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Abstract—Automatic classification of human motion capture
(mocap) data has many commercial, biomechanical, and medical
applications and is the principal focus of this paper. First, we
propose a multi-resolution string representation scheme based
on the tree-structured vector quantization (TSVQ) to transform
the time-series of human poses into codeword sequences. Then,
we take the temporal variations of human poses into account
via codeword sequence matching. Furthermore, we develop a
family of pose-histogram-based classifiers to examine the spatial
distribution of human poses. We analyze the performance of the
temporal and spatial classifiers separately. To achieve a higher
classification rate, we merge their decisions and soft scores using
novel fusion methods. The proposed fusion solutions are tested
on a wide variety of sequences from the CMU mocap database
using five-fold cross validation, and a correct classification rate of
99.6% is achieved.

Index Terms—Database management, human motion analysis,
machine learning, mocap data, motion recognition, n-fold cross
validation, suffix array, SVM, vector quantization.

I. INTRODUCTION

T HE increasing demand for rendering smooth and plausible
3D motion is fueling the development of motion capture

(mocap) systems. This new format of high quality 3D motion
data has paved its way into animation movies, high-end com-
puter games [1], biomechanics, robotics, gait analysis and re-
habilitation [2] and machine translation of sign languages [3],
[4]. The diverse applications of mocap data and the rapid de-
velopment of mocap systems have resulted in a large corpus of
motion capture data in recent years. However, the large amount
of raw data files makes it difficult to organize. It is desirable
that both file names and the associated metadata should be able
to provide a high level description of the contents of mocap se-
quences. Since manual annotation of mocap sequences is labor
intensive, it is essential to develop an automated technique that
can segment mocap data into homogeneous intervals, classify
each interval into a basic motion type, and index it for future re-
trieval. With such annotated mocap databases in place, a proper
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motion editing and authoring tool can be used to synthesize re-
alistic motion sequences.
To develop efficient indexing and retrieval techniques for

mocap databases, the first step is to classify the data into subsets
according to their similarities, which is known as the mocap
data classification problem. As far as the human full-body
motion is concerned, the mocap system records the actions of
human actors by placing several markers on their body. These
markers and a grid of infrared cameras help determine the
full-body movement of those actors in terms of joint orienta-
tions. This joint orientation information constitutes the mocap
data used in our research. Human mocap data are essentially
time series of human body poses (Fig. 1). Different human
motions may be of different time duration, tempo and style.
The same motion type, e.g., walking, can vary from person
to person. Moreover, visually similar motions may start or
end with different joint orientations or even with different
human body postures. A robust classification algorithm has to
compensate for these irregularities in the data.
In our tree-structured vector quantization (TSVQ) based

scheme, the dynamics of human motion is represented by
a sequence of multi-resolution codewords. Apparently, two
motions are similar if their corresponding codeword sequences
are similar. To leverage this similarity, we analyze the distri-
bution of these codewords in the temporal and spatial domains
separately. Then, to overcome the individual limitations of
these two approaches, we fuse their outcomes and soft scores
to make final decision. We examine the proposed solutions on a
wide range of motions from the CMU mocap dataset [5]. These
motions are recorded in a controlled environment with only
one performer per clip. Furthermore, the clips are assumed to
be homogeneous, wherein every motion clip belongs to only
one motion category.
It is worthwhile to mention that a mocap data classification

technique using hierarchical codewords was described in [6],
which is a 2-page summary of some intermediate results of
our research. The algorithmic description was brief and exper-
imental results were preliminary. Compared to [6], the current
work has a more complete treatment on this topic. Specifically,
it has the following major contributions:
• Development of an advanced temporal domain approach
to mocap data classification using codeword sequence
matching;

• Development of a novel spatial domain approach
for human mocap data classification with pose-his-
togram-based SVM classifiers;

• Performance evaluation on a larger dataset containing 278
human motion clips ( 0.5 million frames) spanning 30
motion categories;
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Fig. 1. Illustration of ten consecutive poses of the running motion (top) and the teapot nursery rhyme rendition (bottom).

• Achieving a correct classification rate of 99.6% for a data
set comprising of simple, complex as well as perceptually
similar motion types.

The spatial domain approach takes the human skeleton struc-
ture into account so that it is restricted to human motions only.
In contrast, the temporal domain approach does not assume any
inherent structure in the data so it is more generic in this sense.
Moreover, other formats of marker-based mocap data can be
handled with the proposed algorithms if they can provide the 3D
pose information. We will describe these new approaches, their
implementations, fusion and experimental results in greater de-
tail to offer readers a complete picture of our solution and its
superior performance.
The rest of this paper is organized as follows. Related pre-

vious work is reviewed in Section II. Our advanced motion clas-
sification techniques are described in Section III. Experimental
results are presented and analyzed in Section IV. Finally, con-
cluding remarks and possible future extensions are summarized
in Section V.

