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Abstract—Effective feature selection plays a vital role in ante-
rior segment imaging for determining the mechanism involved in
angle-closure glaucoma (ACG) diagnosis. This research focuses on
the use of redundant features for complex disease diagnosis such
as ACG using anterior segment optical coherence tomography im-
ages. Both supervised [minimum redundancy maximum relevance
(MRMR)] and unsupervised [Laplacian score (L-score)] feature
selection algorithms have been cross-examined with different ACG
mechanisms. An AdaBoost machine learning classifier is then used
for classifying the five various classes of ACG mechanism such as
iris roll, lens, pupil block, plateau iris, and no mechanism using
both feature selection methods. The overall accuracy has shown
that the usefulness of redundant features by L-score method in im-
proved ACG diagnosis compared to minimum redundant features
by MRMR method.

Index Terms—Angle-closure glaucoma (ACG), anterior segment
optical coherence tomography (AS-OCT), unsupervised feature se-
lection, redundant features, Laplacian score (L-score), minimum
redundancy maximum relevance (MRMR), machine learning clas-
sifier.

I. INTRODUCTION

G LAUCOMA is a chronic eye disease, where a loss of
vision occurs as a result of progressive optic nerve and

astrocytes damage caused by high intraocular pressure (IOP)
[1]. It is the second major cause of visual impairment and blind-
ness worldwide with estimated 60.5 million glaucoma cases by
2010 and this number may increase to almost 80 million by
2020 [2]. Early diagnosis of this disease slows down the disease
progression toward the complete vision loss. Due to the com-
plex and diverse nature of disease pathology of glaucoma, its
diagnosis heavily relies on the experience of glaucoma expert
ophthalmologist. It is important to detect glaucoma in its early
stages so that a patient’s vision can be preserved. Detection of
glaucoma is time consuming and need special skills and devices.
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Recent advances in medical image processing have enabled the
development of different image modality-based computer aided
detection systems for glaucoma using various features and clas-
sifier techniques [3]–[8].

Glaucoma can be classified into three major divisions such
as angle-closure glaucoma (ACG), open-angle glaucoma, and
developmental glaucoma. Each of the classes above mentioned
can be further subdivided into primary and secondary categories.
Among these, ACG are chronic and asymptomatic, which is
more prevalent [9]. ACG causes more visual morbidity than
open-angle glaucoma. Optical coherence tomography (OCT)
has proven to be useful in the diagnosis of glaucoma; it uses
near-infrared light to measure the distance of the anatomical
structures within the eye, and is hence convenient due to its
noncontact nature [10].

Anterior chamber angle (ACA) assessment is mostly used for
the detection of ACG. It can be visualized and measured by us-
ing anterior segment OCT (AS-OCT) imaging techniques [11].
AS-OCT provides excellent repeatability and reproducibility for
the measured corneal thickness, ACA, and depth. It has been ob-
served that ACG could be the result of one or more mechanisms
in the anterior segment of the eye and the patients with differ-
ent ACG mechanisms differ in anterior segment measurements
[12]. Analysis of the dimensions of the features obtained by
AS-OCT and their classification into the right mechanisms, us-
ing feature selection and machine learning techniques, would be
useful in the clinical diagnosis of ACG. The supervised feature
selection technique by minimum redundancy maximum rele-
vance (MRMR) method from the anterior segment measure-
ments can determine the predominant angle closure mechanism
with high accuracy [13].

Despite the fact that redundant information has the disad-
vantage such as being more computationally expensive and
requiring larger memory space, the redundant representations
may be more pliable than the nonredundant ones [14]. The
removal of redundant information during the feature selec-
tion affects the precision result in text classification [15]. The
advantage and significant role of redundancy in extracting use-
ful information in signal and image analysis [16], medical im-
age fusion [17], biological data [18], and complex medical
diagnostic applications [19] has been explored. The redundant
multiscale transforms such as undecimated wavelet transform,
ridgelet transform, and curvelet transform which produce re-
dundant information are widely used in many applications such
as signal/image denoising, enhancement, and contour detection
[14]. Since noise is usually unavoidable and spread over a small
number of neighboring samples/pixels, the abovementioned re-
dundant transforms are good for denoising signals/images [20].
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Reliable feature detection from AS-OCT images is impor-
tant for improving the classification accuracy since the detected
features are the basis of glaucoma detection and this has been
less investigated. The motivation behind this study is to explore
two different methods for selection of features from the anterior
segment of the eye and to provide a better understanding of
the use of selected redundant features for machine classification
in improved glaucoma diagnosis. This paper, therefore, gives
useful relevant insights based upon cross examination on the
selected features and allows a detailed analysis to compare the
results in terms of their accuracy and F-measure for possible in-
terpretation. The proposed study is important for understanding
of glaucoma detection, classification, and analysis using redun-
dant features. The subsequent machine learning classification
demonstrates the effectiveness toward different mechanisms of
ACG.

