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Traditional image steganalysis is conducted with respect to the entire image frame. In this work, we dif-
ferentiate a stego image from its cover image based on steganalysis of decomposed image blocks. After
image decomposition into smaller blocks, we classify image blocks into multiple classes and find a clas-
sifier for each class. Then, steganalysis of the whole image can be obtained by integrating results of all
image blocks via decision fusion. Extensive performance evaluation of block-based image steganalysis
is conducted. For a given test image, there exists a trade-off between the block size and the block number.
We propose to use overlapping blocks to improve the steganalysis performance. Additional performance
improvement can be achieved using different decision fusion schemes and different classifiers. Besides
the block-decomposition framework, we point out that the choice of a proper classifier plays an impor-
tant role in improving detection accuracy, and show that both the logistic classifier and the Fisher linear
discriminant classifier outperforms the linear Bayes classifier by a significant margin.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

The goal of image steganography is to embed secret messages in
an image so that no one except the intended recipients can detect
presence of secret messages. It has many applications such as
embedding the copyright information into professional images,
personal information into photographs in smart IDs (identity
cards), and patient information into medical images [1]. Using im-
age steganalysis, one attempts to detect the presence of secret
messages hidden in such images.

With the advance of image steganography, many steganalysis
methods have been developed to deal with new breakthroughs
in image steganography. In the early stage, it is assumed that some
prior information about steganographic algorithms that embeds a
secret message into images is available. This is called targeted steg-
analysis. However, more attention has been paid to a more realistic
situation in recent years. That is, no information about stegano-
graphic algorithms is available. This is known as blind steganalysis,
which attempts to differentiate stego images from cover images
without the knowledge of steganographic embedding algorithms
[2]. Using features extracted from cover and stego images in a
training set, we may design a classifier that separates cover and
stego images in the feature space.
Most previous work on image steganalysis focused on extract-
ing features from images and used a binary classifier to differenti-
ate stego images from cover images. The research objective was to
find a better feature set to improve the steganalysis performance.
Fridrich [3] proposed the use of DCT features for steganalysis since
inter-block dependency between neighboring blocks is often af-
fected by steganographic algorithms. Shi et al. [4] proposed to
use Markov features since the differences between absolute values
of neighboring DCT coefficients can be modeled as a Markov pro-
cess. This feature set is useful because intra-block correlations
among DCT coefficients within the same block can be affected by
steganographic embedding. Pevnỳ and Fridrich [5] proposed a set
of 274 merged features by combining DCT and Markov features
together.

So far, little attention has been paid to the characteristics of cov-
er images to design content-adaptive classifiers in steganalysis. An
input image typically consists of heterogeneous regions. We may
decompose an image frame into smaller blocks and use each block
as a basic unit for steganalysis. The effect of steganographic
embedding on similar image blocks is known to have a stronger
correlation [6]. As a result, the characteristics of smaller blocks
can be used to design content-adaptive classifiers.

The frame-based steganalysis, which extracts a set of features
from the whole image, was reported in almost all previous work
[3–5]. In contrast, the block-based steganalysis, which extracts fea-
tures from each individual block, was proposed by the authors in
[7]. Based on the block features, a tree-structured vector quantiza-
tion (TSVQ) scheme can be adopted to classify blocks into multiple
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classes. For each class, a specific classifier can be trained using
block features, which represent the characteristics of the block
class. For a given test image, instead of making a single decision
for the entire image, we repeat the block decomposition process
and choose a classifier to make a cover/stego decision for each
block depending on block features. Finally, a decision fusion tech-
nique can be used to fuse steganalysis results of all blocks so that
one can decide whether an unknown image is a cover or stego
image.

The rest of this paper is organized as follows. Related previous
work is reviewed in Section 2. The proposed block-based image
steganalysis system is presented in Section 3. Analysis of the per-
formance of block-based image steganalysis by considering the ef-
fects of block sizes, block numbers and the block overlapping
design is conducted in Section 4. Fusion of multiple block decisions
into one final decision for a test image is examined in Sec. 5. Exten-
sive experimental results are shown for thorough performance
evaluation in Section 6. Finally, concluding remarks and future re-
search directions are provided in Sec. 7.
Fig. 1. The block-based image steganalysis system.
2. Review of previous work

Previous research in blind steganalysis has focused on extract-
ing features from the whole image [3–5]. The number of features
was increased to achieve better steganalysis performance in recent
years. Chen et al. [8] proposed a set of updated Markov features
(486 features in total) by considering both intra-block and inter-
block correlations among DCT coefficients of JPEG images. Kodov-
skỳ et al. [9] examined a set of updated merged features (548 fea-
tures in total) using the concept of Cartesian calibration. Pevnỳ
et al. [10] used higher order Markov models to capture the differ-
ences between neighboring pixels in the spatial domain and devel-
oped a subtractive pixel adjacency model feature set (686 features
in total). This feature set is also known to be effective with the LSB
matching algorithm. Note that LSB matching is similar to LSB
replacement, but it differs in that LSB matching changes LSBs only
when the LSB of the next pixel from the cover image is different
from the next bit of the secret message. In general, the steganalysis
of LSB matching is known to be much more challenging compared
to that of LSB replacement. More recently, Kodovskỳ et al. [11]
introduced the cross-domain feature set (1234 features in total),
which considers features from the spatial domain and the DCT do-
main at the same time. This feature set is known to be effective for
steganalysis of the YASS algorithm [12], which embeds secret mes-
sages into randomized locations to make the calibration process
ineffective.

Many steganographic embedding algorithms are block-based;
namely, embedding the secret message into each 8� 8 DCT block
separately. Yang et al. [13] performed an information-theoretic
steganalysis on the block-structured stego image. They provided
an approximation of the relative entropy between probability dis-
tributions of the cover and the stego images. The relative entropy
increases linearly with N=K � 1, where N;K represent the total
number of samples (pixels) and the block size, respectively. A lar-
ger relative entropy means a higher detection probability of the
stego image. Although Yang et al. [13] studied block-structured
stego images, their work is still a frame-based approach from our
viewpoint since only one set of features is extracted from an image.

