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Abstract— In this paper, we present a compressed-domain
video retargeting solution that operates without compromising
the resizing quality. Existing video retargeting methods operate
in the spatial (or pixel) domain. Such a solution is not practical
if it is implemented in mobile devices due to its large memory
requirement. In the proposed solution, each component of the
retargeting system is designed to exploit the low-level compressed
domain features extracted from the coded bit stream. For exam-
ple, motion information is obtained directly from motion vectors.
An efficient column shape mesh deformation is employed to solve
the difficulty of sophisticated quad-shape mesh deformation in the
compressed domain. The proposed solution achieves comparable
(or slightly better) visual quality performance as compared with
several state-of-the-art pixel-domain retargeting methods at lower
computational and memory costs, making content-aware video
resizing both scalable and practical in real-world applications.

Index Terms— Video retargeting, compressed domain
processing, content-aware, cropping, column mesh, warping.

I. INTRODUCTION

THE INCREASING demand to display video contents
on devices with different resolutions and aspect ratios

calls for new solutions to video resizing. Traditional resizing
techniques are incapable of meeting this requirement as
they either discard important information (e.g. cropping)
or introduce visual artifacts by over-squeezing the content
(e.g. homogeneous rescaling). The goal of content-aware
video resizing (or video retargeting) is to change the aspect
ratio and resolution of videos while preserving the visually
important content and avoiding noticeable artifacts. Recently,
many pixel-domain solutions have been proposed for video
retargeting, which conducts resizing either through non-
uniform warping [1]–[4] or iteratively removing unimportant
contents [5], [6]. Despite their promising results and real-time
performance in the spatial domain [2], [4], such solutions are
still impractical as they only operate on raw video data. Since
most real-world video contents are stored and transmitted only
in compressed format, spatial domain retargeting techniques
are inevitably encapsulated by additional overheads of
decompression and recompression.

In this work, we attempt to address this issue with a
novel framework that performs content-aware resizing directly
on the compressed video bitstream. Processing video con-
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tents directly in the compressed domain has many advan-
tages in terms of speed, storage efficiency and quality. First,
the computational time is significantly reduced as a few
time-consuming modules (such as motion estimation) can be
effectively avoided. Second, the data rate is highly reduced in
the compressed domain, leading to significant memory saving.
Lastly, extra video quality degradation can be avoided as the
quantization and transform steps are not performed in the final
re-encoding stage.

One of the main contributions of this work is the formu-
lation of the retargeting problem using compressed domain
features and operations. Performing video retargeting in the
compressed domain is fundamentally different from that in the
pixel domain, since the former is limited by many constraints.
For example, all pixel-level information (e.g., color, gradient,
saliency), which has been extensively used for spatial-domain
retargeting, is unavailable in the compressed domain. Instead,
what we have is the block-level Discrete Cosine Transform
(DCT) coefficients, which are not directly correlated with
pixel-level features. Thus, this constraint demands us to take
a very different path to the solution. Specifically, our solu-
tion computes the visual importance map using compressed-
domain features obtained from the compressed video
bitstream. The motion information is obtained directly from
motion vectors in the coded file, and there is no need to
perform expensive computation to extract this information
again (e.g., optical flow as conducted in previous spatial-
domain methods [2]–[4]). In addition, existing warping-based
approaches [2]–[4], [7] often adopt quad-shape mesh defor-
mation. However, such geometrical modification is difficult
to perform in the compressed domain. To overcome this
limitation, we develop a novel column mesh deformation that
is compatible with compressed domain operations without
compromising the quality of resizing results.

After performing video retargeting, due to the change in the
frame size and the aspect ratio, motion vectors and prediction
modes of the output macroblocks have to be recomputed.
Another main contribution of this work is the development
of new mode decision and motion estimation modules in the
re-encoding stage to allow computational saving. By exploiting
block correspondences before and after retargeting, we provide
a fast yet effective method to estimate motion vectors and
prediction modes of the retargeted video. This saves efforts
in going through the time-consuming mode decision and
motion estimation procedures of a standard video encoder.
The proposed fast solution can achieve a speed up factor of
90 (compared with full motion search) and 30 (compared
with fast motion search) in the encoding stage. For visual
quality performance evaluation, we report a subjective user test
consisting of 56 subjects that compare our retargeting results
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with those of state-of-the-art spatial-domain video retargeting
methods. Although the exemplary video coding standard used
in this work is H.264/AVC, the proposed techniques can be
applied to other video coding standards in a similar fashion.

The rest of this paper is organized as follows. Related
previous work is reviewed in Section II. The system overview
is presented in Section III. The three key components of
the system; namely, partial decoding, compressed domain
re-sizing and re-encoding, are detailed in Sections IV,
V-E and VI, respectively. Experimental results are shown
in Section VII. Finally, concluding remarks are given in
Section VIII.

II. RELATED WORK

A. Image Retargeting

Content-aware image resizing techniques can be generally
classified into two categories: the discrete and the continuous
approaches [8]. For the discrete approach, content-aware resiz-
ing of an image is achieved through identifying and removing
unimportant image contents. The cropping-based method [9]
identifies the most prominent components in an image through
saliency-based measures and cuts out a rectangular region as
the retargeting result. The seam carving method [10] resizes
an image through continuously removing paths of pixels with
the least amount of energy. Realizing that no single retargeting
operator could perform well on all images, the multi-operator
method [11] that combines three different operators (namely,
scaling, cropping and seam carving) was proposed. For the
continuous approach, the retargeting problem [1], [12] is
formulated as nonlinear warping in which shapes of salient
regions should be well preserved while those of non-salient
regions are allowed to be squeezed or stretched.

