent a different channel mode [8] (e.g., a smaller value
of Γ for the line-of-sight (LOS) channel and a larger value
of Γ for the non-LOS channel), a great number of multipath
components can always be resolved and Proposition 4 still
holds.

Finally, we would like to point out the relationship between
the standard basis and the partial pre-RAKE (PPR) precoding
method in [5]. PPR reduces the feedback overhead of conven-
tional TRP since only the first 𝑑 channel taps in h are fed back
to form parital TRP. It is easy to see that, in order to achieve

the upper bound of the signal power in Proposition 2 using the
standard basis set, the last 𝑑 standard bases must be selected.
Consequently, the 𝑑-dimensional codeword c(𝑑)𝑠𝑝𝑚 becomes the
normalized version of [ℎ𝑑−1, ⋅ ⋅ ⋅ , ℎ0]𝑇 , which is exactly the
same as PPR. To distinguish SPM codewords constructed with
different basis sets (i.e., basis set M introduced in (23) and the
standard basis set), a SPM codeword using the last 𝑑 standard
basis vector is called the rank-𝑑 PPR codeword while a SPM
codeword using the 𝑑 leading bases in M is called the rank-𝑑
SPM codeword.

B. Basis Selection for MMSE Codeword

Next, we discuss basis selection to compute reduced-rank
MMSE codeword c(𝑑)𝑚𝑚𝑠𝑒. Generally speaking, the optimal 𝑑-
dimensional signal subspace that minimizes the output MSE
in M𝑑 as shown in (19) demands an exhaustive search
among all possible subspaces whose cardinality is equal to
𝐶𝐿

𝑑 = 𝐿!
𝑑!(𝐿−𝑑)! . Since 𝐿 is usually a large number, the

associated computational cost of exhaustive search is too
high to be practically useful. A suboptimal basis selection
algorithm, which utilizes a sequential greedy search algorithm
to determine M𝑑, is proposed below.

To acquire the first basis vector, we search all possible basis
vectors and pick up the one that provides the minimum MSE,
i.e.,

𝑖0 = argmin
𝑖∈ℐ0

𝑃

(
1− 𝑎(𝑖)

(
∣∣f(𝑖)∣∣2 + 𝑁0

2𝑃

)−1

𝑎(𝑖)

)
, (28)

where ℐ0 = {0, ⋅ ⋅ ⋅ , 𝐿 − 1}, 𝑎(𝑖) = e𝑇𝑖 h̄, and f(𝑖) = H̄𝑇 e𝑖.
Next, we assume that 𝑚 (𝑚 < 𝑑) basis vectors are already
selected and M𝑚 = [e𝑖0 , ⋅ ⋅ ⋅ , e𝑖𝑚−1 ]. Let e𝑖𝑚 denote the next
basis vector to add so that the corresponding basis set is
M𝑚+1 = [M𝑚, e𝑖𝑚 ]. The MSE in the (𝑚 + 1)-dimensional
subspace is shown in (29). By the block matrix inversion
formula [14], (29) can be further simplified as

𝜀
(𝑚+1)
𝑚𝑖𝑛 = 𝜀

(𝑚)
𝑚𝑖𝑛 − 𝑃𝐶𝑖𝑚𝜁𝑖𝑚 , (30)

where the values of 𝐶𝑖𝑚 and 𝜁𝑖𝑚 are shown on the next page.
It can be easily shown that both 𝐶𝑖𝑚 and 𝜁𝑖𝑚 are non-negative,
and 𝑃𝐶𝑖𝑚𝜁𝑖𝑚 can be viewed as the gain due to the addition
of one more basis vector e𝑖𝑚 . Hence, to minimize 𝜀(𝑚+1)

𝑚𝑖𝑛 ,
the (𝑚+1)th basis vector can be chosen from the remaining
index set such that the product of 𝐶𝑖𝑚 and 𝜁𝑖𝑚 is maximized,
i.e.,

𝑖𝑚 = argmax
𝑖∈ℐ𝑚

𝐶𝑖𝜁𝑖, (32)

where ℐ𝑚 is the remaining index set by eliminating selected
indices {𝑖0, ⋅ ⋅ ⋅ , 𝑖𝑚−1}. By following the above procedure, we
can get one more basis vector each time until the complete
set of 𝑑 basis vectors is selected.