The block-based image steganalysis was first introduced in [7],
which extracted features from smaller blocks for image steganaly-
sis. While the frame-based approach extracts a set of features from
the whole image, the block-based approach takes advantage of the
rich information of images by extracting a set of features from each
individual image block. The characteristics of smaller image blocks
were also exploited in [7] to design a content-adaptive classifier for
steganalysis. It was shown by experimental results that the perfor-
mance of blind steganalysis with merged features is significantly
improved using the block-based approach. In this work, we will re-
view results in [7] and add more discussion.
3. Block-based image steganalysis

3.1. System overview

The block-diagram of a block-based image steganalysis system
is shown in Fig. 1. It consists of the training process and the testing
process, which will be detailed in the following two subsections,
respectively.

� The training process. The system decomposes an image into
smaller blocks and treats each block as a basic unit for steganal-
ysis. A set of features is extracted from each individual image
block and a tree-structured hierarchical clustering technique
is used to classify blocks into multiple classes based on
extracted features. For each class of blocks, a specific classifier
can be trained using extracted features which represent the
characteristics of that block class. Note that if the number of
training blocks is too large, a statistical sampling method can
be used to reduce the number of training blocks.
� The testing process. The system performs the same block

decomposition and feature extraction tasks on the test image.
Then, it classifies each image block into one specific block class,
and uses its associated classifier to make a decision whether the
underlying block is a cover/stego block. Finally, there is a deci-
sion fusion step that integrates the decisions of multiple blocks
into a single decision for the test image is conducted.

For block-based image steganalysis in [7,14], the merged fea-
ture set as proposed in [5] was extracted from image blocks, ran-
dom sampling was adopted as the statistical sampling method in
the training process, and the majority voting rule was used to fuse
decision results from all the image blocks. For the classification
task, a binary classifier was proposed in [7] and a multi-classifier
was considered in [14]. It was shown by experimental results in
[7,14] that the block-based approach offers better blind steganaly-
sis performance than the frame-based approach.

There are two main advantages with the block-based steganal-
ysis. First, it can offer better steganalysis performance without
increasing the number of features. It provides a methodology to
complement traditional frame-based steganalysis research that
has focused on the search for more effective features. Second, the



Fig. 2. The 4 codewords representing 4 block types in the 2-D feature space derived
from the principal component analysis.
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block-based scheme can provide more robust detection results for
a single test image since the block decomposition step will gener-
ate more samples, and each of them can be tested independently.
In contrast, the performance of an frame-based scheme is highly
dependent on the correlation between the test image and the set
of training images. If the test image happens to have characteristics
that are very different from those of the training images, the clas-
sifier obtained from the training process may not work well for test
images.

It is worthwhile to emphasize one main difference between tra-
ditional frame-based steganalysis and block-based steganalysis.
While only one classifier is obtained after the training process in
frame-based scheme, multiple classifiers can be adopted for blocks
of different types for a test image in the block-based approach.
Intuitively speaking, a content-adaptive classifier should provide
more accurate steganalysis performance since each classifier can
focus more on the feature changes due to steganographic embed-
ding rather than the feature variations between different block
classes.

3.2. Training process

For a given steganographic algorithm, we embed the secret
message into the cover image to get its corresponding stego image.
This process is applied to all cover images to result in cover/stego
image pairs. Then, we decompose all cover/stego image pairs in the
training set into smaller blocks of size B� B ðB ¼ 8b;
b ¼ 2;3; . . . ;minðM;NÞ=8Þ. The merged DCT and Markov features
[5] are extracted from each block of the cover/stego image pairs.
Each B� B block is divided into B2=64 DCT blocks of size 8� 8 to
compute the inter-block dependency between 8� 8 DCT blocks
and the intra-block correlation within 8� 8 DCT blocks for the
merged feature set.

On one hand, the inclusion of more blocks in the training set de-
mands a higher computational cost. On the other hand, a larger
number of blocks provides more accurate block classification re-
sults. Thus, there is a trade-off between the accuracy and compu-
tational complexity, and we need to find a balance between
them. If the number of decomposed image blocks is too large, we
may use a random sampling method to select a subset of the image
blocks to reduce the classification complexity. For example, for an
image of size M � N, we have about A � MN=B2 blocks of size B� B.
If A is too large, we can select a subset of size K randomly. This pro-
cess is denoted as ‘‘random sampling’’ in Fig. 1.

The training set consists of cover images and the corresponding
stego images created with a specific steganographic algorithm. For
K sampled blocks selected by random sampling, K=2 sample blocks
are randomly selected from cover images while the remaining K=2
sample blocks are corresponding blocks from stego images at the
same location. Generally speaking, random sampling is better than
sampling in a spatial order, since it allows us to collect blocks with
more diversity so that more representative sample blocks can be
used in the block classification process.

Then, we need to think about ways to classify blocks into differ-
ent classes for block-based image steganalysis. After block classifi-
cation, a specific classifier will be designed for each block class. We
may consider two different methods for block classification as de-
tailed below.

1. Scheme A: classification based on gray levels.
One intuitive way to classify block classes is to use gray levels of
the block. If we deal with blocks of size 8� 8, each block has 64
gray level values. Then, vector quantization based on gray scale
values can be used to classify blocks into different block classes.
However, gray scale values from blocks do not reflect the differ-
ence between cover images and stego images. In fact, cover
images and stego images are visually identical in most cases.
This is because gray scale values are not sensitive to subtle
changes made after steganographic embedding.

2. Scheme B: classification based on derived steganalysis features.
Another way to do block classification is to use derived steg-
analysis features. Since our goal is to maximize the performance
of classifiers trained by features of different block classes, it is
desirable to classify blocks into multiple classes based on the
same features used in steganalysis. These classifiers are sensi-
tive to the change of these features as a result of steganographic
embedding. After classifying blocks into different classes, the
averaged feature vector in each block class is computed, which
is called the codeword of that block type. When the merged fea-
tures are used for block classification, each codeword has 274
feature components. We apply the k-means clustering tech-
nique to partition blocks into 4 groups, where each group corre-
sponds to one block class. Then, we apply the principal
component analysis to reduce the feature dimension to two.
The centroids of all 4 clusters, called the codewords, in the 2-
D feature space are shown in Fig. 2.

We compared the performance of block classification schemes
A and B, and observed that the detection accuracy of Scheme B is
higher than that of Scheme A by 10% or more. Thus, we decided
to adopt Scheme B for block classification in block-based image
steganalysis.

