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A high-definition video quality assessment (VQA) database that captures two typical video distortion
types in video services (namely, ‘‘compression’’ and ‘‘compression followed by scaling’’) is presented in
this work. The VQA database, called MCL-V, contains 12 source video clips and 96 distorted video clips
with subjective assessment scores. The source video clips are selected from a large pool of public-domain
high-definition (HD) video sequences with representative and diversified contents. Both distortion types
are perceptually adjusted to yield distinguishable distortion levels. An improved pairwise comparison
method is adopted for subjective evaluation to save evaluation time. Several existing image and video
quality assessment (IQA and VQA) algorithms are evaluated against the MCL-V database. The MCL-V
database is publicly accessible in the link – http://mcl.usc.edu/mcl-v-database/ to facilitate future video
quality assessment research of the community.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction for the target application. For example, all above-mentioned VQA
The high-definition video broadcasting and streaming services
are blooming nowadays. Consumers can enjoy on-demand video
services from Netflix, Hulu or Amazon, and watching high-def-
inition (HD) programs becomes the mainstream for video content
consumption. According to the report in [1], more than half of US
population watches on-line movies or dramas. Specifically, the
viewers have increased from 37% in 2010 to 51% in 2013. The
watched video programs vary in bit rates and resolutions due to
the available bandwidth of their networks. Different sizes of video
are transmitted at lower bit rates and up-scaled for display on
HDTV (e.g., playing a 720p movie on the 1080p screen). This is com-
mon in people’s daily life [2], but users’ video quality of experience
on HD video has not yet been extensively studied in the past.

There are quite a few video quality assessment databases avail-
able to the public [3–28]. They were however limited in the follow-
ing areas [29,30]. First, the source video set is not representative or
diversified enough. For example, they do not contain dark scenes,
sports scenes, traditional cartoon, and computer animation. The
lack of these contents will not provide an extensive evaluation of
viewers’ experience. Second, the video resolution is low. The res-
olution of sequences in all VQA databases except [3,8,20,26,28]
are lower than 1920� 1080. Third, the distortion is not complete
databases except [20,10,11] do not cover video up-scaling, which
is encountered frequently in our daily life. Although the work in
[20] includes practical distortion types, it has only three video
sources. Being motivated by these observations, we build a new
VQA database called MCL-V to address the shortcomings of existing
VQA databases. The MCL-V database provides 12 source video clips,
96 distorted video clips and their associated mean opinion scores
(MOS). In this paper, we will elaborate on the methodology of build-
ing MCL-V including collecting suitable video sources, generating
distortions and conducting subjective evaluation.

One key issue in our design is to choose an appropriate subjec-
tive test procedure to collect opinion scores. Several subjective test
methodologies have been recommended in VQEG [25,31] and ITU
[32,33] as shown in Table 1. Since the precision of the final MOS
is not improved by adopting the continuous scale [34,35], the dis-
crete scale is adopted in this work for user friendliness.
Furthermore, we use an improved pairwise comparison method
to make the final MOS more stable and meaningful.

The rest of this paper is organized as follows. Section 2
describes ways to choose representative and diversified reference
sequences, to generate practical distortion types and to determine
the reasonable distortion levels. Section 3 presents an improved
pairwise comparison method for subjective evaluation and elabo-
rates on the process of collecting and normalizing opinion scores
in the subjective test. We study the MOS values and analyze the
performances of several existing IQA and VQA metrics against
the MCL-V database in Section 4. Finally, concluding remarks are
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given in Section 5. The whole database is publicly available on the
USC Media Communication Lab website http://mcl.usc.edu/mcl-v-
database/.

2. Construction of MCL-V database

2.1. Source video selection

We selected 12 uncompressed HD video clips as the source
sequences. Some sequences are originally in YUV444p or
YUV422p, and we converted them into YUV420p using FFMpeg
[36] to make all videos included in the MCL-V database be
YUV420p at a fixed resolution of progressive 1920� 1080. The
frame rates of the sequences range from 24 fps to 30 fps, and the
length of each video is 6 s. Fig. 1 shows all reference videos with
a single frame.