For a very low SNR channel, we have the following special
case.
Proposition 5: When the channel SNR is asymptotically
low, we can minimize the average MSE by taking the first
𝑑 columns from M. In other words, we choose the same
subspace that maximizes the average signal power at the
output of the receiver.
Proof: As the channel SNR becomes asymptotically low, the
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𝜀
(𝑚+1)
𝑚𝑖𝑛 = 𝑃

(
1− (M𝑇

𝑚+1h̄
)𝑇 ((

M𝑇
𝑚+1H̄

)
(M𝑇

𝑚+1H̄)
𝑇 +

𝑁0

2𝑃
I𝑚+1

)−1 (
M𝑇

𝑚+1h̄
))

= 𝑃

⎛
⎝1−

[
h̄(𝑚)

𝑎(𝑖𝑚)

]𝑇 [
H̄(𝑚)H̄(𝑚),𝑇

+ 𝑁0

2𝑃 I𝑚 H̄(𝑚)f(𝑖𝑚)

f(𝑖𝑚),𝑇 H̄(𝑚),𝑇 ∣∣f(𝑖𝑚)∣∣2 + 𝑁0

2𝑃

]−1 [
h̄(𝑚)

𝑎(𝑖𝑚)

]⎞
⎠ (29)

𝐶𝑖𝑚 =

(
∣∣f(𝑖𝑚)∣∣2 + 𝑁0

2𝑃
− f(𝑖𝑚),𝑇 H̄(𝑚),𝑇

(
H̄(𝑚)H̄(𝑚),𝑇

+
𝑁0

2𝑃
I𝑚

)−1

H̄(𝑚)f(𝑖𝑚)

)−1

𝜁𝑖𝑚 =

(
f(𝑖𝑚),𝑇 H̄(𝑚),𝑇

(
H̄(𝑚)H̄(𝑚),𝑇

+ (𝑁0/2𝑃 )I𝑚
)−1

h̄(𝑚) − 𝑎(𝑖𝑚)

)2

(31)

MMSE codeword in (15) converges to the normalized version
of h̄𝑑 so that the associated MMSE value becomes

𝜀
(𝑑)
𝑚𝑖𝑛 ≃ 𝑃

(
1− 2𝑃

𝑁0
h̄𝑇
𝑑 h̄𝑑

)
= 𝑃 − 2𝑃

𝑁0

(
𝑃 h̄𝑇M𝑑M𝑇

𝑑 h̄
)

= 𝑃 − 2𝑃
𝑁0
𝑃 (𝑑)
𝑠𝑝𝑚, (33)

where 𝑃 (𝑑)
𝑠𝑝𝑚 as defined in (18) is the signal power at the output

of the receiver when c(𝑑)𝑠𝑝𝑚 is appied. By averaging 𝜀(𝑑)𝑚𝑖𝑛 over
all possible channel realizations, we get the averaged MSE as

𝜀
(𝑑)
𝑚𝑖𝑛 = 𝐸

{
𝜀
(𝑑)
𝑚𝑖𝑛

}
≃ 𝑃 − 2𝑃

𝑁0
𝑃 (𝑑)
𝑠𝑝𝑚. (34)

We know from Proposition 1 that the maximum value of
𝑃

(𝑑)
𝑠𝑝𝑚 occurs when the frist 𝑑 columns of M are employed for

subspace filtering in constructing the SPM codeword. Since
the signal power 𝑃 is fixed, the reduced-rank minimum MSE
must occur in the subspace formed by the first 𝑑 columns of
M.

VI. SIMULATION RESULTS

In this section, we compare the performance of a precoded
UWB system with different codewords obtained by different
design criteria. The channel parameters are chosen to be
Δ = 0.7 ns, Γ = 10 ns (CM 2) and 𝐿 = 84 and the average
channel power is normalized to unity by setting Ω = 1−𝛾

1−𝛾𝐿 .
Two different data rates (namely, 102 Mbps and 204 Mbps,
which corresponds to 𝑇𝑠 = 9.8 and 4.9 ns, respectively) are
used to test the performance of SPM and MMSE codewords
under different ISI levels. The tradeoff between the amount
of feedback messages and the number of quantization bits
for each codeword element is studied. Then, we test the
robustness of the proposed precoding schemes in the presence
of inaccurate channel estimates. Finally, we demonstrate how
to apply our precoding scheme to a more realistic channel
model proposed in [13]. All simulation results presented are
obtained as using 1000 independent channel realizations.
Example 1: Peak power comparison between PPR and
SPM codewords.