Based on the merged features from B� B blocks, we would like
to classify K sampled blocks into C different classes, where each
class consists of smaller blocks with similar characteristic. If the
class number, C, is larger, we may have better steganalysis perfor-
mance at the cost of higher complexity. Thus, we seek for a suitable
C that balances computational complexity and performance. Block
classification has been considered in various image processing con-
texts. The tree structured vector quantization (TSVQ) technique
has been used to classify image blocks using a binary tree structure
based on block similarity. We borrow this idea and apply it to our
current application. The main difference is that block similarity is
measured using Eulidean distance between the pixel-wise differ-
ence of two image blocks in the vector quantization context. Here,
we consider a different criterion as described below.

Following the spirit of TSVQ, we divide the whole set of sampled
blocks into 2 sub-sets, and repeat the same process within each
sub-set until all blocks have similar characteristics to a certain de-
gree within a sub-set. At each classification step, the K-means clus-
tering algorithm is used to partition blocks in the same class,
denoted by S, into 2 sub-classes, denoted by S1 and S2, by minimiz-
ing the within-cluster sum of energies EðS1; S2Þ. Mathematically,
this can be written as
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EðS1; S2Þ ¼
X
Xi2S1

Xi � l1

�� ��2 þ
X
Xi2S2

Xi � l2

�� ��2
; ð1Þ

where X1;X2; . . . ;Xn are 274-dimensional feature vectors of n blocks
and li is the mean of feature vectors in Si; namely,

l1 ¼
X
Xi2S1

Xi; l2 ¼
X
Xi2S2

Xi ð2Þ

After classifying K blocks into C classes, the averaged feature vector
for each class is computed, which is called the codeword for that
class. The codewords will be used to classify the blocks of a test im-
age using the minimum distortion energy criterion in the feature
space.

It is worthwhile to point out another difference between our
classification scheme and TSVQ. In TSVQ, each intermediate node
of the tree, representing a subset of codewords, is split into 2
sub-classes repeatedly to create a symmetric tree. However, our
classification scheme does not demand a symmetric tree. If all
blocks within a node are homogeneous enough, we can stop fur-
ther division. Our stopping criterion is based on the value of
EðS1; S2Þ. That is, we always split a node with the largest minimum
EðS1; S2Þ value. The process is repeated until we have C leaves (or
classes).

After getting C codewords to represent C classes from K sampled
blocks, all B� B sample blocks in the cover/stego image pairs of the
training set will be classified into one of the C classes. The classifi-
cation is based on a distortion measure Eiðfc; fsÞ, which is defined to
be the sum of two energies from a codeword of the ith class:

Eiðfc; fsÞ ¼ EiðfcÞ þ EiðfsÞ; ð3Þ

where fc and fs are the feature vectors of a block from the cover and
the stego images, respectively, and

EiðfcÞ ¼
X274

k¼1

jfc;k � li;kj
2 ð4Þ

is the energy between the 274 merged features of a cover image
block and the codeword, li, of the ith class, and li;k is the kth com-
ponent of li. Similarly, we have

EiðfsÞ ¼
X274

k¼1

jfs;k � li;kj
2
; ð5Þ

where fc;k is the kth component of fc . After computing Eiðfc; fsÞ for
i ¼ 1; . . . ;C, the block pair from the cover image and the corre-
sponding stego image in the training set is classified into class Cj,
if Ejðfc; fsÞ has the smallest value among all Eiðfc; fsÞ;1 6 i 6 C. Using
the features of blocks from the cover and stego images of each class,
a specific classifier for each class can be obtained for all C classes.

3.3. Testing process

For a given test image, we can perform exactly the same image
decomposition and feature extraction as described in the training
process. Each block of the test image is classified into a class using
the minimum distortion energy. Depending on the class of each
block, the classifier obtained from the training process is applied
here. We call them content-dependent classifiers since they are
adaptively chosen according to the block class. Content-dependent
classifiers are useful because changes of feature values after stega-
nographic embedding have higher correlation with blocks of the
same class than those of different classes. For example, the effect
of embedding secret messages into smooth blocks should be differ-
ent from the effect of embedding them into texture blocks.

Each M � N test image consists of MN=B2 blocks of size B� B.
Based on the proposed steganalysis, we can make a decision
whether each block is a block from a cover or stego image. Thus,
the total number of decisions made for a given test image is equal
to MN=B2. Then, a majority voting rule is adopted to make the final
decision on whether a given test image is a cover or stego image. It
is declared a cover (or a stego) image if the number of cover blocks
is larger (or smaller) than that of stego blocks.

4. Analysis of block size, number and overlapping effects

There exists a relationship between the block size and the block
number for a given image. If the block size is smaller, there are
more blocks. We may ask ‘‘what is the best block decomposition
strategy?’’ In the first two subsections, we examine the non-over-
lapping block case [15]. Then, in the last subsection, we consider
the overlapping block case.

4.1. Analysis of block size effect

We study the block size effect for a fixed block number in this
subsection. Intuitively speaking, a larger block size should give bet-
ter steganalysis performance. To understand the block size effect,
we analyze the distribution of feature vectors. If the feature vectors
of the cover and stego image blocks are more concentrated, it will
be easier to design a classifier with higher discriminative power,
which has better steganalysis performance. Among the 274
merged features in [5], we observe that the blockiness features
have the largest standard deviations. Thus, we will focus on them
in our analysis.

There are two blockiness features Ba with a ¼ 1;2, which are
used to measure the inter-block dependency of the JPEG image
over all DCT modes between neighboring 8� 8 DCT blocks. They
are defined as [5]

Ba ¼
CWðaÞ þ CHðaÞ

W ðH � 1Þ=8b c þ H ðW � 1Þ=8b c ; ð6Þ

where H and W are the height and the width of the input image in
pixels and

CWðaÞ ¼
XðH�1Þ=8b c

i¼1

XW
j¼1

jc8i;j � c8iþ1;jja; ð7Þ

CHðaÞ ¼
XðW�1Þ=8b c

j¼1

XH

i¼1

jci;8j � ci;8jþ1ja ð8Þ

and where ci;j is the gray value of the ði; jÞth pixel in the JPEG
image. These features are traditionally extracted from each image
frame but they are computed from image blocks in the proposed
scheme.