II. REVIEW OF PREVIOUS WORK

Different methods have been proposed to synthesize real-
istic human motions by reusing existing mocap data via data-
driven motion editing and authoring, e.g., Kovar and Gleicher
[7], Safonova et al. [8], Ren et al. [9], Lee et al. [10], Zordan
et al. [11], and Pullen and Bregler [12]. In order to reuse ex-
isting mocap data, efficient searching, indexing and browsing
techniques are required. So the first step is to group motion clips
into subsets based on their similarities, which is the focus of our
current research.
Identifying similar motion types in a mocap database has

been considered a challenging problem. Most of the previous
work on motion comparison adopted features that were close
to the raw data. For example, Liu and Popović [13] included
the principal component analysis (PCA) reduced raw data, 3D
point clouds, joint angles, 3D positions, etc. Forbes and Fiume
[14] used the weighted PCA for motion comparison. The perfor-
mance was further enhanced by integrating the weighted PCA
with other features such as characteristic points, seed points, etc.
Kovar and Gleicher [7] proposed a numerical similarity tech-
nique to find similar motion clips from a large data set. Motion
similarity is a semantic concept. The raw numerical data may
differ a lot even for two visually similar motions. Hence these
types of features do not work well in practice.
Liu et al. [15] used automatically extracted key frames and

a hierarchical tree of clusters of motions to search similar mo-

tions in the database. Sakamoto et al. [16] proposed a motion
map method that trains the self-organizing-map (SOM) with
motion data and indexes clips by SOM nodes. The motion map
transforms the N-dimensional data to a 2D map and computes
similarity using this map. However, this scheme lacks higher
level data indexing and demands exact node-to-node matching
in search.
Human motion is typically a long time series with no overt

segmentation information so the dynamic time warping (DTW)
based motion comparison techniques (e.g., Chiu et al. [17],
Kovar and Gleicher [7], Wu et al. [18]) suffer from the com-
plexity of finding the corresponding start/end points of motion
data series for motion similarity comparison. Hsu et al. [19]
used an iterative motion warping (IMW) technique, which is
an improvement over the traditional DTW technique, to find
the correspondence by minimizing an objective function with
dynamic programming. Generally speaking, these features
work well only for certain applications.
Several algorithms were developed to identify locally sim-

ilar segments in the motion dataset, for example, Arikan and
Forsythe [20], Kim et al. [21], Kovar and Gleicher [22], Lee et
al. [10], andWang and Bodenheimer [23]. Arikan et al. [24] pro-
posed a semi-automatic annotation technique using SVM clas-
sifiers. Cardle et al. [25] used the GEMINI framework to search
mocap data sets. Yang and Shahabi [4] proposed amethod called
EROS to calculate similarity using PCA and eigenvalues. Li et
al. [26] used the kWAS method to measure similarity of motion
clips via singular value decomposition.
Relational features [27]–[30], built upon the Boolean rela-

tions between various body parts, are more suitable for generic
applications. Common relational features include: the position
of joints with respect to a certain plane, the angle between two
limbs, the angular velocity of joint angles, the position of joints
with respect to other joints, the direction of motion, touch, etc.
Such features are more robust to pose distortion and other small
aberrations in motion sequences. Although relational features
provide a good alternative, automatic selection of a good set
of relational features for a wide range of motion types is not
straightforward. This imposes a limitation on the utility of these
features.
Wu et al. [31] presented a cluster-based scheme for mocap

data indexing and retrieval, where temporal variations were
accounted for while spatial variations were not captured effec-
tively. Later, Wu et al. [32] incorporated the spatial complexity
of mocap data using hierarchical clustering. But this scheme
cannot effectively differentiate between perceptually similar
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motions, such as running and marching. The different vari-
ations of the same motion type (e.g., cartwheel) were also
not clustered correctly. The SOM representation used in their
scheme transforms the 62 dimensional mocap data into a crude
2D representation, which suffers from self occlusions. This sig-
nificantly hinders its capability to categorize complex motions.
The main contribution of our work is automatic classification

of perceptually similar mocap sequences based on the “multi-
resolution string representation” that incorporates both spatial
and temporal information effectively. It will be shown later in
the experimental section that the proposed algorithm offers a
correct classification rate of 99.6% for a database consisting of
30 different motion types. To the best our knowledge, no other
algorithm with better performance on such a diverse dataset has
been reported in the literature.
Although our solution is promising, it has some limitations.

For example, it might not work well on a clip containing mo-
tions from different categories, e.g., a clip with walking motion
followed by running. However, with mocap data segmentation
as the pre-processing step, this problem can be mitigated. The
proposed solution was not thoroughly tested on categories with
minor variations, such as, get up from the floor without the hands
touching the floor and get up from the floor by pushing hands
against the floor. As these categories are practically the same,
we combined them into a single category in the experiment.
Researchers from the computer vision community have pro-

posed a variety of methods for action recognition in uncon-
strained video databases such as UCF11 and UCF50. These
methods used template matching, finite state models, bag of fea-
tures, face detection, context, speech and text information etc.
for action recognition [33], [34]. But here, we work directly on
the human skeleton posture information, which is available with
the mocap data.