In the rest of this paper, Section II reviews the more spe-
cific literature on ACG and feature selection methods, while the
proposed methodology is presented in Section III. Section IV
discusses the experimental results. A comparative study is care-
fully made with features by the two feature selection algorithms
adopted, and common and similar/redundant features are identi-
fied to confirm the important features toward ACG mechanisms.
The last section draws the conclusion.

II. BACKGROUND

A. ACG and Its Mechanism

In ACG, aqueous outflow is obstructed due to iridocorneal
apposition, which in turn causes a rise in IOP and optic nerve
damage. The blocked drainage canals can be identified by a
closed or narrow angle between the iris and the cornea (see
Fig. 1), upon examination of the anterior segment of the eye [12].
AS-OCT is an imaging system, which is able to image the
anterior segment of the eye using near-infrared light to measure
distance of anatomical structures. From the AS-OCT scans,
several features can be extracted, such as the angle-opening
distance (AOD), trabecular-iris space area (TISA), and angle
recess area (ARA) [21], as illustrated in the schematic diagram
of anterior segment of an eye in Fig. 1.

AOD is defined as the measurement of the distance between
a point of the cornea, which is “x” μm away from the scleral
spur and the opposite point of the iris [22]. Values of “x” used
in the dataset are 500 (AOD_500) and 750 (AOD_750). TISA is
defined as the measurement of the area covering “x” μm located
in the area bounded by the cornea and the iris. Values of “x”
used in the dataset are 500 (TISA_500) and 750 (TISA_750).
ARA is defined as the triangular area bordered by the anterior
iris surface, corneal endothelium, and a line perpendicular to
the corneal endothelium from a point “x” μm anterior to the
scleral spur to the iris surface. Values of “x” used in the dataset
are 500 (ARA_500), 750 (ARA_750), 1000 (ARA_1000), 1500
(ARA_1500), and 2000 (ARA_2000).

The characteristic features in the anterior segment of the
eye that may result in ACG can be categorized into several
mechanisms: thick peripheral iris roll, exaggerated lens vault,
pupil block, and plateau iris [10]. Each mechanism has several

Fig. 1. Anterior segment sketch of an eye with narrow angle between iris and
cornea. Inner figure representing the parameters that are used for quantifying
the ACA; AOD; TISA; TIA; ARA.

Fig. 2. AS-OCT image of an eye with the (a) iris roll mechanism, (b) ex-
aggerated lens vault mechanism, (c) pupil block mechanism, (d) plateau iris
mechanism.

characteristics that can be identified by visual observation of the
AS-OCT images, and will be also detectable by feature selection
algorithms and machine learning classifiers.

The iris roll mechanism [see Fig. 2(a)] can be identified by a
thick iris, which narrows the angle between the iris and cornea
due to the circumferential folds along the periphery of the iris.
The exaggerated lens vault mechanism [see Fig. 2(b)] can be
identified by the lens pushing the iris forward (upward in the
image), hence reducing the angle between the iris and the cornea.
The pupil block mechanism [see Fig. 2(c)] can be identified
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Fig. 3. Block diagram of the proposed method.

by a convex forward iris profile (arched upward in the image)
causing a shallow peripheral anterior chamber. The plateau iris
mechanism [see Fig. 2(d)] can be identified by a sharp rise of
the iris at the periphery, close to the angle wall, before sharply
turning away from the angle wall toward the visual axis.

B. Related Work in Feature Selection

This section focuses on the feature selection methods closely
related to this study, as well as existing research related to
ACG detection from AS-OCT images. There are various fea-
ture selection algorithms in the literature, including the max-
imum dependency-maximum relevance-minimum redundancy
[23], Laplacian score (L-score) [24], Variance and Fisher score
methods [25].

The MRMR feature selection algorithm, proposed by Peng
et al. [23], selects features that are optimal for classification and
its fast computation. It aims to reduce the correlation between
the selected features themselves. The idea is that, if two features
are highly correlated to each other, it would be undesirable to
include them in the selected feature set, despite their relevance
to the target class and, therefore, only the more relevant feature
out of the two correlated features would be selected.