Consider an image block that consists of n neighboring DCT
block pairs in both horizontal and vertical directions. Let Fi be a
feature value extracted from the ith neighboring DCT block pair.
Then, the feature value extracted from the image block, �F, can be
written as

�F ¼ 1
n

Xn

i¼1

Fi:

It is a sample mean of feature values from neighboring DCT block
pairs. For blockiness features Ba;CWðaÞ and CHðaÞ represent feature
values from neighboring block pairs in vertical and horizontal direc-
tions, respectively. Furthermore, by assuming that Fi is an indepen-
dently and identically distributed (i.i.d.) random varible with mean
m and variance r2, we can obtain the mean and the standard devi-
ation of �F as

E½�F� ¼ m; and Std½�F� ¼ rffiffiffi
n
p : ð9Þ



Table 1
The standard deviations of blockiness (B1 ;B2) features with
different block sizes (B� B).

Block size Standard deviations

B1 B2

64 � 64 1.98 187.87
128 � 128 1.09 95.55
256 � 256 0.67 56.98

Fig. 3. The image decision accuracy (P) as a function of the block number (N)
parameterized by the block decision accuracy p ¼ 51%;55%;60%.
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In words, the mean of �F is the same as the mean of Fi while its stan-
dard deviation is reduced by a factor of 1=ð

ffiffiffi
n
p
Þ. If the block size be-

comes larger (i.e., a larger value of n), the number of DCT blocks in
the image is the same but the number of DCT blocks for each block
increases. Then, the standard deviations of feature values become
smaller, and it is easier to design a classifier which differentiates
stego images from cover images. Note that the feature values also
go through a calibration process [5] to improve their sensitivity to
steganographic embedding. Since the statistical properties of DCT
coefficients remain about the same after the calibration process,
the analytical result in Eq. (9) still holds after the calibration
process.

We conduct experiments to verify the relationship between the
standard deviations of blockiness features and the block size as de-
rived above. The results are shown in Table 1, where the block size
is chosen to be 64� 64;128� 128 and 256� 256. The blockiness
features are extracted from horizontally and vertically neighboring
image block pairs in 200 JPEG images. As shown in Table 1, the
standard deviations of blockiness features decrease with an in-
creased block size, which is approximated well by the relationship
in Eq. (9). Clearly, larger block sizes result in higher discriminative
power of extracted features.

4.2. Analysis of block number effect

In this subsection, we study the block number effect for a fixed
block size. Intuitively speaking, the performance of the block-based
steganalysis should be better if more blocks are involved in the
decision process. This will be demonstrated below.

Consider a test image that consists of N blocks, and the cover/
stego decision is made for each individual block based on the ex-
tracted features, and the majority voting rule is adopted in the test-
ing process to fuse these N block decisions. If N is an odd number,
we need at least ðN þ 1Þ=2 correct decisions in order to obtain a
correct majority voting result. Then, the probability of making a
correct decision for the test image can be expressed as

P ¼ PðX P ðN þ 1Þ=2Þ ¼ 1� PðX 6 ðN � 1Þ=2Þ; ð10Þ

where X is a random variable denoting the number of correct block
decisions. If the random variable of making a correct decision for
each block is i.i.d., the cumulative distribution function of obtaining
less than or equal to k correct decisions from N block decisions can
be expressed as

PðX 6 kÞ ¼ Fðk; N; pÞ ¼
Xk

i¼0

N

i

� �
pið1� pÞN�i; ð11Þ

where p is the probability of correct decision for each block. Clearly,
the probability of correct decision, P, for the test image is closely re-
lated to the probability of correct block decision, p, as well as the
number of block decisions, N. This relationship between P and N
parameterized by a fixed value of p will be examined below.

By using the Hoeffding inequality

Fðk; N;pÞ 6 exp �2
ðNp� kÞ2

N

 !
; ð12Þ
we can determine the upper bound of the cumulative distribution
function in Eq. (11) as

PðX 6 ðN � 1Þ=2Þ ¼ FððN � 1Þ=2; N; pÞ

6 exp �2
ðNp� ðN � 1Þ=2Þ2

N

 !
: ð13Þ

For the majority voting rule to work properly, p should be greater
than 0:5ð50%Þ, or

p ¼ 0:5þ e ð0 < e < 0:5Þ: ð14Þ

The limit of the exponential term in Eq. (13) can be computed as

lim
N!1

exp �2
ðNp� ðN � 1Þ=2Þ2

N

 !

¼ lim
N!1

exp �2ðe2N þ 1=4N þ eÞ
� �

¼ 0: ð15Þ

The above equation, together with Eq. (13), leads to

lim
N!1

PðX P ðN þ 1Þ=2Þ ¼ 1� lim
N!1

PðX 6 ðN � 1Þ=2Þ ¼ 1: ð16Þ

This means that the probability of making a correct decision from N
block decisions, P, using the majority voting converges to 1 (100%

detection accuracy) as the block number, N, goes to the infinity.
We plot the image decision accuracy, P, as a function of the block
number, N, parameterized by the p value using the majority voting
rule in Fig. 3, where p ¼ 51%;55%;60%. As shown in the figure, we
get a higher decision accuracy for a test image if we have a larger
block number. In practice, the block decision is not an independent
event, and the block decision accuracy, p, is not identical since it de-
pends on the block class (e.g., smooth, edged and textured regions).
Although being over-simplified, the above analysis does provide a
general trend.

4.3. Analysis of block overlapping effect

Although it is beneficial to have a large block size and a large
block number for the block-based image steganalysis, there exists
a trade-off between the block size and the block number for image
decomposition with non-overlapping blocks. Although overlapping
blocks are not independent, the use of overlapping blocks provides
an alternative to increase the block number for a fixed image size.

For overlapping blocks, the step size is used to measure the de-
gree of overlap between two neighboring overlapping blocks in
both the horizontal and vertical directions. An example is illus-
trated in Fig. 4, where the image size is 512� 512 and the block
size is 256� 256. The overlap size, O, is the overlapped distance
between two neighboring overlapping blocks while the step size,



Fig. 4. Illustration of the overlap size (O) and the step size (S) for the overlapping
block case.