III. PROPOSED CLASSIFICATION METHODS

We consider four mocap sequence classification methods.
• Method-A: Motion-String Similarity: The information
about the temporal order of the poses is exploited in
motion string similarity comparison using the suffix
array technique. But due to the coarse quantization used,
Method A is rigid and less robust. To overcome this
problem, Method-B incorporated finer details.

• Method-B: Pose-Histogram Classifier: TSVQ helps to
compute the multi-resolution pose histogram for each
motion clip. Multiple binary SVM classifiers, trained
using these histograms, are used to generate soft scores
for each test motion clip. One weakness of this method
is that it does not use the temporal information at all. But
Method-A compensates for that.

• Method-C: Two-Step Score Fusion: The soft decision
scores obtained from methods A and B are combined to
make the final decision.

• Method-D: Two-Step SVM Fusion: A more advanced SVM
based fusion is used to combine the soft scores of methods
A and B.

The details are given in the following subsections.

TABLE I
PARTITIONING OF A HUMAN SKELETON FOR CLASSIFICATION

A. Method-A: Motion-String Similarity

Human mocap data is a high-dimensional time series where
the data at each time instance (called a frame) represents the
spatial location of markers in the 3D space [32]. To eliminate
the effect of bone sizes, this spatial data is converted to the ro-
tational angles of joints. In simplified terms, the 3D trajectory
of placed markers is stored as the trajectory of each degree of
freedom (DOF) of the joint, over time [35], [36]. Suppose that

is the 3D position of the root joint at time , is a scalar or
vector representing the orientations of all the DOFs of joint and
is the total number of joints in the human skeleton .

Then, a frame corresponding to time in the mocap se-
quence is a 62 dimensional vector which can be mathematically
represented as

(1)

The first three dimensions (index range 1-3) representing the
position of the root joint are neglected, as they are irrelevant to
the 3D pose. The remaining 59 elements of vector (index
range 4-62) together form the “full-body” data vectors as shown
in Table I. We apply the Tree-Structured Vector Quantization
(TSVQ) technique [37], [38] to the full-body data vectors in
order to generate a full-body multi-resolution codebook as de-
scribed below. The TSVQ performs clustering of full-body data
vectors by repeated application of the Generalized Lloyd Algo-
rithm (GLA). Iteratively, each cluster is split into two and fine
tuned with another round of repeated application of the GLA
to the perturbed centroids. After convergence, the parent code-
word spawns two child codewords in the tree structure. Finally,
a balanced binary tree-like structure is obtained. Fig. 2 shows
the full-body level-n codebooks obtained using the TSVQ tech-
nique up to level . Owing to balanced binary tree structure,
level in the tree has codewords. All the full-body code-
words at level-n together form the level-n codebook.
This full-body level- codebook encodes the mocap se-

quence by replacing each full-body pose vector with a code-
word that is closest to it in terms of the Euclidean distance. For
example, ten consecutive full-body poses of the running motion
are shown in the top row of Fig. 1. If this partial sequence is
encoded using a full-body level-9 codebook, each pose will
be mapped to a codeword. Due to quantization, the mapped
codewords can be the same for a set of consecutive frames.
As a result, the mocap sequence can be compactly represented
by a series of triplets (namely, a full-body codeword index
number and the frame range). This series of codeword indices
is called the “motion string”. An illustration of the motion
string representation is given in Fig. 3, which shows all frames
in the aforementioned running motion sequence. The black



2194 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 16, NO. 8, DECEMBER 2014

Fig. 2. An illustration of full-body multi-resolution TSVQ codebooks.

Fig. 3. An illustration of the motion-string representation.

horizontal segments indicate the group of consecutive frames
that are mapped to the same full-body level-9 codeword. For
the level-9 codebook, the codeword index ranges from 0 to 511
( ).
Apparently, two motions are similar if their corresponding

motion strings are similar. The problem of finding simi-
larity between two motion strings can be reformulated to a
string matching problem. The latter can be efficiently solved
by using the suffix array technique [39], [40], [41]. In this
technique, all suffixes of a string, , are sorted in an as-
cending order. The sorted suffixes for a sample motion string,

, are shown in the last column
of Table II. Note that the end of the string is denoted by a
unique symbol ‘ ’. The ‘ ’ symbol is assigned to have the
highest value among all codeword indices in the motion string.
The suffix notation represents the sub-sequence of starting
from till the end of the string, followed by . Only the
starting point i.e. index ‘ ’ is enough to represent this suffix
. The array of indices ‘ ’ defines the “suffix array”, denoted

by suftab in Table II. We have for suffix that
is at the position in the sorted list starting with . To
give an example, represents the sub-sequence starting from

, which is . The suffix is at the fifth
location ( ) in the sorted list. Therefore, in
Table II.
For a sequence of length , the suffix array can be built in

time using an appropriate sorting algorithm. Besides,

TABLE II
THE SUFFIX ARRAY FOR MOTION STRING: [25, 18, 87, 160, 98, 25, 18, ]