Homogeneous image scaling and cropping in the com-
pressed domain has been studied in literature [13], [14]. By
exploring the distributive property of the unitary orthogonal
transform, image resizing methods that achieve DCT domain
down-sizing/up-scaling by a factor of two were proposed
in [13]. In [14], transform domain image resizing is further
extended by allowing resizing with an arbitrary ratio. Most
recently, content-aware image resizing in the compressed
domain has been studied. For example, Fang et al. [15]
proposed a JPEG image retargeting scheme guided by a
saliency map computed using DCT coefficients. Although
compressed domain features are used in this method, the
seam removal procedure still requires full decoding of the
JPEG image. In addition, as the overhead of compression
and decompression on images is much lower than videos,
the advantage of retargeting in the compressed domain is less
obvious.

B. Video Retargeting

Video retargeting is different from image retargeting as
temporal coherency and object motions are additional factors
to consider. Most video retargeting methods extend image-
based retargeting methods by adding additional constraints
that enforce temporal-adjacent regions to undergo similar
transforms [1], [2], [5]. Based on the seam carving image

retargeting method [10], video retargeting is formulated as
a graph-cut problem in a three-dimensional spatial-temporal
cube [5]. In [6], the removed seams are allowed to be uncon-
nected, and it was shown that discontinuous seams outperform
continuous ones under certain scenarios. In [3], cropping is
further introduced into the video retargeting framework as
it could outperform warping especially when the video is
over-populated with visually important contents. The issue
of scalability is addressed in [4], which optimizes saliency-
based resizing and temporal coherency separately to achieve
reduction in both computational and memory requirements.

Most recently, a video retargeting solution that utilizes
compressed-domain features was proposed in [16]. Based on
the spatial-domain seam carving approach [10], this method
uses compressed-domain features (e.g. DCT coefficients,
motion vectors) to compute the optimum seams for removal.
However, this method does not work fully in the compressed-
domain, as the resizing step still operates in the pixel-domain
and requires full-decoding of each video frame.

To the best of our knowledge, there is no existing solution
to video retargeting in the compressed-domain. Our work
provides a novel and practical solution for compressed domain
video retargeting that is applicable to the great majority of
today’s video.

III. SYSTEM OVERVIEW

The proposed system takes the H.264/AVC encoded video
bitstream as the input, conducts retargeting directly on
partially decoded DCT coefficients, and outputs the
H.264/AVC-compliant bitstream of the retargeted video.
The proposed system consists of three separate stages (or
modules) as shown in Fig. 1. They are:

1) the partial decoding stage;
2) the compressed domain video resizing stage; and
3) the re-encoding stage.

In the partial decoding stage, we decode the video
bitstream partially to reconstruct the non-inverse-quantized
DCT coefficients of each frame. In the resizing stage, we
perform video analysis and content-aware resizing directly
based on compressed domain features and operations. The
output of the resized image is re-encoded to be the output
bitstream in the last stage. Details of each module will be
described in the following sections.

IV. PARTIAL DECODING

In this stage, we partially decode the input bitstream to
the proper form of compressed data such that it can be
further utilized in the resizing stage. Although we try to limit
the amount of operations conducted in this stage, a certain
amount of decoding is still required. The input bitstream
is first entropy decoded into residual DCT blocks, which
are then used to compute reconstructed DCT blocks of the
original video frame. Since our system operates directly in
the DCT domain, no inverse DCT is required as well. To
further reduce the overhead of the decoding stage, we avoid
the inverse quantization step as well. Therefore, the output
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Fig. 1. The block diagram of the proposed compressed-domain video retargeting system that consists of three stages (or modules): 1) the partial decoding
stage, 2) the compressed domain video resizing stage, and 3) the re-encoding stage.

Fig. 2. The block-diagram of the compressed-domain video resizing stage. This module takes reconstructed DCT coefficients as input and outputs DCT
coefficients of the retargeted video.

of the partial decoding stage are non-inverse-quantized DCT
block coefficients.

To compute reconstructed DCT coefficients from the resid-
ual data, we make use of the transform domain prediction
techniques proposed in [17], [18]. As the H.264/AVC standard
supports both intra and inter prediction modes, two types of
prediction are conducted here. For the inter-prediction mode,
we use the macroblockwise inverse motion compensation
(MBIMC) scheme proposed by Porwal et al. [17]. In this
scheme, the predicted DCT block of the current frame is
estimated using DCT coefficients of nine spatially-adjacent
blocks in the previous frame. Although originally proposed
for the MPEG standard, this method can be easily applied
to the inter prediction mode of H.264/AVC as well. For the
intra-prediction case, different situations have to be consid-
ered as H.264/AVC supports nine intra-prediction modes for
4 × 4 sub-blocks and four intra-prediction modes for 16 × 16
macroblocks. Here, we use the method in [18] to compute
the DCT coefficients of intra-predicted blocks. By combining
the intra/inter-predicted DCT coefficients and the partially

decoded residual DCT coefficients, we obtain reconstructed
DCT coefficients, which will be utilized in the resizing stage.

Another important task to be performed in this stage is
extracting motion vectors from the input bitstream. The motion
vectors are temporarily stored, and they will be processed and
utilized in both the resizing and the re-encoding stages.