In Example 1, we verify Proposition 3 by comparing the
peak signal power using the SPM and the PPR codewords
[5], which are plotted as a function of the subspace rank
of codewords in Fig. 2. As shown in the figure, there is an

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rank of Codeword

N
or

m
al

iz
ed

 S
ig

na
l P

ow
er

 

 

PPR (sim)
PPR (theoretical)
SPM (sim)
SPM (theoretical)

Fig. 2. Comparison of the average peak power as a function of the subspace
dimension for reduced-rank PPR and SPM codewords.

excellent match of theoretical and simulation results for both
codewords. Furthermore, we see that the reduced-rank SPM
codeword with properly selected basis vectors as specified
in Proposition 1 always has a higher signal power than the
PPR codeword of the same rank. Both peaks increase as the
subspace rank goes up, and the performance gap becomes
smaller as the codeword rank goes higher. They eventual
converge to the same level as they reach the full rank. This can
be explained by Lemma 1 since the signal power is related to
the cumulative sum of eigenvalues. This example demonstrates
the clear advantage of SPM codewords of lower rank.
Example 2: BER performance comparison for PPR and
SPM codewords.

We compare the performance of a precoded UWB system
in terms of the bit error rate (BER) using SPM and PPR
codewords in Example 2. The symbol interval 𝑇𝑠 is chosen
to be 9.8 ns, which corresponds to a data rate of 102 Mbps,
and two codeword ranks, i.e. 1 and 5, are considered. We
show simulation results in Fig. 3, where the BER curves
of CPP-UBW/CLO, full-rank PPR (i.e., time-reversal prefilter
[1]) and full-rank MMSE [12] are also shown as performance
benchmarks.

We see a large performance gap between SPM and PPR at
the same rank, and the BER improvement due to the increase
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Fig. 3. The bit error rate as a function of the SNR value for different
reduced-rank PPR and SPM codewords with 𝑇𝑠 = 9.8 ns (or 102 Mbps).

of the codeword rank is smaller in SPM, which is consistent
with our observations in Example 1. When compared with
CPP-UWB/CLO, SPM improves the BER performance by
increasing the communication overhead slightly.
Example 3: BER performance comparison for SPM and
MMSE codewords.

In Example 3, we study the effect of higher data rates
on the performance of different codeword design schemes by
halving the symbol interval and keeping all other parameters
the same as before. We examine the BER performance of the
full-rank SPM (i.e., time-reversal prefilter [1]), which provides
the performance bound on all reduced-rank SPM codewords,
in Fig. 4. We also compare the BER curves of the reduced-
rank MMSE codeword with three different basis sets in the
same figure; namely, the optimal subspace and two subspaces
discussed in Subsections V-A and V-B. They are denoted by
Opt, A and B in the legend, respectively. Please note that the
performance curve of the optimal Rank-5 MMSE codeword
is ignored since the associated complexity for the signal basis
search is too high to be possible. Finally, the BER curves
of full-rank MMSE and CPP-UWB/CLO are also plotted for
performance comparison.

We see from Fig. 4 that the SPM codeword, which fills in
the performance gap between the CPP-UWB/CLO codeword
and the full-rank MMSE codeword in Example 2, cannot
maintain a satisfactory performance for a higher data rate due
to the presence of more ISI. By considering the ISI suppres-
sion effect in the codeword design, we can effectively reduce
the detection error probability if both the filter rank and signal
basis are carefully selected. In addition, the BER performance
of the reduced-rank MMSE codeword can be improved by
carefully choosing the basis by comparing curves with labels
“A” and “B”. It is worthwhile to point out that although the
subspace selection scheme developed in Subsection V-B is
suboptimal, it leads to almost the same decoding performance
as the Rank-3 MMSE codeword in the optimal subspace while
enjoying a much reduced computational complexity in basis
selection. Basis selection scheme A is meant for the SPM
codeword while basis selection scheme B is designed for the
MMSE codeword. In Examples 4 and 5, we will consider only
basis selection scheme B for the MMSE codeword.
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Fig. 4. The bit error rate as a function of the SNR value for different
reduced-rank PPR and SPM codewords with 𝑇𝑠 = 4.9 ns (or 204 Mbps),
where Opt, A and B in the legend denote the optimal signal subspace and
basis selection algorithms given in Sec. V-A and Sec. V-B, respectively.

Example 4: BER performance of quantized MMSE code-
words.