Kim et al. [42] proposed a linear time complexity algorithm
for generating the suffix array. Other supplementary arrays are
also constructed to enhance and optimize the string matching
functionality. These arrays include:
1) The Burrows Wheeler Transform array, denoted by
“bwttab”, that stores the element before the first element
of the corresponding suffix . The element of bwttab
is . For example,

.
2) The longest common prefix array, denoted by “lcptab”, that
stores at the location, the length of the longest common
prefix between and . For example,
the longest common prefix of (i.e. ) and

(i.e. ) is [25], [18]. Therefore, .
The value stored in is the length of unique repeated

sub-sequence when we have

(2)

Thus, there is only one unique repeated sub-sequence in this
example, which is of length 2 and the sub-sequence is [[25],
[18]. In this manner, all unique matches within string can be
found using the suffix array technique.
To find similarity between two strings and , they are

concatenated into a new string , denoted by ,
where symbol ‘ ’ is a unique logical separator between and
but different from ‘ ’. Symbol ‘ ’ is assigned the second

largest value in string after ‘ ’. The same technique used
to find the repeated sub-sequences for a single string is now
applied to new string with additional care. That is, one of
the matching sub-sequence should begin before the ‘ ’ symbol
in and the other should begin after the ‘ ’. It ensures that the
match is not within or itself, but across strings and
. This additional constraint can be expressed in the following

form:

(3)

where is the cardinality of string .
In our experiments, all training and testing motion sequences

are converted to their motion strings. A test motion string is
compared with all trainingmotion strings individually, using the
suffix array technique discussed above and the following three
parameters are computed for each testing-training string pair:
• MLM: the product of ratios of the Maximum Length
Matches to the total length, for the test and the training
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Fig. 4. Standalone classification performance of the motion string similarity comparison: (a) overall performance using the sim parameter; (b) overall performance
using the max parameter.

strings. The maximum length sequence ‘ ’ is the maximum
value in the lcptab array that satisfies Eqs. (2) and (3).

• TEM: the Total number of Elements that Match in the two
strings. The total number of elements ’ ’ is the sum of all
the non-zero values in lcptab array that satisfy Eqs. (2) and
(3).

• SRP: The Product of Similarity Ratios of the test string and
the training string.

For example, the th test string has codeword indices in
its motion string while the th training string has codeword
indices. The codeword indices in these two strings are iden-
tical and the largest common sequence is of length . Then

and

(4)

As the calculation of and has its bottleneck
in the suffix array formulation, their computational complexity
is similar to that of the suffix array, with . On the
average, it takes around 0.5 ms to compare two strings using
the suffix array technique on a 64-bit Windows Vista operating
system with 4 GB RAM and Intel Core 2 Duo CPU T6500
2.10 GHz.
For the th test string, the following twometrics are calculated

with respect to a given motion category using the parameters
in Eq. (4):
1. Max-parameter: the average of MLMs of all training mo-
tions in category ;

2. Sim-parameter: the average of the similarity product of all
training motions in category .

For the th category, we have

(5)

where is the indicator function.
In standalone Method-A, the category with the highest pa-

rameter value wins. Alternatively, for each test motion, all cat-
egories are pitted against each other, one-on-one, and the cate-

gory with the higher value for the parameter wins the vote. All
category-specific votes are aggregated together and, then, nor-
malized to get the soft scores. That is, we have

(6)

for the th category with . The standalone
Method-A classification results are presented in Fig. 4. The full-
body level- codebooks that offer the best classification results
in standalone Method-A are short-listed for fusion to yield the
final decision.

B. Method-B: Pose-Histogram Classifier

Dynamic human behaviors are intrinsically low dimensional
since legs and hands work in a coordinated fashion [8]. Ac-
cording to biomechanics, a human skeleton can be decomposed
into five functionally independent body-parts: right hand, left
hand, right leg, left leg and torso. The mocap data inherently
provides a clear demarcation between these body-parts. In other
words, different portions of the mocap data vectors can be
associated with different body-parts. The first 3 elements give
the root joint location. The next 21 elements (i.e. with index
number 4-24) provide the information about the angular orien-
tations of joints in the torso, the next 12 elements (i.e. with index
number 25-36) for right hand and so on. The number of DOFs
for each body-part and their associated index range in the vector

, are shown in Table I.
To leverage the spatial symmetry of human bodies, we pro-

pose a scheme that partitions a human skeleton into five body-
parts using the information from Table I. Then, TSVQ is applied
to the DOF vectors of each body-part separately to generate five
balanced tree structured codebooks, one for each limb (i.e. right
hand, left hand, right leg and left leg) and one for the torso.
These five body-part codebooks provide a multi-resolution de-
scription of the pose for each body-part. As opposed to the pre-
vious method which analyzes the entire body together using the
“full-body” codebooks, this method analyzes “body-parts” sep-
arately using separate codebooks.
For each frame of a mocap sequence, every body-part is

encoded using the corresponding level- codebook, to get a
string of five codewords. Because of the quantization effect,
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Fig. 5. A pose string representation of a mocap sequence based on body-part
codewords.