V. COMPRESSED DOMAIN VIDEO RESIZING

In this stage, we perform content-aware resizing using
compressed-domain features and operations with multiple
steps. The input video is first segmented into different scenes
and each scene is processed separately. Then, we analyze
the importance of each scene using three different measures:
saliency, motion and texture. Guided by the importance map,
the input video is partially resized through optimum cropping,
followed by the column-mesh-based warping procedure to
reach its desired size. Finally, we compute DCT coefficients
of the retargeted result. The block-diagram of this procedure
is depicted in Fig. 2. All steps will be detailed below.
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Fig. 3. Top: the manual scene segmentation result for a 1200-frame segment
of the big buck bunny sequence. Bottom: the percentage of block change Tc
of each frame. The sharp peaks in the Tc curve closely match the manual
segmentation result.

A. Scene Change Detection

We use a pair-wise macroblock comparison method to detect
scene changes between consecutive frames. For each video
frame, we compare the DCT coefficients of each block with
the average coefficient values of the same block in previous
frames. The content difference for block k is computed as

ηk = 1

N2

N×N∑

i=1

∣∣ck(i) − c̄T
k (i)

∣∣

max{ck(i), c̄T
k (i)}

where N is the size of block, ck(i) is the DCT coefficient of
block k, and c̄T

k (i) is the average DCT coefficients of block k
of the previous T frames (in our case, T = 5).

If this difference exceeds a preset threshold, we claim that
there is a change for block k. We use Dk to denote this change:

Dk =
{

1 ηk > ηthre

0 otherwise

Let K be the total number of blocks in a frame. For all blocks
in the current frame, when the percentage of changed blocks

exceeds a preset threshold τ ; namely, Tc =
∑K

k=1 Dk
K > τ, a

scene change is detected, and the entire data of this scene will
be loaded for further processing. Fig. 3 illustrates the scene
change detection results for a segment of 1200 frames of the
big buck bunny sequence. The sharp peaks in the Tc curve
indicates the occurrences of scene changes.

B. Visual Importance Analysis

The visual importance map is used to guide the retargeting
process, since we would like to preserve the important content
as much as possible while allowing the unimportant content
undergo more deformation in an ideal retargeted result. Once
a scene change is detected, data of the entire scene would
be processed together for visual importance analysis. The
challenge of conducting analysis in the compressed-domain is
that the original pixel values are unknown and we need to rely
on compressed-domain features (e.g., DC, AC coefficients,
motion vector, etc.) only. In this work, we perform content
analysis based on three features: saliency, texture and motion.
Each analysis generates one single map, which will eventually
be combined to form the final visual importance map.

1) Saliency Map: Saliency is used to detect the region of
interest in images, and has been widely used to guide both
image and video retargeting [2]–[4], [7], [12]. While most

saliency detection methods operate in the pixel-domain [19],
[20], there is recent work on compressed-domain saliency
detection for images [15] and videos [21].

In the proposed system, we adopt the spectral-residual visual
attention model [19] for saliency map computing. In [19],
the saliency map of an image is calculated using the spectral
residual signal, derived from analyzing the log spectrum of
the image. Although this saliency detection method operates
in the pixel-domain, we can modify it so that it can be used in
the DCT domain as well. Instead of downsampling the input
image to a smaller size as done in [19], we directly use the DC
coefficient of each DCT block and apply the same saliency
detection algorithm to this DC-based image. For the 4 × 4
DCT transform, the DC coefficients of the entire image yield
an equivalent image obtained by downsampling the original
image to its original size by a factor of 4 × 4. For improved
temporal coherency, the visual saliency map is temporally
filtered with its neighboring T frames (in our system, T = 5).

2) Texture Map: Fine structures, such as textures and edges,
need special treatment in video retargeting. One of the limi-
tations of seam carving [5] is that, when the removed seams
pass through edge regions, noticeable artifacts would occur.
In addition, the effect of texture regularity on the retargeting
result was studied in [22], and it is observed that stochastic
textures are less susceptible to large deformation than regular
textures.

The saliency map generated using [19] contains limited
amount of texture information, as only DC coefficients were
used for computation. Extracting textures and edges normally
require pixel-level processing, yet it is possible to obtain
some level of texture and edge information through fre-
quency analysis on DCT coefficients as textures and edges
correspond to mid-to-high frequency components in the DCT
domain.

In the proposed system, we use different frequency com-
ponents of DCT coefficients to generate the feature vector
for each block. To classify each block into one of the three
categories (texture, edge and smooth region), we compute
the distance between the feature vector of a given block
with a group of preset feature vectors, obtained by training
on a set of test sequences from the public database [23].
The likelihood of a block belonging to a particular category
(k = tex, edge, smooth) is given by:

Lk = e
1

1+dk

∑
k e

1
1+dk

,

where dk is the Euclidean distance between the feature vector
and the preset centroid vector for category k. In this work, we
pay special attention to the texture map Ltex .

The texture degree of a block also provides a measure on the
reliability of motion vectors. It is well known that low-textured
regions tend to yield larger encoding matching errors [24]. For
each macroblock, we can compute a confidence score for the
corresponding motion vector using its texture degree, which
will be elaborated in the next section.

3) Motion Map: The saliency map generated by [19] mainly
captures the visual attractive parts in an individual frame, but
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Fig. 4. Illustration of motion map generation using motion vectors from sequence coastguard. From left to right: one video frame, the original motion vector
map, the compensated object motion, and the final motion map (after applying temporal filtering on the compensated motion map).

fails to consider the motion information, which is another
critical factor for important content detection in video. For
example, a fast moving object might be non-salient in a single
frame, but an important content in a video sequence.