Hence, this requires the calculation of mutual information
of a feature with not only the target class, but with other fea-
tures as well. It is explored that the MRMR feature selection
produces classification error rates that are significantly lower
when compared to other feature selection methods such as max-
dependency and max-relevance, which do not take into account
the correlation between selected features. In their study, exper-
iments were performed from 1 to 50 features. However, con-
sidering the fact that the raw datasets tested had 278 to 9703
features, it might have been useful to know the performance of
the MRMR algorithm beyond 50 features selected.

The L-score feature selection algorithm, proposed by He et al.
[24] selects features by calculating its L-score, which is an in-
dication of its locality preserving power. The algorithm is able
to select features in both supervised and unsupervised settings.
L-score do not handle feature redundancy and require more
computational time. The study reported significantly higher ac-
curacy of the unsupervised L-score algorithm when compared to
the unsupervised variance method [25]. In sorting four features
from the Iris dataset from the UCI ML repository [26], it was
able to achieve the same result as the supervised Fisher score
[24], proving the capability of the L-score algorithm to detect
discriminative features even in the absence of class labels.

The study on the feature selection of anterior segment fea-
tures from AS-OCT images performed by Wirawan et al. [13]
concluded that, using the MRMR feature selection method and

the AdaBoost machine classifier, an accuracy of 84.39% is
achieved using only ten out of the 84 features provided in the
AS-OCT dataset (11.90% of the available features). This ap-
pears to be consistent with the study of the MRMR and its good
performance result at smaller feature subsets [23]. Comparisons
were also made against other machine learning methods, namely
classification tree, support vector machine, Random forest, and
Naı̈ve Bayes classifiers.

It was noted that, while making comparisons between the
different machine learning methods, the AdaBoost-MRMR
method was the only method that did not include the entire
available feature set. All the other machine learning methods,
including AdaBoost without MRMR, were tested using all 84
features. Among the methods that were tested using the entire
set of features, the AdaBoost algorithm was shown to provide
the highest accuracy at 83.03%. A combination of AdaBoost
with MRMR feature selection algorithm was then shown to
boost the accuracy to 84.39%. It could hence be deduced that
having the machine learning algorithm classify the entire set of
provided features may not necessarily yield the best accuracy,
and that classification of selected features could instead provide
better results. Since the previous study [13] focused only on the
MRMR feature selection method which is supervised, another
feature selection method could be studied with the AdaBoost
machine learning algorithm, which was shown to be superior to
the other machine algorithms compared against, in an attempt
to further boost the accuracy of the classification of the mech-
anisms of ACG. A comparative study of the features selected
by the various feature selection algorithms could also be per-
formed for reliability in feature selection and insight derivation
toward glaucoma diagnosis. To the best of our knowledge, a
cross comparison of the features selected by various feature se-
lection algorithms for the identification of meaningful features
and the usefulness of redundant features for improving ACG
detection has not been performed.

III. PROPOSED METHODOLOGY

The proposed methodology for the feature selection and clas-
sification is shown in Fig. 3. As the range of values of input raw
data varies widely, it was normalized before performing any fea-
ture selection. The L-score and MRMR algorithms were then
performed on the normalized data, and six feature lists (super-
vised L-score technique with (1) Binary and (2) Heat kernels,
unsupervised L-score technique with (3) Binary and (4) Heat
kernels, supervised MRMR technique with (5) mutual infor-
mation difference (MID), and (6) mutual information quotient
(MIQ) methods) were generated. The feature rank lists con-
sisted of the 84 features in the data set, arranged in order of the
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importance of the features as determined by L-score and MRMR
algorithms.

The sorted lists of features were then trained by the AdaBoost
machine learning classifier using incremental selection subsets
of Si(S1 ⊂ S2 ⊂······⊂ Sn ), i.e., for each list of 84 features, the
AdaBoost training was performed 84 times with the nth training
run being performed on the top n features in the list, so as to
find the optimal number of top features generated per list. The
AdaBoost algorithm was also run using 100 iterations and with
leave-one-out cross validation to prevent overfitting of training
data.

The performance of the AdaBoost classification based on the
generated feature selected lists were then analyzed by generating
a confusion matrix from the results of the classification, and the
accuracy, F-measure, specificity, and sensitivity are calculated.
Features selected by the algorithms which yielded favorable
accuracy were analyzed and compared to explore the usefulness
of redundant features.