these strings do not change for a chunk of consecutive frames.
This chunk can be represented by a set of five body-part code-
word indexes as well as the frame range through which this
chunk exists. For instance, Fig. 5 shows the frames in the bend
down and pick up a boxmotion sequence encoded using level-5
body-part codebooks. The black portions in the time-line
indicate the frames that have the same set of five body-part
poses. Three frames selected from each of the chunks are
shown above the time-line, and the level-5 codeword indices
are shown below, where RH, LH, RL, LL and TR represent
the Right Hand, Left Hand, Right Leg, Left Leg and Torso
codewords, respectively. The codeword index numbers are in
the range, 0 to 31 i.e. ( ) for each of the level-5 codebooks.
All the frames in each chunk are represented collectively using
a set of five body-part codeword indexes and the corresponding
frame range. This compact notation is called the “pose string
representation”.
The pose string representation is used to obtain the body-part

codeword histograms. The level- histograms obtained for each
body part (namely, right hand, left hand, right leg, left leg and
the torso) for the th motion clip are concatenated to get the

level- pose histogram vector, denoted by . If is the

level- torso histogram for the th clip, is the level-
right hand histogram, and so on, then

(7)

The pose histograms of motions belonging to the same
category are expected to be similar. The level- pose histogram
vector offers the information about the frequency of occurrence
of level- codewords for four limbs and the torso in the pose
string representation of a given motion clip. Higher TSVQ
levels in these histograms correspond to a higher resolution in
the spatial domain. Motions belonging to the same type show
similarity up to higher levels while motions of different types
begin to differ at lower levels of the histogram. The number of
levels can be gradually increased to get a better match between
motions. However, a compromise has to be made, since similar

Fig. 6. Correct classification results of Method B with level- codewords,
where .

motions will show differences if the level becomes too high. In
other words, we start to see the characteristics of an individual
motion clip rather than that of a motion category.
Support vector machines1 are supervised learning models for

regression analysis and binary classification. Assume the clas-
sification labels ; the decision rule

; to be the input feature vector for the
motion, the mapping function, classifier and to be
the parameter vector. Then the optimization algorithm trains the
SVM classifier by minimizing the hinge loss function in form
of

(8)

where the last term is the regularizer coefficient. SVM con-
structs a hyperplane with the largest separation between the two
classes.
For multi-class classification with classes,

binary SVM classifiers are built. Every binary SVM classifier
distinguishes between a pair of classes where

and .

if or
if

(9)

In our case, . LIBSVM [43] trains these multiple bi-
nary SVM classifiers using the level- pose histogram feature
vectors and Gaussian RBF kernel. Refer to Eq. (7) for the in-
terpretation of pose histogram vectors. The hyper-parameters of
SVM classifiers are carefully tuned using cross validation on the
training set. Regularization, careful tuning of hyper-parameters
and cross validation help avoid overfitting. Every classifier then
categorizes the test motion into one of two classes. The winning
class gets that classifier’s vote. For the th category and the th
test motion, the total votes are calculated as

(10)
In standalone Method-B, the class that gets the maximum
number of votes wins. The standalone Method-B classification
results are depicted in Fig. 6. Alternatively, the votes of all
classes are normalized to get soft decision scores (one for
each category) for that test motion.

1http://en.wikipedia.org/wiki/Support_vector_machine
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TABLE III
COMPARISON OF CLASSIFICATION RESULTS

The performance of standalone Method-B which uses the
spatial domain information is presented in Section 4. The classi-
fication results at various levels are analyzed to choose the best
performing levels in the multi-resolution tree histograms. These
shortlisted levels are then used in the decision fusion step.
The motion string similarity (Method-A) inspects the order

of the full-body poses while the pose histogram classifier
(Method-B) examines the frequency of body-part poses. The
two methods use completely different information to analyze
the mocap data. These diverse perspectives complement each
other in the fusion step to enhance the overall performance. It
is worthwhile to point out that the codebooks for Method-A
demand deeper levels ( ) in TSVQ as com-
pared to that for Method-B ( ). This is because
Method-A considers the full-body codebook and its level has
to be deep enough to offer sufficient discriminant power. In
contrast, Method-B uses specialized body-part codebooks that
can reach sufficient discriminating capability with shallower
levels in TSVQ.

C. Method-C: Two-Step Score Fusion

For simplicity, we use the following nomenclature to repre-
sent the selected algorithm and its parameter setting:
• A (or B): Method- A (or Method- B) classification
algorithm;

• MLn:Max-parameter with Level- n TSVQ full-body code-
books (associated with Method-A only);

• SLn: Sim-parameter with Level- n TSVQ full-body code-
books (associated with Method-A only);

• PLn: Pose histograms with Level- n TSVQ body-parts
codebooks (associated with Method-B only).