Most spatial-domain video retargeting methods [2]–[4],
[7] have incorporated motion detection techniques based on
the SIFT feature [25] or optical flow [26]. However, these
motion detection methods are not applicable in the compressed
domain. Our goal here is to detect moving regions in the video
sequence using the motion vectors embedded in the video
bitstream. There are two challenges for using motion vectors
directly for moving object detection:

1) It is common that the video includes various types of
camera motions (e.g. zoom, pan, tilt) and they need to
be excluded to reflect true object motion.

2) Some motion vectors are unreliable as they do not agree
with the true motion.

In the proposed system, the camera motion is estimated
using a four-parameter global motion model [27]. In this
model, the relationship between pixels of consecutive frames
can be written as:

(
x̄
ȳ

)
=

(
z r

−r z

) (
x
y

)
+

(
pr

pd

)
, (1)

where x and y are coordinates of the current frame,
x̄ = x − mvx and ȳ = y − mvy are coordinates of the
previous frame, z, r , pr and pd are the four unknown camera
parameters representing zoom, rotate, pan right and pan down,
respectively.

To estimate the four camera parameters, we can re-write
Eq. (1) as an over-determined linear system [27] and compute
the least-square estimator of the four camera parameters:

XLS = [
z r pr pd

]T = (HT H)−1HT Y, (2)

where Y is the observation column vector and H is the spatial
location matrix. As done in [24], we weigh the rows of
Y and H using the confidence measure computed from the
texture map so that unreliable motion vectors would have a
minimum impact on the camera motion estimation result.

The estimation process given above assumes that object
motion does not fit into the camera model in Eq. (1) and
becomes outliers in the least square estimation. The estimated

object motion is then computed as

MVobj =

⎡
⎢⎢⎢⎢⎣

m̄vx (1)
m̄v y(1)
m̄v x(2)
m̄v y(2)

...

⎤
⎥⎥⎥⎥⎦

= Y − H · XLS,

where m̄v x(i) and m̄v y(i) are the compensated motion vector
components of block i . The final motion map is computed
using the magnitude of the compensated motion vector and
applying a temporal filter over the neighboring T frames (in
our case, T = 5).

We show the motion vectors after motion compensation and
the final motion map for sequence coastguard in Fig. 4. The
original motion vectors include both the object motion (ship)
and the camera motion (right pan). After motion compensa-
tion, we eliminate the camera motion from the original motion
vectors, leaving only the object motion. The two camera
parameters in Eq. (2), pr and pd will be used in the mesh
deformation stage as described in Section V-D.

4) Visual Importance Map: For each video frame, the
final visual importance map denoted by I is computed by
combining all three maps (see Fig. 5) generated from the above
analysis:

I = Is × It × Im , (3)

where Is , It and Im are the saliency, texture and motion map,
respectively. The values of all three maps are normalized
to the range of [0.10, 1.00]. Although there are other ways
(e.g., weighted sum) to fuse all three maps into the final
importance map, we find that the multiplication-based fusion
generates a more satisfying result.

C. Optimum Cropping

The importance of incorporating cropping into video retar-
geting was extensively discussed in [3]. When the video
sequence is densely populated with salient contents, it is
difficult to preserve all salient contents while maintaining
temporal coherence, because the retargeting result would be
close to uniform scaling in this scenario. Instead of performing
nonuniform warping on the entire frame, a better solution is
to allow some of non-salient regions to be discarded.

In the proposed system, we partially resize the video
through cropping first, and then perform warp-based defor-
mation to resize the video to its desired size. We define the
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Fig. 5. Illustration of the visual importance analysis procedure: frames of the entire scene are analyzed and three maps (saliency, texture and motion) are
generated. Being fused together, they form the final visual importance map.

Fig. 6. Left: the average column importance curve for different cropping factors in the cropping range. Each point in this curve corresponds to the best
window of a given length. The optimum cropping factor and its corresponding window maximize the average column importance within the cropping window.
Right: the optimum cropping window and the average visual importance for each column. Columns marked by blue color represent the region that fall inside
the cropping window while columns marked by red color would be discarded after cropping.

cropping factor as the percentage of block columns to discard
during cropping. The optimum cropping factor, which balances
the amount of cropping and warping, needs to be determined
at the first place. Since the importance map is computed at
the DCT block level, we perform cropping through discarding
unimportance columns of DCT blocks (size of 4 × 4 in our
case). In the following, we assume the resizing is conducted
along the horizontal direction. The same process can be
applied to resizing in the vertical direction.

To compute the optimum cropping factor, we first determine
the minimum and the maximum cropping factors, which are
precomputed values based on the desired resizing factor.
For example, if the resizing factor is 0.50 (resized to half
width), the minimum cropping factor is set to be 0.50 +
(1.0 − 0.50) × 20% = 0.60, while the maximum cropping
factor is 0.50 + (1.0 − 0.50) × 80% = 0.90. Within this
cropping range, we compute the average visual importance
value for all possible cropping options. Our goal is to find
a rectangular region in the input video that contains the
maximum average visual importance value. Since we are only
dealing with a limited number of options, we use exhaustive
search to compute the best cropping window of a given
window length. After computing the best cropping window
for each window length (see Fig. 6), we look for the optimum
window length that contains the maximum average visual
importance value. Once we have determined the optimum
cropping window of the given video scene, we discard the
columns of DCT blocks that fall outside of this window. This
cropping window will be applied to all the frames of the
same scene.

D. Column Mesh Deformation

After partially resizing through cropping, the video will
be further resized to its desired result through nonuniform
warping. For spatial domain retargeting methods [2]–[4],
[7], a quad-shape mesh is often used to guide the warping
operation. However, conducting a quad-to-quad deformation
is a challenging task in the compressed domain since it is
difficult to compute the corresponding DCT coefficients of
a block after it is warped to an arbitrary-shape quadrilateral.
Instead of adopting the conventional quad-shape mesh, we use
a column-shape mesh to guide the warping process.