A. L-score Method

As introduced in the previous section, L-score is a feature
selection method that determines the importance of a feature
by the construction of a graph using the sample data points
and identifying which features best represent the structure of
the graph [24]. The L-score algorithm is able to operate in
both unsupervised and supervised contexts. In the unsupervised
approach, a nearest-neighbor graph is constructed using data
points, with an edge placed between two data points that are
deemed to be close to each other using k-nearest neighbors (k-
nn). For example, for a data point xi with k = 5, the five nearest
data points to xi will have an edge placed between them. In
supervised L-score, an edge is placed between two data points
that share the same classification. The edges are then assigned
weights using either of the following methods: Binary and Heat
kernel. The Binary method is a straightforward method where
all edges are assigned a weight of 1, and 0 indicates that there
is no edge between the two data points. Formally, for two data
points xi and xj , Sij = 1 if there is an edge between them.
Otherwise, Sij = 0. In the Heat kernel method, if there is an
edge between two data points xi and xj , and given a suitable
constant t (which was set to a value of 1 in this study), the edge
weight will be calculated as

Sij = e
‖x i −x j ‖2

t . (1)

Otherwise, if there is no weight, then Sij = 0.
After the edge weights have been assigned, the weight matrix

S is then formed which represents the local structure of the
data space. A matrix L, called the graph Laplacian, may also
be defined. For the yth feature using n data points, we can then
define

f y = [fy1 , fy2 , . . . , fyn ]T ,D = diag (S1) , 1 = [1, . . . , 1]T .
L = D − S

(2)

Let

f̂ y = f y −
fT

y D1

1T D1
1. (3)

The L-score for the yth feature may be calculated as

Ly =
f̂

T

y Lf̂ y

f̂
T

y Df̂ y

. (4)

The features will be then sorted by their L-score and provided
to the machine learning classifier.

B. MRMR Method

MRMR [23] is a supervised feature selection algorithm that,
as the name suggests, aims to find features that are most rele-
vant to the target classifications, while reducing the redundancy
between selected features. To find features that are relevant, the
mutual information between a feature and the target classifica-
tion should be maximized. The mutual information between two
variables x and y is defined as

I(x, y) =
∫ ∫

p(x, y) log
p(x, y)

p (x) p(y)
dxdy (5)

where D(F, y) represents the mutual information between a
feature in set F and class y, with set F containing n features
{x1 , x2 , . . . , xn}, the mutual information is defined as

max D(F, y) =
1
|F |

∑
xi ∈F

I(xi, y). (6)

While finding relevant features is important, the MRMR al-
gorithm is based on the idea that similar or correlated features
should not be included in the feature set, regardless of the mutual
information between the features and the target classification,
resulting in a feature set that is compact yet accurate, where
R(F) represents the mutual information between two features
xi and xj (i, j = 1, . . . , n) in set F, the mutual information is
defined as

min R(F ) =
1

|F |2
∑

xi ,xj ∈F

I (xi, xj ) . (7)

The two methods in which MRMR was used in this study are
the combined criteria known as MID and MIQ.

MID is defined as

max Φ (D,R) ,Φ = D (F, y) − R(F ). (8)

MIQ is defined as

max Φ (D,R) ,Φ =
D(F, y)
R(F )

. (9)

In practice, candidate feature sets may be created by using
incremental search methods to find the near optimal features de-
fined by Φ. Hence, in this study, the following implementations
were used

MID : max
xj ∈X−Fm −1

[
I (xj , y) − 1

m − 1

∑
xi

I(xj , xi)

]
. (10)
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Fig. 4. Pseudocode of the AdaBoost algorithm.

MIQ : max
xj ∈X−Fm −1

[
I(xj , y)

1
m−1

∑
xi

I(xj , xi)

]
. (11)

The above incremental algorithms suppose that when we have
Fm−1 , consisting of m–1 features, we will then select the mth
feature from the set {X − Fm−1}, which is done by selecting
the feature that maximizes Φ.

C. Adaboost Classifier

AdaBoost, used in this study, is the primary machine learning
algorithm [27], due to the algorithm being shown to be superior
in classifying ACG mechanisms in [13]. The algorithm works by
boosting a weak learner for a predetermined number of iterations
until a hypothesis is generated. At each iteration, classifications
that have been wrongly labeled by the weak learner are more
heavily weighted, and the weak learner is reapplied. The detailed
procedure of the AdaBoost algorithm is shown in Fig. 4.