Fig. 5. The block number (N) in a 512� 512 image for different block sizes (B� B)
and step sizes (S).
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S, is the displacement of two neighboring blocks. Clearly, Oþ S ¼ B.
For block size B� B and step size S, we can compute the block
number as

N ¼ ½ðW � BÞ=Sþ 1� � ½ðH � BÞ=Sþ 1�; ð17Þ

where H and W are the height and the width of the image, respec-
tively. The block number in an 512� 512 image with different block
sizes and step sizes is given in Table 2. For a block of size B� B, the
block number for 3 different step sizes is computed: non-overlap-
ping blocks (S ¼ B), overlapping blocks with a step size set to one
half of the block size (S ¼ B=2) and one quarter of the block size
(S ¼ B=4).

The advantage of using overlapping blocks in block-based steg-
analysis is shown in Fig. 5. By reducing the step size from B to one
half and one quarter of B, we obtain more block samples. As we
have larger block numbers with smaller step sizes, the curve in
Fig. 5 moves towards the upper right direction. Intuitively, for a gi-
ven block size, if there are more block samples, the classifier can
provide a better decision. For example, for a block size of
64� 64, the total number of blocks is 64 with non-overlapping
blocks (S ¼ B). With overlapping blocks, the total number of blocks
increases to 225 and 841 for step size equal to 32 (S ¼ B=2) and 16
(S ¼ B=4), respectively.
5. Fusion of block decisions

It is often beneficial to combine multiple local decisions to make
a single global decision in decision making [16,17]. The majority
voting method was considered in the last two sections. There are
more decision fusion methods such as weighted majority voting,
Bayesian decision fusion, and the Dempster-Shafer theory of
Table 2
The block number (N) in 512 � 512 image with different block sizes (B� B) and step
sizes (S).

Block size Block number

S = B S = B/2 S = B/4

256 � 256 4 9 25
128 � 128 16 49 169
64 � 64 64 225 841
32 � 32 256 961 3721
evidence. We will examine them in this section and see how they
affect the final decision accuracy in the next section.

For the binary classifier case, there are only two decisions
(L ¼ 2): cover image (l ¼ 1) and stego image (l ¼ 2). For the general
L-classifier case, where L P 2 is an integer, we can determine the
applied steganographic algorithms for stego images as well.
Although we focus on the case of L ¼ 2, the following discussion
on decisioin fusion is applicable to any L.

5.1. Weighted majority voting

The simple majority voting method can be modified by taking
the reliability of each block decision into account. The weight of
each block decision can be derived from the block classification
performance. The block decision accuracy is defined as

Pðactual ¼ Ilj decide ¼ IlÞ; l ¼ 1;2; . . . ; L; ð18Þ

which is the conditional probability of a block is actually from class
Il given that it is classified to class Il. Then, the decision for a block
that is classified to type Il is weighted by its block decision accuracy
as defined in Eq. (18). The weight is used to reflect the reliability of
block decisions in the majority voting rule.

5.2. Bayesian decision fusion

The basic idea of the Bayesian decision fusion [17] can be stated
as follows. After obtaining N block decision results c ¼ ½c1; . . . ; cN�
from a test image, we would like to decide which class this test im-
age belongs to. This can be done by computing the posterior prob-
ability PðwljcÞ for all the classes w1; . . . ;wL and choosing the class
that maximizes the value of PðwljcÞ.

If the total number of blocks in the training set is N and the
number of blocks classified into class wl is Nl, then Nl=N provides
an estimate of the prior probability of class wl, which is denoted
by PðwlÞ. The stability of the prior probability is important in order
to get accurate result with Bayesian decision fusion. This is another
reason why the block-based approach is useful. As the frame-based
approach deals with an image as a whole, we only have one sample
from each image. However, we are getting numerous samples from
each image with the block-based approach, which enables the
prior probability value to be stable. For example, if we decompose
an image with size 384� 512 into smaller blocks with size 32� 32,
then we have 192 blocks from each image. If there are 1;000
images in the training set, then we already have 192;000 sample
blocks from the training set, which should be enough samples to
make the prior probability value stable. In addition, these smaller
blocks are more homogeneous compared to original images, which
makes it easier to aggregate blocks with similar properties into the
same block class.
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Under the assumption of independent block decisions, the con-
ditional joint probability density PðcjwkÞ can be written as the
product of the marginal conditional probabilities as

PðcjwjÞ ¼ Pðc1; . . . ; cN jwjÞ ¼
YN
n¼1

PðcnjwjÞ: ð19Þ

Although block decisions are not totally independent, the above
equation still holds approximately [18]. Furthermore, by assuming
that the marginal conditional probabilities PðcnjwjÞ for n ¼ 1; . . . N
are i.i.d., we can obtain their values from the training data set.

Finally, the posterior probability can be expressed as

PðwjjcÞ ¼
PðcjwjÞPðwjÞ

PðcÞ ð20Þ

and the fused Bayesian decision is chosen to be the following class

w�j ¼ arg max
wj

PðwjjcÞ ð21Þ

¼ arg max
wj

PðcjwjÞPðwjÞ
PðcÞ ð22Þ

¼ arg max
wj

PðcjwjÞPðwjÞ; ð23Þ

where the last equality holds since PðcÞ is independent of wj and can
be dropped in the optimization formulation.

5.3. Fusion via Dempster–Shafer theory of evidence

The Dempster–Shafer theory of evidence is a methodology to
compute and accumulate belief functions according to Dempster’s
rule [19,20,17]. The degree of belief of an event is different from its
probability since its probability can be non-zero even its degree of
belief is zero.

We first introduce two concepts: decision templates and deci-
sion profiles. The decision template DTj for class wj is an N � L ma-
trix with its nth row being the decision result for the nth block,
consisting of marginal conditional probabilities, PðcnjwjÞ, with cn

takes values of w1; . . . ;wL. The decision template can be obtained
using the training data set. Note that PðcnjwjÞ can be estimated
with block decision accuracy from the training set. The block deci-
sion accuracy is the probability of blocks classified into the cnth
class when they actually belong to the wjth class.

The decision profile (DP) is an N � L matrix in form of

DP ¼

S1

� � �
Sn

. . .