For mesh warping, we extend the formulation in [22] and
adjust it to our proposed column-mesh structure. In addition,
two new energy terms are added to preserve motion and
temporal coherency.

Consider a column mesh, represented by Mt = {
Vt , C

}
, as

shown in Fig. 7, where C = {c1, c2, ..., cn} denotes the set
of columns, and Vt = {

v t
0, v

t
1, v

t
2, ..., v

t
n

}
is the set of vertex

positions, with v t
i representing the horizontal coordinate of

vertex i . The width between consecutive mesh vertices is set
to 4, which is the same as the length of transform block. We
place such a mesh on each input video frame. We take the
initial vertex positions of each frame, Vt , as the input and
solve for their new positions Vt

new = {
v̄ t

0, v̄
t
1, v̄

t
2, ..., v̄

t
n

}
by

minimizing an objective function as described below.
1) Shape Deformation: During the resizing process, we

want to preserve the shape of columns with high saliency while
allowing columns of lower saliency to be squeezed or stretched
more. For each each frame t , we measure the amount of shape
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Fig. 7. The column mesh used for compressed-domain video resizing. The
mesh M = {V, C} includes a set of vertices Vt = {

v t
0, v t

1, v t
2, ..., v t

n
}

and a
set of columns C = {c1, c2, ..., cn }.

deformation of column i as

Dt (ci ) = ∥∥(v̄ t
i − v̄ t

i−1) − li (v
t
i − v t

i−1)
∥∥2

, i = 1, 2, 3 · · · , n,

where li is the optimum scaling factor for Ci and is updated
at each iteration as:

l(k)
i = l̃i

|v t (k)
i − v

t (k)
i−1 |

where l̃i is the original width of column i before deformation.
v

t (k)
i is the vertex position of column i at iteration k.

The shape deformation energy of all columns is given by

Ed =
∑

t

∑

ci∈C

I t (ci ) · Dt (ci ), (4)

where I t (ci ) is the average visual importance of column ci at
frame t .

2) Vertex Order Preservation: It is possible that some
vertices may flip over each other after mesh deformation,
leading to unwanted artifacts. To avoid it, we preserve their
relative positions with respect to their immediate neighboring
vertices by maintaining their relative barycentric coordinate.
For vertices vi , we minimize:

Ev =
∑

t

∑

i

∥∥∥∥∥∥
v̄ t

i −
∑

v j∈N(vi )

mij · v̄ t
j

∥∥∥∥∥∥

2

, (5)

where mij is the barycentric coordinate of v j with respect
to vi , and N(vi ) represents the set of neighboring vertices
of vi .

3) Temporal Coherency: To preserve temporal coherency
and avoid jittering artifacts, we enforce the temporal smooth-
ness of vertex positions across neighboring frames. Specifi-
cally, we try to minimize

Ec =
∑

t

∑

i

∥∥∥v̄ t+1
i − v̄ t

i

∥∥∥
2

(6)

where v t
i are vertex positions of the previous frame.

4) Motion Preservation: As noted in [3], simply enforcing
per-pixel smoothing along the temporal dimension, which does
not take object or camera motion into account, yields poor
re-sizing results. Under this scenario, an object that moves
from the left to right of the frame may be resized differ-
ently throughout the whole scene. For example, as shown in
Fig. 8 (top), the scene consists of camera panning from right

Fig. 8. The impact of using motion preservation in the column mesh
deformation. Top: resizing results without considering motion preservation
and the corresponding column vertex movement paths. The tree is resized
inconsistently at different frames. Bottom: resizing results that considers
motion preservation and the corresponding column vertex movement path.
The tree size undergoes more consistent transformation throughout the entire
video sequence.

to left and the tree size has changed across the frames without
motion preservation.

To account for object motion and camera motion, we exploit
the camera parameters estimated in Section V-B. Specifically,
we utilize the camera right panning parameter, pr , since we
resize the input video along the horizontal direction. Similarly,
the down panning parameter, pd , will be used if we perform
resizing along the vertical direction. To achieve motion-aware
resizing, we minimize the following energy:

Em =
∑

t

∑

i

∥∥∥(v̄ t+1
i − v̄ t+1

i−1 ) − (ūt
i − ūt

i−1)
∥∥∥

2
, (7)

where ut
i = v t+1

i − pt
r , and pt

r is the right panning parameter
of frame t . ūt

i represents the corresponding position of ut
i after

mesh deformation. Since ut
i may not align with any of v t

i , we
represent it with a linear combination of the column mesh
vertices in its immediate vicinity as

ut
i =

∑

v j∈N(ui )

mij · v t
j ,

where mij is the barycentric coordinates of ut
i w.r.t. column

vertices v t
j of its immediate vicinity N(ui ). Note that we

only consider columns whose corresponding positions in the
previous frames are still within the frame boundary. For other
columns, their temporal coherency will be preserved by the
temporal coherency energy defined in Eq. (6). As shown
in Fig. 8 (bottom), after incorporating the energy function
for motion preservation, the tree size has been preserved
throughout all frames.