D. Performance Analysis

The confusion matrix [28] is used to measure the performance
of a machine learning classifier upon training on a dataset. It
contains information about the classifications predicted by the
machine learning classifier, as well as the actual classification
of the data. Table I shows a confusion matrix for a two-class
classifier. A and D indicate the number of samples that have been
correctly classified into positive and negative samples, respec-
tively. B indicates the number of positive classes that have been
erroneously classified as negative, and C indicates the number of
negative classes that have been erroneously classified as positive
(disease). Since the data in this study consists of five different
classes, 5 × 5 confusion matrices will be predominantly used
in this study.

TABLE I
CONFUSION MATRIX FOR A TWO-CLASS CLASSIFIER

Using the confusion matrix, the performance of the machine
learning classifier can be measured by accuracy, F-measure,
sensitivity, and specificity, which in turn can be derived from
true positives (TP), true negatives (TN), false positives (FP), and
false negatives (FN). A TP occurs when a classifier correctly
classifies a sample into its correct classification. Example: a
“Lens” classification is classified as “Lens.” A TN occurs when a
classifier correctly does not classify a sample into a classification
it should not belong to. Example: a sample that is not “Lens” is
not classified as “Lens.” A FP occurs when a classifier wrongly
classifies a sample. Example: a “Lens” sample is not classified
as “Lens.” A FN occurs when a classifier wrongly classifies a
sample into a classification it should not belong to. Example: a
sample that is not “Lens” is classified as “Lens”. Sensitivity is
the measure of the classifier’s ability to identify positive results
and specificity is the measure of the classifier’s ability to identify
negative results.

Accuracy is used to measure the overall discrimination power
of the classifier. It is a proportion of the total number of predic-
tions made by the classifier that were correct. It can be defined
as

Accuracy =
TP + TN

TP + TN + FP + FN
. (12)

Concerning the statistical significance, the F-measure is also
measured to calculate the test’s accuracy. It is used to mea-
sure the identification of positive class (disease) and it can be
interpreted as a weighted average of the precision and recall

F -measure = 2.

(
p ∗ r

p + r

)
(13)

where “p” is the precision and “r” is the recall of the test to
compute the score. Precision is the number of correct results
divided by the number of all returned results and it can be
defined as

Precision(p) =
TP

TP + FP
. (14)

Recall is the number of correct results divided by the number
of results that should have been returned

Recall(r) = TP/(TP + FN). (15)

F-measure is a composite measure which benefits algorithms
with higher sensitivity and challenges algorithms with higher
specificity. High values of accuracy, F-measure, sensitivity, and
specificity indicate good performance of a machine learning
classifier on the trained data.
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TABLE II
CLASSES OF ACG IN PROVIDED DATASET

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

The dataset used in this study consists of data samples pro-
vided by the Department of Ophthalmology in the National
University Hospital (NUH), Singapore. It consists of 156 sam-
ples split into five classes which include the four mechanisms,
as well as a “No mechanism” class, which indicates that the
sample does not contain any of the characteristic features of any
of the mechanisms. Ethics approval was obtained from the re-
view board of NUH and the written consent was obtained from
all subjects prior to AS-OCT imaging.

One eye from each patient (only nasal and temporal quad-
rants) was captured with the images centered on the pupil using
ZEISS Visante Anterior Segment OCT Model 1000 device (Carl
Zeiss Meditec, Inc., Dublin, CA, USA) under standardized dim
illumination conditions (0 lux) in a room that has no windows
and no lights. The scans were obtained with the standard an-
terior segment single-scan protocol, which produces 256 scans
in 0.125 s. Each eye image was captured several times with
undilated state of the pupil and only images with clearly visi-
ble scleral spurs were analyzed qualitatively by three glaucoma
specialists (P. T. K. Chew, M. C. Aquino, and C. C. Sng). They
were categorized into four groups of images based on ACG
mechanism.

When images revealed more than one mechanisms of ACG,
the dominant mechanism of angle closure was established oth-
erwise a consensus on the dominant mechanism of angle closure
was established after consideration among the three specialists.
The customized software (Anterior Segment Analysis Program-
ASAP, NUH, Singapore) [10] was used to quantify the ac pa-
rameters (features). Each sample consists of 84 features and
a classification label. The mechanism classes, as well as their
labels and number of samples per class, are listed in Table II.

Our experiment was conducted using MATLAB Toolbox
from the original authors for feature selections with L-score
method [24] and MRMR method [29]. The classification of the
ACG with the both supervised and unsupervised selected fea-
tures was conducted and evaluated using AdaBoost in MATLAB
8.0 R2012b (The Mathworks Inc., Natick, MA, USA).