The selected sequences are freely available from several
sources, including HEVC test sequences [37], TUM dataset [38],
CDVL [39], and others [40–42]. They were professionally acquired
and recorded in digital form. We select some of them to construct
the MCL-V database based on the following two criteria.

First, some prior databases [13,23] contain scenes that are not
representative in video applications. For example, there are video
clips with a close view on the water surface or the blue sky in
Table 1
Classification of subjective testing methods.

Discrete scale

Single Stimulus Absolute Category Rating (ACR) [32]
Double Stimulus Degradation Category Rating (DCR) [32]

Comparison Category Rating (CCR) [33]

Fig. 1. Selected source
the LIVE database [23]. These sequences were used for video cod-
ing performance test since they contain specific contents which
are difficult to encode. However, they are not common scenes in
movies or dramas. We prefer more representative scenes since
they can better reveal human visual experience.

Second, the database should have sufficient diversity in terms of
several characteristics. We list various characteristics for diversity
consideration in Table 2. They are categorized into three groups:
(1) high-level video genres, (2) mid-level video semantics and (3)
low-level video features. We aim to make the database cover a
wide range of characteristics given in the table.

For video genres, we take several new genre types such as ani-
mation and sports into account. These video genres have different
characteristics from others. For instance, cartoons scenes contain
clear edges and simple color components while sports scenes con-
tain fast moving objects with simple background. These videos are
commonly seen in applications and should be included in the
MCL-V database.

For video semantics, we consider factors that will have a great
impact on human visual perception. For example, while other data-
bases usually do not include video scenes with a close-up face, we
take this feature into consideration since it is typical in many
dramas. In addition, the human face is typically a region of visual
salience which attracts human attention.
Continuous scale

Single Stimulus Continuous Quality Evaluation (SSCQE) [33]
Double Stimulus Continuous Quality Scale (DSCQS) [33]

video sequences.

https://mcl.usc.edu/mcl-v-database/
https://mcl.usc.edu/mcl-v-database/


Table 2
Video characteristics used in diversity check.

Video genres Video semantics Video features

� Cartoon
� Sports
� Indoor

� Face
� People
� Water
� Number of objects
� Salience

� Brightness
� Contrast
� Texture
� Motion
� Color Variance
� Color Richness
� Sharpness
� Film Grain
� Camera motion
� Scene change
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For video features, we examine brightness, contrast, motion,
texture and color since these features are related to the level of
the video compression distortion. These features also have influ-
ence on the visual masking effect. For example, there is no very dark
scene or fast-motion scene in existing video quality databases
[6,13,23]. As a result, they do not contain representative video clips
for horror movies or action films. The diversity of video features can
be captured by the Spatial Information (SI) versus the Temporal
Information (TI) plot as defined in the ITU-T Recommendation
[32]. Eqs. (1) and (2) of SI and TI are shown as follows:

SI ¼ maxtimefstdspace½SobelðFnÞ�g; ð1Þ
TI ¼ maxtimefstdspace½Mnði; jÞ�g; ð2Þ

SI is calculated based on the Sobel filter. The nth video frame, Fn, is
first filtered with the Sobel filter and taken the standard deviation
over space domain. Then, the maximum value along the time is cho-
sen to present SI. TI is based on motion difference. Mnði; jÞ is the dif-
ference in pixel at the ith row and jth column between Fn and Fn�1.
TI is computed as the time maximum of the space standard devia-
tion of Mnði; jÞ. These two indices correspond to the texture and the
motion features in Table 2, respectively. As shown in Fig. 2, the 12
video sequences in the MCL-V database are well scattered in the
feature space spanned by SI and TI, which demonstrates the diver-
sity of the MCL-V database.

Not all characteristics can be quantitatively measured. We con-
ducted subjective evaluation on the characteristics of video clips to
illustrate the diversity of the MCL-V database and show the results
Fig. 2. Plot of the Spatial Information (SI) and the Temporal Information (TI) indices
for selected video sequences.
in Table 3. The main characteristics are listed from high-to-low
levels in the first column while the 12 source sequences are listed
in the top row in this table. Each column in the table represents the
characteristics of the corresponding source sequence. The subjec-
tive evaluation was conducted by a group of professionals. Since
there are only a few levels defined for each property, the results
can be easily verified and they are quite consistent among viewers.
This table shows that the selected source video clips in the MCL-V
database well span all characteristics with excellent diversity.