The top two algorithms in Method-A (A-SL12, A-SL13)
and Method-B (B-PL04, B-PL06) are shortlisted for fusion in
Method-C. Refer to Tables III–V for details. Given the indi-
vidual outcomes of these four algorithms and their soft scores,
Method-C makes the final decision on the motion category
using a two-step procedure as outlined below.
Step 1) Hard Decision Fusion The individual outcomes of

the above-mentioned four algorithms (for a certain
test motion) are taken together. If these outcomes
are biased towards a specific category, then the test
motion is classified into that category. Otherwise,
we move on to the second step. For example, if al-
gorithms A-SL12, B-PL05 and B-PL06 classify the
motion into category-M while A-SL13 classifies the
motion into category-N. Then, Method-C classifies
the motion into category-M since this category has

the maximum number of votes. If there is any tie of
some sorts, we proceed to the second step to break
the tie.

Step 2) Soft Score Fusion If there is a tie, soft scores of all
these four algorithms are merged together as

(11)

where and denote a motion cate-
gory and a test motion sequence, respectively, and
subscript Soft indicates soft scores. The category
getting the maximum score is assigned to that of test
motion ; namely,

(12)

where weight can be determined heuristically by
analyzing the variance of the soft scores and the
standalone classification outcomes. For simplicity,
is set to 1 in our experiments. The performance

results of Method-C are given in Table VI.

D. Method-D: Two-Step SVM Fusion

To improve the performance further, we developed another
two step fusion approach based on SVM classifiers, a.k.a.
Method-D. The details of this two step approach are given
below.
Step 1) Hard Decision Fusion Similar to Method-C, the

individual outcomes of four algorithms A-SL12,
A-SL13, B-PL04 and B-PL06 (for a certain test
motion) are taken together. If these outcomes are
biased towards a specific category, the test motion
is classified into that category. If there is a tie, we
proceed to the second step.

Step 2) SVM Fusion For Method-D, we adopt a new
mechanism to compute soft scores of Method-A
and Method-B. For Method-A, we use the nor-
malized SIM parameter values as the soft scores.
For Method-B, we use the ‘one-versus-rest’ SVM
classifier

(13)

where is the mapping function, is a constant
and , to yield the soft score for fea-
ture vector with respect to category . A higher
absolute positive score implies a higher possibility
of test motion belonging to class while a higher
absolute negative scores imply otherwise.

The soft scores, computed in this fashion for the four
aforementioned algorithms i.e. A-SL12, A-SL13, B-PL04 and
B-PL06, are combined to form the following four dimensional
feature vectors:

(14)
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TABLE IV
STANDALONE MOTION STRING SIMILARITY COMPARISON RESULTS

TABLE V
STANDALONE POSE HISTOGRAM CLASSIFICATION RESULTS

Suppose is the training motion. In the training phase, feature
vectors belonging to class are used to build new ‘one-

versus-rest’ SVM classifiers for class . In the testing phase,
the four dimensional feature vectors and the corresponding
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TABLE VI
DECISION FUSION RESULTS

classifiers are used to find the SVM scores for
and its corresponding class . Then, in Method-D, the category
having the maximum SVM score, i.e.,

(15)

is the category of test motion . The performance results of
Method-D are presented in Table VI.

IV. EXPERIMENTAL RESULTS

A. Dataset Description

Our experimental dataset contains a total of 278 high quality
labeled motion clips ( 0.5 million frames) belonging to 30 dis-
tinct categories taken from the CMU mocap database [5]. 33
different subjects were involved in recording these motions. The
captured data has 62 dimensions of freedom (DOFs). The first
three dimensions give the 3D position of the centroid of the
human skeleton while the remaining 59 DOFs describe the an-
gular positions of the joints as shown in Table I. These 59 DOFs
together define a full-body pose in the 3D space. The pre-pro-
cessing step irons out the kinks in the full-body raw data file and
also separates it into five body-part files for Method-B. The gen-
erated TSVQ codebooks are used to classify the motions from
the dataset using n-fold cross validation process.
The n-fold cross validation method is adopted to evaluate the

performance of the proposed classification algorithms. In this
procedure, all motion clips of the same category are divided
into subsets. We choose an arbitrary subset as the test data
and the other subsets as the training data, and conduct

the experiment to get the classification performance. Following
the same procedure, we can perform such tests using each
subset as a test subset once. Finally, the classification results
for all tests are aggregated together. We set in our
experiment. Fig. 7 shows the cross validation results for each of
the five groups.