5) Joint Optimization for Column Mesh Deformation:
Combining all energy terms in Eqs. (4)–(7), we solve for the
deformed column mesh by minimizing the following objective
function:

E = Ed + α · Ev + β · Ec + γ · Em, (8)
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subject to the boundary constraint. The weighting coefficients
are empirically set to α = 1.0, β = 50.0 and γ = 10.0 in
our experiments. We can represent the objective function in
Eq. (8) and its constraint in matrix format as:

‖DV − l(V)‖2
︸ ︷︷ ︸

Eq.(4)

+ ‖CV‖2
︸ ︷︷ ︸

Eq.(5)

+ ‖TV − S‖2
︸ ︷︷ ︸

Eq.(6)

+ ‖MV − N‖2
︸ ︷︷ ︸

Eq.(7)

+ ‖PV − Q‖2,
(9)

where the last term, ‖PV − Q‖2, denotes the position
constraint imposed by the target video size. The matrix expres-
sion given above can be rewritten as

min
V

‖AV − b(V)‖2, (10)

where

A =

⎛

⎜⎜⎜⎜⎝

D
C
T
M
P

⎞

⎟⎟⎟⎟⎠
, b(V) =

⎛

⎜⎜⎜⎜⎝

l(V)
0
S
N
Q

⎞

⎟⎟⎟⎟⎠
.

The nonlinear least-squares optimization problem in
Eq. (10) can be solved through an iterative Gauss-Newton
method. The vertex positions are initialized with a homoge-
nous resizing condition and updated iteratively via

V(k) = (AT A)−1AT b(V(k−1)) = H · b(V(k−1)), (11)

where V(k) is the vector of vertex positions after the k-th
iteration. As H is only dependent on A, it can be precomputed
and stay fixed during the iteration process.

E. Transform Domain Block Resizing

Once the deformed mesh is computed, we use this infor-
mation to resize the video frame in the compressed domain.
We employ the DCT domain resizing method in [14], which
supports resizing with arbitrary factors. In [14], each block
in the resized frame is downsized from a rectangular region
(called the supporting area) in the original frame as illustrated
in Fig. 9. The resizing is conducted in two separate steps:
1) extracting the supporting area from the original frame,
and 2) downsizing the supporting area to a square-size output
block.

In the proposed system, the block resizing task is conducted
at the transform block level. With the information of the
deformed mesh, we first compute the supporting area of
each output macroblock through reverse mapping. Specifically,
for every vertex v̄i in the retargeted frame, we compute
its corresponding coordinates in the original frame through
interpolation. Then, every N × N block (N = 4 in our case)
in the resized frame is reverse-mapped to an N × N ′ block in
the original frame. The height of the supporting area equals
to the output block as we only consider resizing along the
horizontal direction. It should be noted that the supporting area
may cover multiple transform blocks in the original frame, and
some blocks may be only partially covered by the supporting
area.

Fig. 9. Illustration of the supporting area, which each macroblock of the
output video frame is resized from its corresponding supporting area in the
original frame.

By following [14], the supporting area is resized to the
output block via

B̄ = [
IN 0

]
N×N ′ · ML ·

∑

Bi∈S(B̄)

Bi · MR ·
[

IN

0

]

N ′×N
, (12)

where IN is an identity matrix of size N × N , and Bi are
DCT coefficients of blocks that are covered by the supporting
area of B̄ , ML and MR are the DCT transforms of shifting
matrices, and S(B̄) denotes the supporting area of block B̄.

VI. RE-ENCODING

In the last stage, we re-encode the block DCT coefficients
of the retargeted result to an H.264/AVC-compliant bitstream.
The re-encoding step is essentially the reverse process of
that in the partial decoding stage. It should be noted that
quantization is not required here since we did not perform
inverse quantization in the partial decoding stage. The encoder
forms a prediction of each macroblock based on previously-
coded data either from the current frame using intra prediction
[18] or from other frames that have already been coded [17].
The prediction is then subtracted from the current macroblock
to form a residual and exported to the output bitstream.
However, since each macroblock is modified during the retar-
geting process, there are two additional issues to be addressed:
1) macroblock type selection, and 2) motion vector
re-estimation. We will describe our solutions below.

A. Macroblock Type Selection

For selecting the macroblock types, we employ the
MTSS scheme [28], which was originally proposed for the
compressed-domain video downsizing system. This scheme
can be modified to fit our retargeting framework. For the
H.264/AVC video coding standard, a macroblock in a P frame
can be intra-coded, forward predicted, or skipped. A predicted
B-frame macroblock can be intra-code, forward, backward,
or bi-directionally predicted, or skipped. We use the area
proportion of each macroblock w.r.t. the supporting area to
determine the prediction mode of output macroblocks.

A retargeted macroblock is intra-coded if and only if more
than 50% of its supporting area covers macroblocks that are
originally intra-coded. For B frames, a retargeted macroblock
is to be forward predicted if more than 70% of its supporting
area covers original macroblocks that have forward prediction.
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TABLE I

SCENE CHANGE DETECTION RESULTS ON TWO TEST SEQUENCES: BIG BUCK BUNNY AND ELEPHANTS DREAM

Fig. 10. Motion vector of a retargeted block, m̄v , is estimated using the
motion vectors in its supporting area: ¯mv1, ¯mv2 and ¯mv3.

Similarly, it is backward predicted if 70% of its supporting area
covers original macroblocks that have backward prediction. In
the case where the supporting area covers both forward and
backward predicted macroblocks while both are lower than
70%, then the prediction type that has a higher percentage will
determine the retargeted macroblock type. In case of a tie (50%
backward, 50% forward) the macroblock is bi-directionally
predicted.