SN

2
6666664

3
7777775
¼

s1;1 � � � s1;j � � � s1;L

� � �
sn;1 � � � sn;j � � � sn;L

. . .

sN;1 � � � sN;j � � � sN;L

2
6666664

3
7777775
; ð24Þ

where

sn;j ¼
1; if output of the nth block decision is class wj

0; otherwise

�
ð25Þ

is the degree of support to class wj with the nth block decision.
Next, we define two quantities based on decision templates and

decision profiles: the similarity and the degree of belief. The simi-
larity between the decision profile of the nth block in the wjth class
and the decision template can be measured as

Un;j ¼
1þ DTj

n � DPn

��� ���	 
2
� ��1

XL

k¼1

1þ DTk
n � DPn

��� ���	 
2
� ��1

 ! ; ð26Þ
where DPn represents the nth row of DP and DTj
n represents the nth

row of DTj belonging to class wj, and �k k is a matrix norm. The de-
gree of belief for the decision that the nth block is in class wj is de-
fined as

bn;j ¼
Un;j

YL

k¼1;k–j

ð1�Un;kÞ
" #

1�Un;j

YL

k¼1;k–j

ð1�Un;kÞ
" # : ð27Þ

It is worthwhile to point out that both the degree of belief and the
similarity metric become larger as the decision profile is more sim-
ilar to the decision template. However, they are different in the
sense that the degree of belief considers taking the distribution of
dissimilar classes into account while the similarity metric does
not. For a given similarity metric, Un;j, the degree of belief, bn;j,
can still vary. It will give the maximum value if the remaining sim-
ilarity values are equal. On the other hand, it will yield a smaller va-
lue if the distribution of remaining similarity values is skewed.

Finally, the accumulated degree of belief for each class wj,
j ¼ 1; . . . ; L from all block decisions can be computed using Demp-
ster’s rule as

gj ¼
YN

i¼1

bi;j: ð28Þ

A test image is classified into class wj if its associated gj value is
the largest among all values of j ¼ 1; . . . ; L. We will examine detec-
tion accuracy using different decision fusion methods in the next
section.

6. Performance evaluation

The performance of block-based image steganalysis for a binary
classifier (either stego or cover image) will be studied in this sec-
tion. We will compare the proposed block-based approach with
the frame-based approach. We will provide experimental results
by varying parameters in block-based image steganalysis so as to
understand the effects of block sizes, block numbers, and block
overlapping.

The performance of blind steganalysis is measured by the aver-
age detection accuracy:

Adetect ¼ 1� Perror; ð29Þ

where Perror is the average error probability. There are two types of
errors in the decision process: false positives and false negatives.
Blind steganalysis attempts to minimize these two errors in order
to obtain higher detection accuracy. False positives (false alarms)
happen when a secret message is detected from a given cover im-
age. In contrast, false negatives (misses) occur when a secret mes-
sage is not detected from a given stego image. With these two
types of errors, the average error probability Perror can be written as

Perror ¼
1
2
ðPFP þ PFNÞ; ð30Þ

where PFP is the probability of false positives and PFN is the proba-
bility of false negatives. Thus, we have

Adetect ¼ 1� 1
2
ðPFP þ PFNÞ: ð31Þ
6.1. Experimental set-up

In the experiment, we consider training and testing images of
dimension M � N ¼ 384� 512 and decompose each image into
blocks of size B� B. After extracting 274 merged features from



Fig. 6. Sample images from the Uncompressed Colour Image Database (UCID) and the INRIA Holidays dataset.

Table 3
Performance comparison of Pevny’s method and the proposed block-based image
steganalysis.

Steganography BPC Pevny’s Proposed

MBS 0.05 55.94 65.79
MBS 0.10 62.58 75.42
MBS 0.20 74.75 89.57
MBS 0.30 83.37 95.00
MBS 0.40 89.34 98.09

PQ 0.05 55.37 58.22
PQ 0.10 55.70 60.36
PQ 0.20 56.04 63.65
PQ 0.30 57.08 66.50
PQ 0.40 58.12 69.42
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each block, K ¼ 20;000 sample blocks are selected from cover and
stego images in the training set by random sampling. These sample
blocks are classified into C classes and a classifier is obtained for
each class.

The uncompressed colour image database (UCID) [21] was used
as the cover images in the training set. The INRIA Holidays dataset
[22] was used as the cover images in the test set. The UCID image
database consists of 1338 images, and the Holidays image database
has 1491 images, which have diverse subjects such as natural
scenes and artificial objects as shown in Fig. 6. Although the origi-
nal images were color images of different sizes, all images have
been changed into 384� 512 gray-level images and saved as JPEG
files with a quality factor of 85 with JPEG compression.

After obtaining cover images from the image databases, the
model-based steganography (MBS) method [23] and the perturbed
quantization (PQ) method [24] were used to embed a secret mes-
sage into the cover images to create the corresponding stego
images. While the MBS method uses the original JPEG images ob-
tained with a quality factor of 85 for cover images, the PQ method
demands double-compressed JPEG images. In our experiment, the
original JPEG images were compressed once again with a quality
factor of 70 for the PQ method. As different images may have dif-
ferent embedding capacity, the embedding strength for each image
is measured in units of BPC (bits per non-zero DCT AC coefficients).
Unless explicitly stated, the default BPC value was set to 0:20 for
both MBS and PQ methods.

6.2. Comparison of frame-based and block-based image steganalysis

The detection accuracy of the proposed block-based image steg-
analysis is reported in this subsection. In the experiment, the MBS
method [23] and the PQ method [24] were used to create stego
images from cover images with 5 embedding rates
(0.05,0.10,0.20,0.30, and 0.40 BPC). We decompose each image
from the training set into blocks of size B� B ¼ 64� 64. For the
classifier design, 16 different linear Bayes classifiers are obtained
for C ¼ 16 classes with regularization parameter R ¼ S ¼ 0:001.
The majority voting scheme was adopted to fuse block decision re-
sults to make final decision.

For the benchmarking purpose, detection accuracy of the
merged features in [5] using the linear Bayes classifier is also given.
This frame-based approach is referred to as Pevny’s method. The
performance of these two methods is shown in Table 3. As the
PQ method is known to be more secure than the MBS method,
we see that the detection accuracy of Pevny’s and the proposed
methods is significantly lower with respect to the PQ method.
Detection accuracy improves with higher embedding rates since
it becomes easier to differentiate stego images from cover images
when a larger amount of hidden information is embedded. The
proposed block-based image steganalysis has better detection
accuracy than Pevny’s method regardless of steganographic algo-
rithms and embedding rates. The maximum performance improve-
ment of the proposed method over Pevny’s method is close to 15%
for the MBS method with an embedding rate of 0.20 BPC.