The contents of the 12 source video clips are described below.

� Big Buck Bunny (BB) in Fig. 1a: An animated sequence, where
there are two animals in the video, with clear textures and rich
backgrounds.
� Birds in Cage (BC) in Fig. 1b: Two colorful birds standing in front

of a clean background in a still scene.
� BQ Terrace (BQ) in Fig. 1c: Plenty of vehicles moving on a

bridge, and below the bridge are the water. The camera pans
in a diagonal direction.
� Crowd Run (CR) in Fig. 1d: A crowd of people running together,

with big trees and the blue sky as the background.
� Dance Kiss (DK) in Fig. 1e: People dancing in a very dark room.

There are scene changes, and the motions are fast. People will
focus on two main characters that kiss in the middle of the
scene.
� El Fuente A (EA) in Fig. 1f: Several people in the tribe dancing

around a man who is drumming. In addition to fast motions,
the scene also contains large portions of ground and sky that
are with low gradient.
� El Fuente B (EB) in Fig. 1g: A boy walking in front of a fountain.

In another scene, we have a close view to the frontal face of the
boy. The water drops in the background make it very difficult
for video coding.
� Fox Bird (FB) in Fig. 1h: A cartoon sequence with a fox running

rapidly. There are scene changes, and several camera motions
are involved.
� Kimono (KM) in Fig. 1i: A woman walking slowly toward the

camera in front of the woods. The woman is close to the camera
and the face of the women can be seen clearly.
� Old Town Cross (OT) in Fig. 1j: A bird’s eye view of an old town

with slow camera movements. Except the sky and the buildings,
there are no other objects in the scene. Film grain noise can be
observed in this video sequence.
� Seeking (SK) in Fig.1k: Several people in different colors moving

around.
� Tennis (TN) in Fig. 1l: Girls playing tennis, and running very fast

to chase the ball. There is also a scene change in this sequence.

2.2. Distorted video generation

We consider two typical distortion types in video applications.

� H.264/AVC compression.
H.264/AVC is the most popular video format used in IP-based
video streaming. The compression artifact due to lower coding
bit rates is one main distortion source.
� Compression followed by scaling (or simply called scaling

below).
The image size has to be scaled when a video clip of a lower res-
olution is displayed in a display panel of higher resolution. This
effect can be simulated via a cascade of operations: down-
sampling, encoding, and then resizing to the original resolution.

We adopt four distortion levels for each distortion type. Since
there are 12 source reference sequences, we have 12� 2� 4 ¼ 96
distorted sequences in total.



Table 3
MCL-V source video diversity.

BB BC BQ CR DK EA EB FB KM OT SK TN

Cartoon
p

CG Animation
p

Sports
p

Indoor
p

Scene change
p p p p p

Camera motiona P S P M Z P P SPZ P P P P
Face close-up

p p p

People
p p p p p p

Water Surface
p

Salience
p p p p p p p

Film grain noise
p

Flat, low gradient area
p p

Object numberb 1 1 2 3 1 2 1 2 1 0 2 1
Brightness 2 3 2 2 1 2 3 3 2 2 3 2
Contrast 3 3 2 3 1 2 3 2 2 1 2 2
Texture (spatial variance) 2 1 2 3 2 2 3 2 3 2 2 1
Motion (temporal variance) 2 1 1 3 3 2 2 3 2 1 2 3
Color variance 1 3 1 3 1 1 1 3 2 1 2 1
Color richness 2 3 1 2 1 1 1 3 2 1 3 2
Sharpness 2 3 2 1 2 2 1 3 3 2 2 1

For high-level video genres,
p

indicates the video contains this features, and vice versa. For low-level video features, the number represents the level of the feature, where 1, 2
and 3 mean low, medium and high, respectively.

a Camera motion types: S for still, P for pan, Z for zoom, M for irregular movements.
b Object number: 0, 1, 2 and 3 indicate no main object, one, a few and many objects, respectively.