B. Motion Vector Refinement

The conventional way to generate an H.264/AVC bitstream
of a resized video requires decompressing it and then applying
a spatial-domain motion estimation technique to recompute
motion vectors in the pixel domain. However, recomputing
motion vectors is a computationally intensive procedure and
it typically takes 60% or higher of the workload of a video
encoder [29]. To remedy this, we propose a motion vector
refinement technique that works directly in the compressed
domain and re-estimate the new motion vector using motion
vectors of the original macroblocks. The proposed refinement
technique is intended only for inter-frame coding, as intra
frames are coded independently and do not contain any motion
information.

Consider the case of resizing a supporting area of size
N × N ′ (N ′ = L1 + L2 + L3) to the output macroblock of
size N × N , as shown in Fig. 10. The supporting area covers
three macroblocks in the original frame with motion vectors

¯mv1, ¯mv2 and ¯mv3, respectively. The motion vector m̄v of the
resized macroblock is estimated as

mv = N

N ′

∑
i ¯mvi · Li∑

i Li
, (13)

where ¯mvi is the motion vector of original macroblock
i and Li is the length of macroblock i in the supporting
area. It should be noted that intra macroblocks are considered

as blocks with zero motion vectors. The effectiveness of
our motion vector refinement scheme is validated through
experiments in the next section.

VII. EXPERIMENTAL RESULTS

In this section, we demonstrate the effectiveness of the
proposed compressed-domain video retargeting solution by
comparing its results with previous spatial domain video
retargeting methods [2], [4], [5]. We begin with evaluating
the scene change detection method in our proposed system,
followed by visually comparing our retargeting results with
other spatial-domain techniques. The effectiveness of our
motion vector refinement technique is then validated, followed
by computation complexity analysis on the proposed system
versus spatial-domain retargeting methods. Finally, we present
subjective quality evaluation results conducted on 56 subjects.

A. Scene Change Detection Evaluation

In Table I, we evaluate the performance of our scene
change detection algorithm proposed in Section V-A. The two
test sequences used in this experiment, big buck bunny and
elephants dream, contain various types of scene changes and
camera motions. In our experiment, abrupt and gradual scene
changes are evaluated separately.

The performance of a scene-change-detection algorithm is
measured in terms of recall and precision rate. The recall and
prevision rate are defined as:

Recall = Nc

Nc + Nm
× 100%

Precision = Nc

Nc + N f
× 100%

where Nc , Nm and N f represent the number of correct, miss
and false detections, respectively.

Our proposed scene change detection algorithm performs
relatively well on big buck bunny sequence, with recall rate of
96.97% and precision rate of 94.81%. The algorithm has better
performance in detecting abrupt changes than gradual changes.
While none of the abrupt changes are missed by our method,
the number of missed gradual changes is relatively high
(4 out of 5 were missed). On the other hand, our method has
relatively lower recall and prevision rates on elephants dream
sequence. This is mainly due to the existence of non-static
background and fast camera motions in the video content.
This implies that our detection method is not robust enough
to perform well on all types of video sequences and there is
still room for further improvement.
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Fig. 11. Performance comparison of the proposed solution versus the seam carving method [5] for sequence rat and roadski. From left to right: the original
video sequence, the result of seam carving [5] and our result. The seam carving method is incapable of preserving the shape of prominent edges, as can be
observed at from the distortions on the curb-line in the rat sequence and the road-lines of the roadski sequence.

Fig. 12. Performance comparison of the proposed solution versus the pixel-warp method [2] for sequence waterski. From left to right: the original video
sequence, the result of [2] and our result. The pixel-warp method over-squeezes the water wave region of the waterski sequence, leading to noticeable artifacts.
In contrast, our method incorporates cropping into the whole procedure and performs better in preserving the original content.

B. Visual Quality Comparison

We show the retargeting results of the proposed solution
with three state-of-the-art spatial domain methods [2], [4], [5]
in Figs. 11–13 for visual comparison.

The performance comparison with the seam carving method
[5] is given in Fig. 11. The seam carving method resizes a
video through continuously removing seams. In some cases,
it is incapable of preserving prominent edges. As shown in
Fig. 11, while seam carving introduces noticeable artifacts
to the edge regions in both sequences (rat and roadski), the
results of our solution contain fewer visual artifacts as the
shape of prominent edges is better preserved.

We compare the performance of the proposed solution with
that of the pixel-warp retargeting method [2] in Fig. 12. Our
method differs from the pixel-warp retargeting method in
that we have incorporated cropping in the resizing procedure,
thereby avoiding over-squeezing the original video content.
When the change in the aspect ratio is significant, as shown in
the example of Fig. 12, the method entirely based on warping
[2] over-squeezes the relative non-important video content,
leading to noticeable visual distortion.

Finally, we compare the performance of our solution
with the method proposed by Wang et al. [4], which is

a state-of-the-art method with optimized computational effi-
ciency. Being similar to our method, the method in [4]
incorporates both cropping and warping. For most test
sequences, our method achieves comparable performance as
that of [4]. One example is shown in Fig. 13. On the other
hand, since our method operates directly in the compressed
domain, it has an advantage in terms of computational and
memory cost saving. This will be analyzed in Sec. VII-D.

C. Effectiveness of Motion Vector Refinement

In the re-encoding stage, to avoid the computationally
expensive procedure of motion search, we proposed a motion
vector refinement scheme that computes the new motion vector
of each retargeted macroblock using original motion vectors.
We evaluate the effectiveness of this approach by comparing
it with full motion search in terms of encoding PSNR. In the
experimental setup, the retargeted sequence is encoded into an
H.264/AVC (baseline profile) bitstream using the JM reference
software [30]. All test sequences are encoded at a bit rate of
2 Mbps and a frame rate of 15 fps. The results of six different
test sequences are listed in Table II.