In Examples 1-3, the transmitter can get nearly perfect
codewords from the receiver in the sense that each element
of the codeword is represented by a sufficient number of
bits and the quantization error is small enough to ignore.
Since the feedback overhead is proportional to the number of
quantization bits, we study the quantization effect of codeword
elements in this example. Typically, we can assume that
the codeword resolution is still sufficiently high when being
calculated in the receiver. Then, each codeword element is
quantized to be sent back to the transmitter in order to reduce
the feedback overhead. In this example, we consider 2-bit,
3-bit, 4-bit quantization per element for rank-3 and rank-5
MMSE codewords. The dynamic range is set as {+1,−1},
where 1 is the normalized channel power. The BER curves
of these methods are shown in Fig. 5. The BER curves of
ideal reduced-rank codewords are also shown for comparison.
We see that reduced-rank codewords converge to the ideal
performance with 4-bit quantization in both cases. Thus,
the overhead of sending back quantized codewords from the
receiver to the transmitter for precoding is extremely low. They
are equal to 4 × 3 = 12 bits and 4 × 5 = 20 bits for rank-3
and rank-5, respectively.
Example 5: BER performance of codewords with imperfect
channel information.

The accuracy of the UWB channel estimates at the receiver
has an effect on the codeword calculation and, hence, the
overall performance of the precoded UWB system. It is
difficult to get accurate channel estimation especially when
there are a large number of unknown taps such as in the case of
UWB channels [15]. We have so far assumed the availability
of perfect channel estimation. In this example, we would like
to test the robustness of reduced-rank MMSE codewords with
imperfect channel estimation information. Please note that
this is a topic that cannot be well treated in this work. Our
preliminary study here is only of exploratory nature.

The channel information is estimated by averaging over
all channel responses from 𝑛 training pulses and the interval
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Fig. 5. The bit error rate as a function of the SNR value for reduced-rank
PPR and SPM codewords quantized by a different number of bits.
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Fig. 6. The bit error rate as a function of the SNR value for reduced-rank
MMSE codewords calculated based on the imperfect channel estimates.

between two consecutive pulses is properly selected to avoid
ISI. The accuracy of channel estimation can be improved
by increasing the number of training symbols. We consider
two different cases, namely, 𝑛 = 20 and 60, to highlight the
trade-off between performance and training overhead for the
different codeword rank2. Other system parameters remain the
same as those in the previous example. The simulation result
is drawn in Fig. 6. Again, the system performance, which
corresponds to the ideal channel information at the receiver,
is also plotted as the performance benchmark.

It is observed from Fig. 6 that a better BER performance
can be achieved by increasing the number of training symbols
for a fixed rank codeword. However, the performance of the
rank-3 code converges more quickly to the ideal case than
that of the rank-5 code. This implies that a higher rank code
provides a better performance gain than a lower rank code
at the cost of more accurate channel knowledge, i.e., more

2The UWB communication system focuses on the application in the indoor
channel, where the transmitter, receiver and the surrounding objects are almost
still. In this case, the channel coherent time is long enough to cover the time
duration required for training and channel information feedback.
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Fig. 7. The bit error rate as a function of the SNR value for different reduced-
rank PPR and SPM codewords under the channel model in [13], where A and
B in the legend denote basis selection algorithms given in Subsections V-A
and V-B, respectively.

training overhead in our case.
Example 6: BER performance comparison for SPM and
MMSE codewords with a realistic channel model.

In the last example, we show the application of the proposed
precoding scheme to a more realistic UWB channel model. A
statistical channel model proposed by Foerster et al. in [13]
is adopted here. The multipath resolution is fixed at 0.7 ns
and the symbol interval is set to 4.9 ns, which corresponds to
𝑀 = 7. In our simulation, the channel is realized based on the
parameters of CM2 as specified in [13]. Note that the channel
response is truncated after 84 taps since the power at the tail
is small enough to be ignored. Due to the complex channel
model in nature, it is not feasible to provide an analytical
formula to synthesize the autocorrelation matrix of ā. Instead,
the knowledge of matrix Rā is acquired by averaging over
100000 independent channel realizations3. In addition, since
our goal is to compare the BER performance of SPM and
MMSE codewords of different ranks at various noise power
levels, the log-normal shadowing effect is ignored for ease of
implementation.

The BER curves of SPM and MMSE codewords at different
rank are shown in Fig. 7, where 𝐴 and 𝐵 in the legend
denote different basis selection schemes presented in Sec.
V-A and Sec. V-B, respectively. We see from Fig. 7 that a
lower rank MMSE codeword with carefully selected basis can
outperform a higher rank MMSE codeword with poor basis
selection. In fact, the advantage of MMSE over TRP would be
compromised if we project the signal onto a wrong subspace.