B. Classification Performance and Discussion

We compared the performance of the four classification
methods: 1) Standalone Method-A, 2) Standalone Method-B,
3) Method-C and 4) Method-D. The overall correct classifica-
tion results for 278 test motions using the 5-fold cross validation
with different level TSVQ codebooks and parameter settings
are summarized in Table III. More detailed classification results
are listed in Tables IV–VI.
In contrast with the pose histogram classification approach

(Method-B), the motion string similarity comparison approach
(Method-A) examines the transition of “coarsely quantized
poses” in the temporal domain. Though there is an approxi-
mation, the temporal information helps in classifying some of
the motions correctly, which the pose histograms missed. For
instance, the misclassified Kickball motions are all correctly
categorized by the temporal domain approach, indicating the
fact that the sequence of poses do matter. Please check A-SL12
and B-PL06 columns in Tables IV and V, respectively. In addi-
tion, the temporal domain approach reinforces the confidence
in the correctly classified motions. On the flip side, due to the
coarse quantization used in the temporal domain approach, a
lot of motions from the Cock Robin category are misclassified
as shown in column A-SL13, Table IV. However, the finer
resolution of the pose histogram classification algorithms give
us correct results for those motions as shown in column B-PL06
of Table V. In this manner, these two diverse approaches com-
plement each other.
Both the temporal and the spatial domain approaches have

their own strengths and shortcomings. Due to this diversity,
it is desired to combine them so as to improve the classifica-
tion accuracy even further. Both the fusion approaches are able
to do so. For example, the Run and the Walk motions which
were not classified by either Method-A or Method-B are cor-
rectly classified by both the fusion approaches. This demon-
strates the significance of proper fusion.Within these two fusion
approaches, the SVM fusion (Method-D) outperforms the score
fusion (Method-C). This is mainly due to the fact that Method-C
weighs all the features equally while Method-D is able to put
more emphasis on the relevant features. This effect is more pro-
nounced for the Tea Pot nursery rhyme category as shown in
Table VI.
The performance results of the state-of-the-art mocap classi-

fication algorithms, tested on similar datasets, are presented in
Table VII. Our classification results are better than the other.
However, the direct comparison of all these algorithms with
ours is difficult due to the following reasons.
• Most of state-of-the-art algorithms tested their approach on
their own datasets (or a mixture of CMU and self-gener-
ated datasets). We have no access to their datasets. Our ap-
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Fig. 7. (a) Group-wise performance using the sim and max parameters and (b) group-wise classification results for pose histogram classifiers.

TABLE VII
PERFORMANCE COMPARISON OF HUMAN MOCAP DATA

CLASSIFICATION ALGORITHMS

proach uses the motions from the freely available online
CMU mocap database [5] only as listed in the Appendix.

• We adopted a stricter classification performance evaluation
metric. For example, Wu et al. [32] clustered the running
and marching motions into one group as these motions are
similar. In contrast, our evaluation metric requires that, if
the labels of motions are different, they should be catego-
rized into separate groups. Apart from that, some motions
belonging to the same category are clustered into separate
sub-groups in [32]. As long as samples in each sub-group
are homogeneous, it is treated as correct clustering. How-
ever, they are treated as misclassification in our perfor-
mance metric.

• We have more motion categories as compared to others.
For example, our dataset contains both simple and complex
motions from 30 categories while Wu’s dataset had only
simple motions from 14 categories.

Although we do not have a direct performance comparison
because of different datasets, evaluation metrics and action cat-
egories used. The results in Table VII still offer a rough idea of
the performance of prior art.

V. CONCLUSION AND FUTURE WORK

A technique for automated mocap data classification was pre-
sented in this work. The TSVQ method was adopted to ap-
proximate static human poses with codewords while a dynamic
human motion was represented by a sequence of codewords.
Fusion approaches were proposed to classify mocap data into
different categories. We tested the proposed algorithms on the
CMU mocap database using the 5-fold cross validation proce-
dure and obtained a correct classification rate of 99.6%.
The proposed algorithm can be extended to various tasks re-

quired by mocap database management such as segmentation,
indexing and retrieval, without much effort. We only sketch the
basic ideas below.

• Segmentation: If a complex motion clip contains multiple
basic motions, then the sequence of these basic motions
will be present in the sequence of that complex motion. By
using string matching, we can find out the location of se-
quences of all basic motions in the complex motion. This
corresponds to the segmentation of a complex motion se-
quence into multiple basic motion sequences.

• Indexing: After running the classification algorithm, un-
knownmotion clips can be classified into one of the known
categories and indexed accordingly. Consider a mixed mo-
tion that has running, jumping and bending actions one
after the other. Using the string matching and the database
of sequences, the location of all these basic motions in that
mixed motion can be determined and these basic motions
can be indexed accordingly.

• Retrieval: The retrieval problem can be solved using suffix
array technique. To be more specific, for a given test mo-
tion, we would like to extract motion clips or parts of mo-
tion clips from the database that are similar to the query.
To perform this retrieval task, we convert the test motion
into a sequence and use the string matching algorithm to
search the motion clips or portions of the motion clips that
have the same sequence. Those clips can then be retrieved.