Fig. 3. The process of generating distorted video contents with an H.264/AVC codec.

Fig. 4. The process of selecting compression-distorted video clips with four
distortion levels.
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We used x264 [43] as the encoder to generate compressed
video files. Rate control was enabled with a variable bit rate, and
a two-pass encoding scheme was used to ensure consistent per-
ceptual quality frame by frame so that viewers can determine
the opinion reasonably. At most two B frames are allowed between
an I and a P frames. Both the input and the output video resolutions
are kept at 1080p as shown in Fig. 3. The distortion levels are con-
trolled by the target bit rates. Since we select a wide variety of
video sequences, the bit rate range is from 0.2 Mbps to 10 Mbps.

Since the bit rates depend on video contents, we used the fol-
lowing method to subjectively select distinguishable levels. First,
we generated 300 compressed sequences with different bit rates
in the above range and drew a plot of ‘‘the PSNR value versus the
bit rate’’ as shown in Fig. 4. Although the PSNR value could be used
as an auxiliary tool, We do not rely on PSNR to determine percep-
tual quality. In this bit rate range, there is a region where coded
video quality is no distinguishable any longer as the bit rate
increases. We also set up a lower bound in the sense that the qual-
ity of video clip will not be acceptable if the bit rate is lower than
this bound. The perceptual upper and lower bounds are plotted as
two solid horizontal lines in Fig. 4. We generated 300 clips for
selection within the interval, and divided them into four regions
with respect to the PSNR value – A, B, C and D. Finally, we choose
four suitable distortion levels (namely, one from each region)
based on subjective visual experience.

To generate scaling-distorted video files, we follow the process
as depicted in Fig. 5. First, all video sequences are converted to
720p before compression. The down-sampling process is achieved
by using the Lanczos algorithm so as to preserve as many details as
possible. Different video players may have different settings in
video resizing. To make a controllable environment, we choose
the bilinear interpolation as the up-sampling algorithm. The for-
mat conversion is done by FFmpeg [36]. In the subjective test,
we play up-sampled YUV sequences. The distortion levels are
adjusted in the compression step, which is the same methodology
as before.
3. Subjective video quality assessment

3.1. Subjective assessment methodology

Quite a few subjective test methods for multimedia applications
have been recommended by VQEG [25,31] and ITU [32,33]. There
are various discrete scoring methods, for example, five score levels
in DCR [32] and seven score levels in CCR [33]. When the number
of choices increases, it becomes more difficult to get consistent and
stable scores across multiple assessors. That is, the same choice
made by a different person may have a different meaning.



Fig. 5. The process of generating scaling-distorted video clips.

Fig. 6. Illustration of a simplified pairwise comparison process.

J.Y. Lin et al. / J. Vis. Commun. Image R. 30 (2015) 1–9 5
Sometimes, the decision of the same person may also vary along
the test time. To mitigate these problems, we adopt the pairwise
comparison method in the subjective test.

Video clips of the same source but with a different distortion
level were selected to form a pair for comparison. An assessor
was only asked to decide which video has better quality out of
the pair. The objective of a sequence of pairwise comparisons by
the same assessor is to create an ordered list of multiple distorted
video sequences according to the perceptual quality. The short-
coming of a straightforward pairwise comparison method is its
long assessment time. For example, if one attempts to compare
the quality of N samples, the total number of an exhaustive pair-
wise comparison is CN

2 . Several methods were proposed to lower
the complexity of the pairwise comparison method, e.g., [44–50].
Here, we propose another simplification method as illustrated in
Fig. 6, where each circle represents one distorted sequence. The
basic idea is sketched below.

It is desirable to get a good initial list for pairwise comparison.
The distorted sequences were first sorted by visual inspection.
When the two sequences are far from each other in the queue, it
means the visual quality gap between them is obvious. This initial-
ization process is illustrated in Step 1, which is used to generate a
rough sorted list of all distorted video sequences for the initializa-
tion purpose at a low complexity. Specifically, we ask a small num-
ber of professionals to participate in the subjective evaluation with
the ACR [32] to achieve this goal. The sorted list result is shown in
Q 1, where A1 and A7 denote sequences of the best and worst qual-
ity, respectively.