When the majority voting is used for decision fusion, the ratio
of the number of correct decisions and the total number of



Table 4
Relationship between decision reliability and voting difference.

Voting
difference

Correct
decisions

Incorrect
decisions

Decision
reliability

0–5 432 122 77.98
6–10 717 73 90.76
11–15 541 15 97.30
16–20 656 6 99.09
21–48 419 1 99.76

Fig. 7. The image decision accuracy, P, as a function of the block number, N.

Table 6
The average image decision accuracy (P) for non-overlapping block decomposition
with fixed image size 384� 512.

Block size Block number Detection accuracy

32 � 32 196 81.16
64 � 64 48 82.16
128 � 128 12 69.50
256 � 256 2 59.25
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decisions offers a reliability measure of the decision. Intuitively
speaking, the voting difference between the numbers of cover
and stego blocks serves as an indicator. That is, if the voting differ-
ence is larger, the decision is more reliable. We show the relation-
ship between decision reliability and the voting difference in
Table 4, which is obtained using the MBS method with an embed-
ding rate of 0.20 BPC. It is clear that detection reliability improves
with larger voting difference. The decision reliability increases
from 77.98% with 0–5 voting difference to 99.76% with 21–48 vot-
ing difference. For a given test image, the traditional frame-based
steganalysis cannot provide the measure of detection reliability.

6.3. Performance study of block-based image steganalysis

For the performance study of block-based image steganalysis,
200 images from the uncompressed colour image database (UCID)
[21] and the INRIA Holidays dataset [22] were used as cover
images in the training set and the testing set, respectively. The
MBS method [23] was used to create stego images with an embed-
ding rate of 0.20 BPC. In the experiment, blocks were classified into
C ¼ 8 classes and 8 linear Bayes classifiers were obtained with reg-
ularization parameters R ¼ S ¼ 0:001.

6.3.1. Effect of block sizes
First, we study the effect of block sizes. We would like to check

whether the merged features from blocks of a larger size have bet-
ter discriminative power to differentiate cover and stego images.
For each block size, we counted the number of correct and incor-
rect block decisions from all blocks obtained from 200 test images
to compute the average block decision accuracy (p). The discrimi-
native power of merged features for 4 block sizes
(32� 32;64� 64;128� 128;256� 256) is shown in Table 5. Note
that overlapping block decomposition is used for block size
256� 256. As shown in this table, the discriminative power of
merged features from a larger block is better than that of merged
features from a smaller block. The average block decision accuracy
increases from 56:62% to 62:54% when the block size increases
from 32� 32 to 256� 256.

6.3.2. Effect of block numbers
Next, we study the effect of block numbers. In the experiment, a

block size of B� B ¼ 32� 32 was used for images of size
384� 512. Then, each image consists of 192 blocks. Among these
192 blocks, a different number of blocks was randomly selected
Table 5
The average block decision accuracy (p) with different block sizes (B� B).

Block size Block number No. of Block decisions Decision accuracy

Correct Incorrect

32 � 32 192 43,486 33,314 56.62
64 � 64 48 11,254 7946 58.61
128 � 128 12 2962 1838 61.71
256 � 256 6 1501 899 62.54
for majority voting in the testing process. The average image deci-
sion accuracy, P, is plotted as a function of the block number, N in
Fig. 7. We see from this figure that the average image decision
accuracy, P, improves as more blocks are selected from the test im-
age. The detection accuracy increases from 75:75% to 85:50%

when the block number increases from 10 to 192. This experimen-
tal result clearly demonstrates the advantage of having a larger
block number in block-based image steganlayis.
6.3.3. Effect of block overlapping
There exists a trade-off between the block size and the block

number in non-overlapping block decomposition. If the block size
becomes smaller, the block decision accuracy gets lower. On the
other hand, if the block decision accuracy becomes higher with a
larger block size, only a small number of blocks are available for
the majority voting process. For this experiment, 200 images were
used for the training set and the testing set, respectively. The aver-
age image decision accuracy P (detection accuracy) with different
block sizes (B� B) for the non-overlapping block decomposition
case is shown in Table 6.

Among 4 different block sizes, the block-based image steganal-
ysis with block size 64� 64 has the best detection accuracy of
82:16%. If the block size is larger than 64� 64, the detection accu-
racy decreases due to a smaller block number. The detection accu-
racy also decreases when the block size is less than 32� 32 due to
lower block decision accuracy.

The advantage of using overlapping blocks is shown in Table 7.
In this experiment, 400 images were used for the training set and
the testing set, respectively. If the step size is the same as the block
size (S ¼ B), it is the same as the non-overlapping block case. With
the use of overlapping blocks, the average image decision accuracy
(the average detection accuracy) increases from 71:82% to 80:96%

for block size of 128� 128, and from 79:22% to 82:66% for block
size of 64� 64. Overall, we can achieve a detection accuracy
slightly over 80% using block-based image steganalysis with over-
lapping blocks. Furthermore, we see that a larger block number
contributes more to detection accuracy than a larger block size.
For example, the detection accuracy increases from 80:96% to



Table 7
The average image decision accuracy (P) with different block sizes (B� B) and
different step sizes (S).

Block size Step size Overlap size Block number Detection accuracy

128 � 128 128 0 12 71.82
128 � 128 32 96 117 79.92
128 � 128 16 112 425 80.96

64 � 64 64 0 48 79.22
64 � 64 32 32 165 80.55
64 � 64 16 48 609 82.66

Table 8
Detection accuracy with different number of block classes.

Number of classes Detection accuracy

Cover image Stego image Total

2 64.52 78.27 71.40
4 73.98 75.45 74.71
8 81.29 82.29 81.79
16 86.32 85.11 85.71
32 86.92 88.26 87.59
64 90.48 86.65 88.56

Table 9
Performance comparison of block-based image steganalysis with different fusion
methods.