The data were first normalized prior to feature selection meth-
ods, to have zero mean and a standard deviation of one. It is use-
ful for ensuring that all features will contribute evenly during
the feature selection and machine learning processes, instead of
having skewed results due to some features having greater vari-
ance than others and being erroneously identified as a significant
feature. The top accuracy and F-measure of the AdaBoost clas-

TABLE III
TOP ACCURACY OF ADABOOST CLASSIFICATION USING LAPLACIAN AND

MRMR ALGORITHM

TABLE IV
ADABOOST ACCURACY COMPARISON BETWEEN THE FEATURE SELECTION

METHODS AT 10 AND 40 FEATURES

sification in each of the six sorted lists of features, as well as the
number of features which yielded the top accuracy, are listed
in Table III. It is noted that the feature lists generated by the
unsupervised L-score algorithm using the Heat kernel criterion
and the MRMR algorithm using the MIQ criterion yielded peak
accuracy and high F-measure results (see Table III).

The L-score algorithm (unsupervised) was able to produce
a higher than average accuracy of 86.66% and F-measure of
70.00% using top 40 features, while the MRMR algorithm
(supervised) was able to produce an accuracy of 84.39% and
F-measure of 65.60% using a small set of top 10 features. The
results from the MRMR algorithm were consistent with the
findings made in [13].

Table IV shows the comparison of accuracies of AdaBoost
training on the top 10 and 40 ranked features of both the un-
supervised L-score using heat kernel (unsupervised L-score)
and MRMR with MIQ (supervised-MRMR) methods. Using
top 10 ranked features, unsupervised L-score giving less accu-
racy (65.23%), which is not a comparable performance with
supervised-MRMR (84.39%). Using top 40 ranked features,
supervised-MRMR giving less accuracy (79.32%), which is a
comparable performance to supervised-MRMR (86.66%). The
detailed performance using top 10 and 40 ranked features of
both unsupervised L-score and supervised-MRMR are given
in Tables V–VIII. The following sections will discuss the cross
comparison between unsupervised L-score (i.e., more redundant
features) using top 40 ranked features and Supervised-MRMR
using top 10 (i.e., less redundant features) and 40 ranked features
which are giving top accuracy and F-measure.
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Fig. 5. Comparison graph between the AdaBoost-L-score and MRMR algorithms (a) Accuracy, (b) F-measure, (c) Sensitivity, (d) Specificity.

A. Results of AdaBoost Algorithm on Feature Selections of
Unsupervised L-score and Supervised MRMR

Fig. 5 shows the comparison of unsupervised L-score and
supervised MRMR. From the graph, it is found that the ac-
curacy, F-measure, sensitivity, and specificity of the unsuper-
vised L-score algorithm grow gradually to a peak of 86.66%,
70.10%, 67.13%, and 91.97%, respectively, at top 40 features
[see Fig. 5(a)–(d)], while the accuracy, F-measure, sensitivity,
and specificity of the supervised-MRMR algorithm were found
to grow quickly to a peak of 84.39%, 65.60%, 64.66%, and
90.00%, respectively at its top ten features [see Fig. 5(a)–(d)].

Beyond these peaks, the accuracy and F-measure of both al-
gorithms were found to dip slightly and eventually stabilize.
The MRMR feature selection algorithm was able to perform
well on a small feature set of 11.90% set (ten out of 84 fea-
tures) of the entire feature, due to the selection of features that
had high relevance to the target class, while reducing features
that may have been correlated with the features already se-
lected. The ten selected features would hence be very significant
in the detection of the ACG mechanism. The peak accuracy for
the features selected by the unsupervised L-score algorithm re-
quired 40 features, or 47.62% of the feature set, but was able to
produce an accuracy of 2.27% higher than the features selected
by the supervised-MRMR algorithm.

The L-score algorithm provided higher accuracy and better
F-measure than MRMR algorithm since the algorithm does not
remove features that are correlated with features that had al-
ready been selected, i.e., the nth and (n+1)th features could
be very correlated with each other. Despite their correlation,
small differences could exist that may influence the machine
learning classification. For example, ARA_500 and ARA_750

TABLE V
ACCURACIES, SENSITIVITIES, AND SPECIFICITIES OF EACH CLASS FROM

UNSUPERVISED L-SCORE RESULTS WITH TOP 10 RANKED FEATURES

would be much correlated due to being measured in the ex-
act same manner only 250 μm apart from each other, but the
difference in measurements 250 μm away could be significant
enough to distinguish between the ACG mechanisms. This is
particularly impressive, considering the fact that the L-score al-
gorithm was unsupervised method, while the MRMR algorithm
required class labels, i.e., a supervised method. This could in-
dicate that the different ACG mechanisms had some inherently
discriminating features that could be detected by the unsuper-
vised L-score algorithm. The accuracy, sensitivity, and speci-
ficity of each class using unsupervised L-score algorithm using
top 40 features is shown in Table V.