As listed in Table II, the motion vectors generated by our
refinement scheme offer comparable encoding PSNR values as
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Fig. 13. Performance comparison of the proposed solution versus the approach by Wang et al. [4] for sequence big buck bunny, car and building. From left
to right: the original video sequence, the result of [4] and our result. Our method achieves comparable results in terms of visual quality, yet it has a lower
computational cost and memory consumption.

TABLE II

PERFORMANCE COMPARISON OF RE-ENCODING USING THE PROPOSED

MOTION VECTOR REFINEMENT APPROACH VERSUS FULL SEARCH

that of full search, which can be viewed as the upper bound.
On the average, the PSNR value of the proposed scheme is
about 1 dB lower than that of the full search. For sequences
with less movement such as big buck bunny and rat, the PSNR
difference can be as low as 0.60 dB. However, for sequences
with significant moving background (such as building), the
estimated motion vectors using our approach may become
less reliable, leading to relatively larger difference (3.53 dB
difference for building sequence). In all, the proposed solution
achieves fast and accurate re-estimation of the motion vector
for the output target video while significantly reducing the
complexity of full search.

D. Computational Complexity Analysis

In Table III, we further compare the computational com-
plexity of the proposed solution with spatial domain video

retargeting algorithms. The experiments were conducted
on a segment of big buck bunny sequence (158 frames,
size: 672×384) encoded using the H.264/AVC baseline profile
coding standard. It should be noted that the computational
complexity for each frame may be different, as different
prediction modes are used for each frame. Table III shows
the per-frame total operation cost averaged over all frames.
In the encoding stage, the EPZS approach [31] is used for
fast motion search.

In the decoding stage, spatial-domain methods demand the
entire full decoding process, including inverse DCT, inverse
quantization, motion compensation and intra prediction. Our
solution operates directly in the compressed domain, thereby
avoiding both inverse DCT and inverse quantization, leading
to 13.72% savings in the total operation cost (see Table III).
For the encoding stage, with the proposed motion vector re-
estimation scheme, our proposed system results in 30.17%
and 99.92% savings in the total operation costs as compared
with the fast [31] and full motion search approach, respec-
tively.

In Table IV, we show the computation complexity analy-
sis for two other test sequences: roadski (99 frames, size:
540 × 280) and building (104 frames, size: 720 × 376).
Experimental results on these two sequences also demonstrates
that our proposed systems leads to significant cost savings in
both encoding and decoding stage.
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TABLE III

COMPLEXITY ANALYSIS FOR RETARGETING THE BIG BUCK BUNNY SEQUENCE FOR DCT DOMAIN VERSUS THE SPATIAL DOMAIN

TABLE IV

COMPLEXITY ANALYSIS FOR RETARGETING THE ROADSKI AND BUILDING SEQUENCE FOR DCT DOMAIN VERSUS THE SPATIAL DOMAIN

Fig. 14. Pairwise comparison results of 56 user study participants, which
show that users have a preference on the visual quality of our solution over
the other three benchmarking methods proposed in [2], [4], [5].

E. Subject Visual Quality Test

Lastly, we report the subject test results on the visual
quality of the proposed retargeting solution via a user study
conducted on 56 participants (27 female and 29 male, aged
between 22 and 54). The experiments were conducted in the
typical laboratory environment. We used 6 different videos in
the experiment and retargeted each video to 50% width using
the method in [2], [4], [5] and our method.

In the subject test, we presented the output video sequences
obtained by two retargeting methods side-by-side to the
observer, who is then asked to choose the better one among the
two. Among each pair, one is our own result while the other
is the result from one of the state-of-the-art spatial domain
methods in [2], [4], [5]. The entire user study consists of

6 × 4 = 24 video pairs and we received 24 × 56 = 1344
answers overall. It took on average 15-20 minutes for each
participant to complete the user study. To minimize user bias,
we randomized the order of test pairs and hid all technical
details from the participants.

We show the results of our conducted user study in
Fig. 14. Our results were favored in 61.1% (821 of 1344)
of the comparisons with Rubinstein et al. [5], in 59.3%
(797 of 1344) of the comparisons with Krahenbuhl et al. [2],
and in 57.9% (778 of 1344) of the comparisons with
Wang et al. [4]. The study results show that users have a
stronger preference on the visual quality of our solution over
the other three benchmarking methods.

VIII. CONCLUSION

In this paper, we proposed a practical video retargeting
system that operates directly on DCT coefficients and motion
vectors in the compressed domain. This solution avoids
the computationally expensive process of de-compressing,
processing, and recompression. As the system uses the DCT
coefficients directly for processing, only partial decoding of
video streams is needed. The proposed solution achieves com-
parable (or slightly better) visual quality performance as that of
several state-of-art spatial domain video retargeting methods,
yet it significantly reduces the computational and storage costs.
Although the proposed system uses the latest H.264/AVC
coding standard as an example, the general methodology is
applicable to other video coding standards as well.
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This study can be extended along the following directions:

1) The scene change detection method in our proposed
system, may not be robust enough for scenes that contain
fast camera motions and large moving foregrounds.
More sophisticated compressed-domain scene change
detection algorithms (such as [32]) can be adopted to
account for more dynamic scenarios.

2) The column-mesh structure in our proposed solution
only squeezes or stretches video content along one
direction. A more sophisticated mesh structure (e.g.
axis-aligned deformation [33]) can be utilized to allow
homogenous scaling of important objects.

3) For motion vector refinement, we assigned zero motion
vector to intra-coded blocks. More reliable estimation of
motion vectors for intra blocks is also our future effort.
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