After the initialization, all assessors are invited to participate in
the subjective test. When the distance of two distorted sequences
in the ordered list is longer, their quality difference is more
obvious. Thus, each assessor is asked to conduct pairwise compar-
ison of adjacent nodes only. In the given example, if the assessor
prefer A4 to A2, then A4 and A2 are swapped. Furthermore, A8 and
A3 are swapped similarly. After this round, the assessor is led to
a new ordered list denoted by Q2. With Q 2, the four new adjacent
pairs ðA4; A5Þ; ðA2; A6Þ; ðA6; A3Þ, and ðA8; A7Þ will be compared by
the assessor, and the assessors decision will create Q3. The process
is repeated for the same assessor until no further swap is needed. A
comparison record matrix is used to record whether any pair of
nodes has been compared or not. If two adjacent nodes have been
compared by this assessor once, no further comparison will be
conducted. All adjacent nodes in the final ordered list, Qn, will be
compared by the same assessor once, and the sequence in the list
reflects the preference of this assessor. A preference matrix for the
nth assessor, denoted by Pn, can be created accordingly.

By aggregating the preference matrices of multiple assessors,
we get the group preference matrix, M. Here, we use the Bradley-
Terry model [51–53] to derive the final absolute scale score from
the group preference matrix. Note that the Bradley-Terry (BT)
model and the Thurstone–Mosteller (T–M) model are two well-
known models to convert pair comparison data to psychophysical
scale values for all stimuli. To verify its accuracy, we compute the
point score, as defined in [54] and compare them in Fig. 7, where
the horizontal axis is the point score and the vertical axis is the
absolute scale number obtained by using the Bradley-Terry model.
We see that the two results are very consistent. The Pearson
Correlation Coefficient (PCC) between them is 0.9961. The absolute
scale score can also be derived by using the Morrisey Gulliksen
incomplete matrix solution [55,56].

3.2. Test setting and procedure

The assessors are seated in a controlled environment to assess
the quality of video. The view distance is strictly kept in 2 m (3.2
times of the picture height), from the center of the monitor to



Fig. 7. Correlation between the point score and the absolute scale number
calculated based on the Bradley-Terry Model. Fig. 8. Sorted Mean Opinion Scores with the 95% confidence interval, where the red

cross is the mean and the blue line indicates the stand deviation range between �1
and 1.

Table 4
Comparison of the mean and the variance of opinion scores for compression-distorted
Crowd Run and Kimono sequences in MCL-V.

Mean Variance

Level Crowd run Kimono Crowd run Kimono

Good 6.91 6.92 0.25 0.22
Fair 5.38 4.85 0.51 0.38
Poor 3.16 2.61 0.41 0.16
Bad 1.05 0.80 0.39 0.35

Table 5
Comparison of the MOS values of the compression- and scaling-distorted Dance Kiss
and Fox Bird sequences.

Dance Kiss Fox Bird

Level Compression Scaling Compression Scaling

Good 6.63 6.20 6.58 6.38
Fair 4.61 4.62 4.34 4.59
Poor 2.59 2.35 2.88 1.50
Bad 0.35 0.79 1.61 0.07
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the seat. The videos are displayed on the HDTV, LG 47LW5600,
with native 1920 � 1080 resolution, thorough this work.

The total number of assessors is 45 consisting of 13 females and
32 males. Their age is distributed from 20 to 40. Some of the asses-
sors are PhD students in image processing field. Others are naive
and inexperienced with the topic of video quality assessment. The
assessors are confirmed verbally with sound or corrected vision.

Before each test session, a lesson is offered to assessors on how
to provide their opinion scores. The training session consists of two
parts. For the first part, a 5-min video is played with various video
quality. In the second part, assessors learn to see the difference in
video quality and the way to operate the software. After the train-
ing lesson, assessors will see the notification on the screen and
start their test session.