Decision fusion techniques Detection accuracy

Cover image Stego image Total

Weighted majority voting 78.54 84.91 81.72
Bayesian decision fusion 78.74 85.38 82.06
Dempster–Shafer theory of evidence 79.28 85.51 82.39
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82:66% as the block size decreases from 128� 128 to 64� 64
when overlapping blocks with step size 16 were used. This result
shows that the detection accuracy can be improved by using over-
lapping blocks even though they are not independent.
Table 10
The performance improvement of block-based image steganalysis with diffe

Classifier type Number of classes

Linear Bayes classifier 8
Logistic classifier 8
Fisher linear discriminant classifier 8
Linear Bayes classifier 16
Logistic classifier 16
Fisher linear discriminant classifier 16

Table 11
The performance comparison of block-based image steganalysis with differe

Classifier type Number of classes

Linear Bayes classifier 8
Logistic classifier 8
Fisher linear discriminant classifier 8
Linear Bayes classifier 16
Logistic classifier 16
Fisher linear discriminant classifier 16
6.3.4. Effect of block class number
The performance of block-based image steganalysis depends on

the number of block classes, C. The more block classes we have,
more codewords can be used to make the average distance be-
tween the codeword and block samples smaller. Thus, detection
accuracy is expected to improve with a higher block class number.
The detection accuracy with different numbers of block classes is
shown in Table 8. We see that detection accuracy increases with
the block class number. As the block class number increases from
2 to 64, detection accuracy increases from 71.40% to 88.56%. How-
ever, the performance improvement saturates as the block class
number reaches 32 and beyond.
6.3.5. Effect of decision fusion schemes
The majority voting scheme was adopted to fuse block decision

results to make final decision for a given test image in the above
subsections. Here, we compare detection accuracy of block-based
image steganalysis with three decision fusion schemes (namely,
weighted majority voting, Bayesian decision fusion and Demp-
ster–Shafer theory of evidence) in Table 9, where the block class
number was chosen to be 8. In the experiment, the MBS method
[23] was used to create stego images with an embedding rate
0.20 BPC. We decompose each image into blocks of size
B� B ¼ 64� 64. We see slight performance improvement with
the Bayesian decision fusion and the Dempster-Shafer theory of
evidence over the weighted majority voting. The overall detection
accuracy increases from 81.72% to 82.06% and 82.39%, respectively,
which is less than 1%. This indicates that the performance of the
proposed block-based image steganalysis is robust and it is not
much affected by the specific decision fusion rule applied.
6.4. Effect of classifiers

A linear Bayes classifier was used in all experiments in Sec. 6.3.
In this subsection, we will compare the performance of block-
based image steganalysis with different classifiers (including the
linear Bayes classifier, the Fisher linear discriminant classifier
and the logistic classifier) and show the results in Table 10. In
the experiment, the MBS method [23] was used to create stego
images with an embedding rate of 0.20 BPC. We decompose each
image from the training set and the testing set into blocks of size
rent classifiers for MBS.

Detection accuracy

Cover image Stego image Total

81.29 82.29 81.79
97.38 90.54 93.96
97.59 90.14 93.86
85.24 87.86 86.55
96.31 93.63 94.97
96.85 93.36 95.10

nt classifiers under the PQ method.

Detection accuracy

Cover image Stego image Total

56.07 59.02 57.55
70.49 58.42 64.45
64.92 64.12 64.52
56.00 60.43 58.22
68.88 59.29 64.08
65.12 64.52 64.82
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B� B ¼ 64� 64. Sample blocks are classified into C ¼ 8;16 classes
and a classifier is obtained for each class. The majority voting
scheme was adopted to fuse block decision results to make the fi-
nal decision.

We see that both the logistic classifier and the Fisher linear dis-
criminant classifier outperform the linear Bayes classfier by a sig-
nificant margin. When the number of block classes is 8, the
detection accuracy improves from 81.79% to 93.96% and 93.86%
and, when the number of classes is 16, the detection accuracy im-
proves from 86.55% to 94.97% and 95.10%, for the logistic classifier
and the Fisher linear discriminant classifier, respectively.

We also observe performance improvement for the PQ method
with different classifiers. The performance comparison of block-
based image steganalysis for the PQ method with different classi-
fiers is given in Table 11, where the embedding rate was set to
0.2 BPC. As the PQ method is known to be more secure than the
MBS method, the detection accuracy is lower regardless of classi-
fier type and the class number. When the block class number is
8, detection accuracy improves from 57.55% to 64.45% and
64.52% and, when the number of classes is 16, detection accuracy
improves from 58.22% to 64.08% and 64.82%, for the logistic classi-
fier and the Fisher linear discriminant classifier, respectively. The
performance improvement is around 6% for both cases, which is
smaller than that of the MBS method.

7. Conclusion and future extension

A block-based image steganalysis system was proposed in this
work, and extensive performance evaluation of block-based image
steganalysis was conducted. It was shown by experimental results
that the proposed method offers a significant improvement in
detection accuracy when compared to prior art using an frame-
based approach. Besides, block-based image steganalysis offers
decision reliability information even with only one test image gi-
ven, which is not available with the frame-based approach.

We studied the performance of the block-based steganalysis by
varying different parameters, including the block size, the block
number, the effect of block overlapping, the block class number,
the decision fusion scheme and the classifier choice. It was ob-
served that the performance of block-based image steganalysis is
less sensitive to the decision fusion methods but more sensitive
to the classifier choice. Specifically, the Fisher linear discriminant
classifier and the logistic classifier outperforms the linear Bayes
classifier by a substantial margin.

One possible future extension is to use adaptive block decom-
position. In the current system, images are decomposed into smal-
ler blocks of the same size. However, not all blocks are
homogenous with a fixed block size depending on block character-
istics. Thus, it would be beneficial to consider adaptive block
decomposition, which changes the block size adaptively based on
block characteristics. In this paper, we assumed that block deci-
sions are independent when we use multiple block decisions to
make a final decision for a given test image. As block decisions
are dependent especially when we consider overlapping blocks, it
will be interesting to analyze the performance of block-based im-
age steganalysis more accurately by taking the dependency of
block decisions into account. Furthermore, although we have
achieved excellent steganalysis performance for the MBS method
with a correct detection rate in the range of 95%, the detection rate
for the PQ method is still in the range of 65%. Thus, more efforts
have to be done in this area in the future.
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