It is observed that the weighted accuracy, sensitivity, and
specificity of the unsupervised L-score algorithm results (see
Table VII) are higher than those in the supervised-MRMR re-
sults (see Table VI). Upon closer observation at the accuracies
of the individual classes, it is also observed that classes 2, 4,
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TABLE VI
ACCURACIES, SENSITIVITIES, AND SPECIFICITIES OF EACH CLASS FROM

SUPERVISED MRMR RESULTS WITH TOP 10 RANKED FEATURES

TABLE VII
ACCURACIES, SENSITIVITIES, AND SPECIFICITIES OF EACH CLASS FROM

UNSUPERVISED L-SCORE RESULTS WITH TOP 40 RANKED FEATURES

TABLE VIII
ACCURACIES, SENSITIVITIES AND SPECIFICITIES OF EACH CLASS FROM

SUPERVISED MRMR RESULTS WITH TOP 40 RANKED FEATURES

and 5 (corresponding to the Lens, Pupil Block, and Plateau Iris
mechanisms) had improved accuracy using the unsupervised L-
score algorithm (see Table VII). This suggests that the unsuper-
vised L-score algorithm was able to better identify the features
inherent to these three classes. Class 1 (iris roll) was observed to
have a higher accuracy with the supervised-MRMR algorithm
(see Table VII). However, it should be noted that the sensitivi-
ties of Class 1 in both algorithms were very low (38.89% using
supervised-MRMR and 25.00% using unsupervised L-score al-
gorithm) compared to other classes. It is investigated that the
iris roll mechanism could have a high probability of occurring
(dominant) with other mechanisms, as it has been recognized
that ACG can be a result of one or a combination of a number
of mechanisms (mixed mechanisms) [15].

B. Cross Comparison of Selected Features

In this section, the comparison of features between the unsu-
pervised L-score and the supervised-MRMR algorithm is dis-
cussed and identification of redundant features (common and
similar features) between the two, in hopes of finding features
that are most significant in the detection of ACG mechanisms
are studied. Table IX shows the top 40 features selected by
both algorithms, with the features that contributed to the peak
accuracy shaded in gray.

1) Common Features Between Unsupervised L-score and
Supervised-MRMR Methods: The top 40 features of unsuper-
vised L-score and top 10 features of supervised-MRMR (see
Table IX) had two features in common: “TISA_L500” and
“ARA_R750.” These two features also happened to be in the top
10 features of the L-score set. They would hence be deemed to
be very significant in detection of ACG mechanisms. Comparing
the top 40 features of both the L-score and MRMR set, the fol-
lowing 15 features were observed to be common: ARA_R500,
TISA_L500, ARA_R750, Iris_end_concavity_R, PCA_L
500, ARA_L2000, ACD_iris_R_ML, AC_Area, ARA_R2000,
mean_iris_thickness_R, ACD_LC, Iris_area_PR, LC_C,
Iris_area_ML, and Iris_thickness_R_2000.

2) Similar Features Between Unsupervised L-score and
Supervised-MRMR Methods: Similar features in the selected
feature sets were identified by obtaining the difference of all
the samples between two features and obtaining the variance of
the differences, from which a similarity matrix can be generated
involving all features. A low variance score between the two
features would indicate that the features are highly correlated.
Fig. 6 shows a graph of two features that are highly corre-
lated: “TISA_R750” and “ARA_R750,” with a variance score
of 0.0017. As these two features are measurements of similar
areas measured 750 μm anterior from the right scleral spur to
iris surface, they would be expected to be correlated, albeit with
minor differences. We have investigated through some experi-
ments that below the variance score value 0.15, the maximum
number data points tend to be very close to each other; if not,
they spread out around. So, this study considers any two features
to be similar if they have a variance score of under 0.15.

It was observed that, in the set of 40 features from the
L-score method, there were some other features more simi-
lar to those in the set of ten from MRMR, as displayed in
Table X. From Table X, it is observed that nine of the features
in the unsupervised L-score set were similar to three in the
supervised-MRMR set, indicating that there is a redundancy in
selected features, particularly for the five features in the L-score
set that were similar to ARA_R750.