The subjective test is conducted based on the modified pairwise
comparison. The software is written in Python. Video clips of the
same source but with a different distortion level were selected to
form a pair for comparison. They were randomly ordered and played
one by one with a 3-s break in-between. An assessor was given three
choices: ‘‘the first one is better’’, ‘‘the second one is better’’, or ‘‘no
difference’’. Eight video sets were tested at each session and 45 ses-
sions were conducted. One video set includes all distorted video
clips from the same video content. We collected 32 opinion scores
for each video set. Most assessors have no prior experience in video
coding. The test time and each decision made by every assessor
were recorded for outlier detection and score conversion. The dura-
tion of a test session ranges from 20 to 30 min.

4. Analysis of subjective opinion scores

The collected opinion scores are processed according to the ITU
recommendation [33]. The screening of possible outlier subjects is
done by following that in [54]. That is, the highest 10% and lowest
10% of the point scores are discarded. The final MOS values with
the 95% confidence interval sorted along the decreasing preset
level are shown in Fig. 8. We see that the MOS values range from
0 to 8. The mean and the standard deviation of assessors’ scores
for each distorted video file are provided in the MCL-V database.
In this section, we discuss how video properties affect these scores
in the following two scenarios.

First, we compare the mean and the variance of opinion scores
for two compressed sequences in Table 4: Crowd Run and Kimono.
As shown in the table, the variance of Kimono is significantly lower
than that of Crowd Run. This can be explained as follows. Human
has a clear visual attention region in Kimono, which is the
Japanese lady in the scene. In contrast, there is no clear visual
attention region in Crowd Run. As a result, viewers’ opinions are
more diverse for Crowd Run.

Next, we compare the MOS values for two compression-distorted
and scaling-distorted video clips, Dance Kiss and Fox Bird, in Table 5.
Since the variances are close in each level between two distortion
types, we only list the MOS here. For Dance Kiss, the MOS of scaling
distortion is close to that of compression distortion. For Fox Bird, we
observe a significant MOS drop in scaling distortion when the bit
rate becomes low. Fox Bird is a bright video clip that contains stron-
ger edges as a result of the cartoon content. The scaling distortion is
more visible in a bright scene with strong edges. In contrast, Dance
Kiss is a dark video clip in our selection. It has smoother textures.
The scaling distortion is reduced by the dark scene and the smooth
texture.

Since the MCL-V database contains a wide range of video con-
tents, it can capture the characteristics of the human visual system
better and allow researchers to develop better objective video
quality assessment algorithms.



Table 7
Performance comparison of objective quality indices with respect to the scaling
distortion in MCL-V.

PCC SROCC RMSE

PSNR 0.463 0.493 1.881
MSSIM [58] 0.609 0.630 1.683
SSIM [57] 0.635 0.649 1.639
VIF [59] 0.636 0.661 1.637
GMSD [62] 0.634 0.662 1.642
GSM [61] 0.692 0.707 1.531
FSIM [60] 0.722 0.702 1.468
S-MAD [64] 0.659 0.624 1.594
T-MAD [64] 0.580 0.548 1.728
ST-MAD [64] 0.617 0.585 1.669
VADM [63] 0.728 0.741 1.469

Table 8
Performance comparison of objective quality indices with respect to both compres-
sion and scaling distortions in MCL-V.

PCC SROCC RMSE

Database MCL-
V

LIVE [23] MCL-
V

LIVE [23] MCL-
V

LIVE [23]

PSNR 0.472 0.549 0.464 0.523 1.956 9.176
MSSIM [58] 0.621 0.739 0.623 0.732 1.740 7.398
SSIM [57] 0.650 0.542 0.648 0.525 1.687 9.223
VIF [59] 0.660 0.570 0.655 0.557 1.666 9.019
GMSD [62] 0.650 0.737 0.661 0.726 1.686 8.414
GSM [61] 0.709 0.650 0.711 0.684 1.565 8.341
FSIM [60] 0.750 0.690 0.755 0.689 1.466 8.240
S-MAD [64] 0.681 0.737 0.670 0.721 1.624 7.669
T-MAD [64] 0.600 0.818 0.584 0.815 1.774 6.562
ST-MAD [64] 0.634 0.830 0.623 0.824 1.714 6.133
VADM [63] 0.742 0.844 0.752 0.835 1.489 5.945
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4.1. Performance comparison of objective VQA methods