VII. CONCLUSION

An optimal precoding technique for the UWB system was
examined in this work, which is a generalization of the binary
codeword in the previously proposed CPP-UWB system to a
codeword consisting more bits per element. Two codeword
construction criteria were studied and methods to compute

3In practice, four different Rā matrices, which correspond to CM 1-4, can
be numerically computed off-line based on four different channel models in
[13]. Then, we can decompose Rā to acquire its eigenvectors and store the
basis information at both ends of the communication link.
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full rank optimal codewords (of dimension 𝐿) were developed
accordingly. The computation and transmission of full-rank
codewords are however costly, which motivated us to search
for suboptimal codewords using a reduced rank approach.
Two basis selection algorithms, each of which corresponds
to a codeword design objective, were then provided. It was
demonstrated by computer simulation that the precoded UWB
system with a reduced-rank codeword outperforms the CPP-
UWB system with a binary codeword at the cost of a slightly
increased feedback overhead, if the channel estimation is
accurate enough.

VIII. APPENDICES

A. Proof of Lemma 1

We first rewrite matrix Rā as

Rā = Ω

⎡
⎢⎢⎢⎣
𝛽2(𝐿−1) 𝛼𝛽2𝐿−3 ⋅ ⋅ ⋅ 𝛼𝛽𝐿−1

𝛼𝛽2𝐿−3 𝛽2(𝐿−2) ⋅ ⋅ ⋅ 𝛼𝛽𝐿−2

...
...

. . .
...

𝛼𝛽𝐿−1 𝛼𝛽𝐿−2 ⋅ ⋅ ⋅ 1

⎤
⎥⎥⎥⎦

= Ω(1 − 𝛼)

⎡
⎢⎣
𝛽2(𝐿−1) 0

. . .
0 1

⎤
⎥⎦+Ω𝛼bb𝑇 , (35)

where

b = [𝛽𝐿−1, ⋅ ⋅ ⋅ , 𝛽, 1]𝑇 . (36)

By Theorem 8.1.8 in [16], the 𝑖th eigenvalue 𝜆𝑖 can be
bounded by

Ω(1 − 𝛼)𝛽2𝑖 ≤ 𝜆𝑖 ≤ Ω(1− 𝛼)𝛽2(𝑖−1), 1 ≤ 𝑖 ≤ (𝐿− 1).
(37)

Next, we will show that the following inequality

𝜆𝑖 < Ω𝛽
2𝑖, 1 ≤ 𝑖 ≤ (𝐿 − 1), (38)

holds in our system by the argument of contradiction. We first
assume that

𝜆𝑖 ≥ Ω𝛽2𝑖, (39)

for 1 ≤ 𝑖 ≤ (𝐿 − 1). Eq. (39) implies that

Ω(1− 𝛼)𝛽2(𝑖−1) ≥ 𝜆𝑖 ≥ Ω𝛽2𝑖. (40)

By substituting 𝛼 = 𝜋/4 and 𝛽 = 𝑒−Δ/2Γ into (40) and
performing some simplifications, we get

Δ

Γ
≥ −𝑙𝑛(1− 𝜋

4
) ≈ 1.54,

which suggests that the UWB pulse width is greater than the
channel decay time constant. However, this is not true due
to the short pulse width of UWB signaling. Therefore, the
assumption made is not correct. Thus, we conclude that (38)
is true. Finally, since

tr (Rā) =
𝐿−1∑
𝑖=0

Ω𝛽2𝑖 =
𝐿−1∑
𝑖=0

𝜆𝑖 = 𝜆0+
𝐿−1∑
𝑖=1

𝜆𝑖 < 𝜆0+
𝐿−1∑
𝑖=1

Ω𝛽2𝑖,

(41)
we get 𝜆0 > Ω.

B. Proof of Proposition 3

Recall that 𝜇𝑚 = 𝐸{ℎ2𝐿−1−𝑚} = Ω𝛽2(𝐿−1−𝑚). Proposi-
tion 3 can be proved by showing that

𝑃 (𝑑)
𝑠𝑝𝑚 = 𝑃

𝑑−1∑
𝑖=0

𝜆𝑖 > 𝑃
𝐿−1∑

𝑚=𝐿−𝑑

𝜇𝑚 = 𝑃
𝑑−1∑
𝑖=0

Ω𝛽2𝑖 (42)

is true. Note that the maximum peak power generated by the
first 𝑑 columns of M can be written as