There are several algorithms for extracting human skeleton
from depth images produced by Microsoft Kinect [45], [46].
The data generated by these algorithms are similar to the mocap
data [47]. It is interesting to explore whether the proposed
methodology can be extended to the Kinect sensor data as well.
High quality 3D rendering can be achieved by blending stored
mocap data with the pose information from the Kinect sensor
inputs.

APPENDIX

The CMU mocap database [5] motion capture files used in
our research, are listed below. All these files are files con-
taining the frame by frame values of 59 rotational angles of the
29 joints in the human skeleton, plus a triplet representing the
3D position of the root joint at that moment. The number before
the ‘_’ symbol is the subject identification number and the one
after it is the motion serial number. For example, 09_01 is the

file which is the first motion of the subject ‘09’. The
corresponding skeleton file having the details of the subject’s
skeleton structure is .
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1) Run: 09_01, 09_02, 09_03, 09_04, 09_05, 09_06, 09_07,
09_08, 09_09, 09_10, 09_11, 35_17, 35_18, 35_19,
35_20, 35_21, 35_22, 35_23, 35_24, 35_25, 35_26,
127_06, 127_07, 127_08, 141_01, 141_02, 16_55.

2) Walk: 35_01, 35_02, 35_03, 35_04, 35_05, 35_06, 35_07,
35_08, 35_09, 35_10, 35_11, 35_12, 35_13, 35_14, 35_15,
35_16, 35_28, 35_29, 35_30, 35_31, 02_01, 02_02, 07_01,
07_02, 07_03, 07_06, 07_07, 07_08, 07_09, 07_10, 07_11,
08_01, 08_02, 08_03, 08_06, 08_08, 08_09, 08_10, 12_01,
12_02, 12_03, 16_15, 16_16, 16_21, 16_22, 16_31, 16_32.

3) Forward Jump: 16_05, 16_06, 16_07, 16_09, 16_10,
13_11, 13_13, 13_19, 13_32.

4) Forward Dribble: 06_02, 06_03, 06_05, 06_10, 06_11.
5) Cartwheel: 49_06, 49_07, 90_02, 90_03, 90_04.
6) Kickball: 10_01, 10_02, 10_03, 10_05, 10_06.
7) Boxing: 13_17, 13_18, 14_01, 14_02, 14_03, 15_13,
17_10.

8) Mickey Walk: 120_08, 120_09, 120_10, 120_11, 120_12,
120_13, 120_14.

9) Sit and Stand Up: 13_01, 13_02, 13_03, 14_27, 14_28.
10) Laugh: 13_14, 13_15, 13_16, 14_17, 14_18, 14_19.
11) Sweep Floor: 13_23, 13_24, 13_25, 14_16 (2).
12) Wash Windows: 13_20, 13_21, 13_22, 14_10, 14_11.
13) Climb Ladder: 13_33, 13_34, 14_33, 14_34, 14_35.
14) Steps: 13_35, 13_36, 13_37, 13_38, 14_21, 14_22, 14_23.
15) Eating: 79_12, 79_15, 79_42, 80_24, 80_33.
16) Tiptoe: 13_10, 13_12, 14_07, 14_08, 14_09.
17) Pick Box Bend Waist: 115_01, 115_02, 115_03, 115_04,

115_05, 115_10.
18) Limp: 77_19, 77_20, 77_22, 77_23, 77_24.
19) Balance: 132_01, 132_02, 132_03, 132_04, 132_05,

132_06, 132_07, 132_08, 132_09, 132_10, 132_11,
132_12.

20) Get Up From Chair: 111_09, 111_10, 111_11, 114_04,
114_06.

21) Breast Stroke: 125_01, 125_02, 125_04, 126_03, 126_04,
126_05.

22) Hop on Left Foot: 132_23, 132_24, 132_25, 132_26,
132_27, 132_28.

23) Bouncy Walk: 132_29, 132_30, 132_31, 132_32, 132_33,
132_34.

24) Marching: 138_01, 138_02, 138_03, 138_04, 138_05,
138_06, 138_07, 138_08, 138_09, 138_10.

25) Nursery Rhyme Tea Pot: 24_01, 25_01, 26_03, 26_04,
27_03, 27_07, 28_02, 28_06, 29_03, 29_08, 30_02,
30_08, 31_02, 31_06, 32_04, 32_08.

26) Nursery Rhyme Cock Robin: 26_07, 26_08, 27_05, 27_10,
28_04, 28_08, 29_06, 29_10, 30_05, 30_06, 30_10, 31_04,
31_08, 32_06, 32_10.

27) Swing: 64_01, 64_02, 64_03, 64_04, 64_05, 64_06, 64_07,
64_08, 64_09, 64_10.

28) Placing Tee: 64_16, 64_17, 64_18, 64_19, 64_20.
29) Salsa Dance: 60_01, 60_02, 60_03, 60_04, 60_05, 60_06,

60_07, 60_08, 60_09, 60_10, 60_11, 60_12, 60_13, 60_14,
60_15.

30) Get Up From Floor: 111_06, 111_07, 111_08, 140_08,
140_09.
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