Several full-reference (FR) IQA and VQA algorithms [57–64] are
evaluated against the collected MOS of the MCL-V database and
reported in this subsection. IQA methods can be extended to VQA
methods by averaging frame-level quality scores. The IQA source
codes of [57–59] are downloaded from [65]. Others are downloaded
from respective authors’ websites. The state-of-the-art VQA
methods take both spatial and temporal artifacts into account. For
example, the VADM method decouples two spatial distortion types;
i.e. detail losses and additive impairments, and evaluate them sepa-
rately. Furthermore, the motion information is adopted by VADM to
measure the temporal masking effect. The ST-MAD method
employs the spatio-temporal images to model the interaction
between these two artifacts.

Three performance measure for these IQA and VQA methods are
calculated and compared. They are: (1) the Pearson Correlation
Coefficient (PCC) [25,31], (2) the Spearman rank-order correlation
coefficient (SROCC) [25,31], and (3) the root mean squared error
(RMSE) [25,31]. The PCC and SROCC are computed after nonlinear
regression on the quality scores using the logistic function as
recommended in [66]. Mathematically, we have

y ¼ b1 � 0:5� 1
1þ eb2ðx�b3Þ

� �
þ b4 � xþ b5; ð3Þ

where x is an objective quality score and bi; i ¼ 1 . . . 5, are fitting
parameters.

First, the performance of these quality metrics with respect to
the compression distortion is shown in Table 6. We see that FSIM
and VADM give the best performance among the test group for
the compression distortion due to their good distortion models.
They are close in PCC and RMSE while VADM provides a better
SROCC measure. However, their PCC and RMSE values are still lower
than 0.75, which allows room for further improvement.

Next, the performance of these quality metrics with respect to
the scaling distortion is given in Table 7. First, we see that these
metrics perform worse for the scaling distortion than the compres-
sion distortion. Second, VADM and FSIM are still the top two per-
formers among the test group while VADM outperforms FSIM in
all three scores.

Finally, we list the performance of all methods against the
entire MCL-V database that contains both compression and scaling
distortion types in Table 8. Furthermore, we list their performance
against the LIVE database [23] for side-by-side comparison. The top
three performers for the LIVE database are VADM, ST-MAD and
T-MAD. Their PCC and SROCC scores are all above 0.80. In contrast,
their performance degrades substantially in the MCL-V database,
which indicates that MCL-V is a more challenging video quality
database. This can be explained by that the source video in MCL-
V is more diversified, and it is not easy to find an ideal metric to
cover all of them.
Table 6
Performance comparison of objective quality metrics with respect to the compression
distortion in MCL-V.

PCC SROCC RMSE

PSNR 0.471 0.422 1.994
MSSIM [58] 0.617 0.609 1.779
SSIM [57] 0.650 0.633 1.718
VIF [59] 0.667 0.637 1.685
GMSD [62] 0.653 0.644 1.712
GSM [61] 0.715 0.713 1.580
FSIM [60] 0.770 0.775 1.441
S-MAD [64] 0.702 0.701 1.609
T-MAD [64] 0.625 0.623 1.763
ST-MAD [64] 0.657 0.663 1.702
VADM [63] 0.747 0.735 1.515
5. Conclusion and future work

The construction of a new HD video quality assessment data-
base, called MCL-V, was described in this work. MCL-V contains
12 source video clips and 96 distorted video clips with subjective
assessment scores. The source video clips were selected from a
large pool of public-domain HD video sequences with representa-
tive and diversified contents. Several existing IQA and VQA algo-
rithms were evaluated against the MCL-V database. The database
is publicly available at http://mcl.usc.edu/mcl-v-database/ for
future research and development.

We attempted to analyze the relationship between video prop-
erties and the MOS values using 4 video sequences as examples in
Section 4. A thorough analysis of the acquired MOS involves visual
salience detection/tracking and a good understanding of the spa-
tial/temporal masking effects. Although this is beyond the scope
of our work, it is an interesting topic for further study.
Furthermore, as shown in Section 4.1, there is no objective quality
metric that has a PCC (or SROCC) value higher than 0.75 against the
MCL-V database. The development of a better VQA method is also
in need.
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