𝑃 (𝑑)
𝑠𝑝𝑚 = 𝑃

𝑑−1∑
𝑖=0

𝜆𝑖 = 𝑃

⎛
⎝𝐿−1∑

𝑖=0

𝜆𝑖 −
𝐿−1∑
𝑗=𝑑

𝜆𝑗

⎞
⎠ . (43)

From Lemma 1, we have the following lower bound for 𝑃 (𝑑)
𝑠𝑝𝑚:

𝑃 (𝑑)
𝑠𝑝𝑚 = 𝑃

⎛
⎝𝐿−1∑

𝑖=0

𝜆𝑖 −
𝐿−1∑
𝑗=𝑑

𝜆𝑗

⎞
⎠

> 𝑃

⎛
⎝𝐿−1∑

𝑖=0

Ω𝛽2𝑖 −
𝐿−1∑
𝑗=𝑑

Ω𝛽2𝑗

⎞
⎠ = 𝑃 𝑑−1∑

𝑖=0

Ω𝛽2𝑖,

which is based on the inequality in (38) and

tr{Rā} =
𝐿−1∑
𝑖=0

𝜆𝑖 =
𝐿−1∑
𝑖=0

Ω𝛽2𝑖.

C. Proof of Proposition 4

By using (37), the sum of 𝜆𝑖, 1 ≤ 𝑖 ≤ 𝐿−1, can be bounded
by

𝐿−1∑
𝑖=1

Ω(1− 𝛼)𝛽2𝑖 ≤
𝐿−1∑
𝑖=1

𝜆𝑖 ≤
𝐿−1∑
𝑖=1

Ω(1 − 𝛼)𝛽2(𝑖−1). (44)

After some manipulations, the above inequality becomes

Ω(1− 𝛼)1− 𝛽
2(𝐿−1)

1− 𝛽2 𝛽2 ≤
𝐿−1∑
𝑖=1

𝜆𝑖 ≤ Ω(1− 𝛼)1 − 𝛽
2(𝐿−1)

1− 𝛽2 .

(45)
Since

𝜆0 +

𝐿−1∑
𝑖=1

𝜆𝑖 =

𝐿−1∑
𝑖=0

Ω𝛽2𝑖 = Ω
1− 𝛽2𝐿
1− 𝛽2 ,

the signal power, 𝜆0, due to the use of codeword c(1)𝑠𝑝𝑚 can be
bounded by{
Ω
1− 𝛽2𝐿
1− 𝛽2 − Ω(1− 𝛼)1− 𝛽

2(𝐿−1)

1− 𝛽2
}

≤ 𝜆0

≤
{
Ω
1− 𝛽2𝐿
1− 𝛽2 − Ω(1 − 𝛼)1− 𝛽

2(𝐿−1)

1− 𝛽2 𝛽2
}
. (46)

If we normalize 𝜆0 with Ω 1−𝛽2𝐿

1−𝛽2 , which is the average power
spread in the channel, (46) becomes

1− (1− 𝛼)1 − 𝛽
2(𝐿−1)

1− 𝛽2𝐿 ≤ 𝜆̃0 ≤ 1− (1− 𝛼)𝛽2 1− 𝛽
2(𝐿−1)

1− 𝛽2𝐿 ,

(47)
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where 𝜆̃0 is the normalized power concentrated by c(1)𝑠𝑝𝑚. For
𝛽 = 𝑒−Δ/2Γ < 1 and 𝐿≫ 1, we have

1− 𝛽2(𝐿−1)

1− 𝛽2𝐿 ≈ 1.
Thus, the upper and lower bounds can be approximated by

1− (1− 𝛼)𝛽2 1− 𝛽
2(𝐿−1)

1− 𝛽2𝐿 ≈ 1− (1− 𝛼)𝛽2

= (1− 𝛽2)(1− 𝜋/4) + 𝜋/4 (48)

and

1− (1− 𝛼)1 − 𝛽
2(𝐿−1)

1− 𝛽2𝐿 ≈ 1− (1− 𝛼) = 𝛼 = 𝜋/4,
respectively. Since Δ ≪ Γ is generally true due to an
excellent multipath resolution in UWB systems, we have the
approximation 𝛽 = 𝑒−Δ/2Γ ≈ 1. Then, both the upper and
lower bounds are close to 𝜋/4, which implies that 𝜆̃0 ≈ 𝜋/4.
It is thus concluded the signal power generated by c(1)𝑠𝑝𝑚

accounts for about 78%(≈ 𝜋/4) of the total power spread
in the channel.
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