This is to be expected from the L-score algorithm, as it does
not consider feature-to-feature correlation. None of the top ten
selected features of the MRMR set were similar to each other.
A further study on the similar features in the top 40 of the L-
score set is made in the next section. When comparing the top
40 features of both sets, 14 features in the L-score set were
observed similar to six features in the MRMR set, as shown in
Table XI, indicating that 26 out of 40 features in the L-score set
were common with or similar to 18 out of the top 40 features in
the MRMR set.
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TABLE IX
TOP FEATURES WHICH YIELDED PEAK ACCURACIES FROM UNSUPERVISED

L-SCORE AND SUPERVISED-MRMR ALGORITHM

Abbreviations: AC-Anterior Chamber; ACD-Anterior Chamber Depth; AOD-Angle-
Opening Distance; ARA-Angle Recess Area; C-Center; CD-Corneal Diameter; DMR-
Dilator Muscle Region; IL-Iridolenticular contact on the Left side; ILC-Iridolenticular
contact in the Center; IR-Iridolenticular contact on the Right side; L-Left side of AS-OCT
image; LC-Left half of anterior Chamber; ML-Mid of iris and Lens; MR-Muscle Region;
PCA-Posterior Ciliary Artery; PL-Peripheral in the Left side; PR-Peripheral on the Right
side; R-Right side of AS-OCT image; RC-Right half of anterior Chamber; SMR-Sphincter
Muscle Region; TISA- Trabecular Iris Space Area.
∗ The detailed description of each feature can be found in [10], [13].

Fig. 6. Example of correlation between two features: TISA_R750 Vs
ARA_R750.

TABLE X
SIMILAR FEATURES IN L-SCORE SET CORRESPONDING TO TOP TEN FEATURES

IN MRMR SET

3) Redundant/Similar Features on the Unsupervised L-score
Set: As discussed in the previous section, several features
in the top 40 of the unsupervised L-score set were identi-
fied to be similar to each other (see Table IX). For exam-
ple, five features “TISA_R500,” “ARA_R500,” “AOD_R500,”
“TISA_R750,” and “ARA_R1000” in the L-score set were found
to be similar to a single feature “ARA_R750” in the supervised-
MRMR set. The feature “ARA_R750” itself was also found
in the L-score set and it is indicated that the L-score set had
six features that were correlated with each other. This section
also details the additional study of progressive removal of these
similar features, and the observation of the resultant accuracies.

The features that were progressively removed, from least im-
portant to most important, were “ARA_R1000,” “TISA_R750,”
“ARA_R750,” “AOD_R500,” and “ARA_R500.” The feature
“TISA_R500,” which was the top feature in the L-score set,
was not removed. As the similar features were progressively
removed, it was found that the accuracy dipped beneath the
peak accuracy where no features were removed, as shown in
Table XII. Hence, it could be concluded that despite the features
being mostly correlated with each other, as long as they are not
perfectly correlated, small differences in the features could still
influence the accuracy and lead to a better classification result.
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TABLE XI
SIMILAR FEATURES IN L-SCORE SET CORRESPONDING TO TOP 40 FEATURES IN

MRMR SET

TABLE XII
ACCURACY FROM REMOVAL OF SIMILAR FEATURES FROM L-SCORE

C. Result Analysis

This study focused on the comparison of two feature selec-
tion algorithms, unsupervised L-score, and supervised-MRMR
for understanding the importance of redundant features for ACG
mechanism. It is observed that the results of classification us-
ing the AdaBoost machine learning algorithm on a dataset of 84
features and 156 samples splits into five classes. The top features
selected by the unsupervised L-score method and supervised-
MRMR method were compared, due to these algorithms pro-
ducing high accuracies or performing on low feature sets. An
analysis of the usefulness of redundant features was performed.
The unsupervised L-score was able to perform classification at a
relatively high accuracy of 86.66% using 40 features (47.62% of
the entire feature set which are redundant), while the supervised-
MRMR method was able to perform classification at an accuracy

of 79.32% using a large set of 40 features and reasonable accu-
racy of 84.39% using a small set of 10 features (11.90% of the
entire feature dataset).

Also, when comparing the F-measure, sensitivity, and
specificity, unsupervised L-score made a significant result
than the supervised-MRMR methods. While observing the
performance of the algorithms based on each of the five classes,
high accuracies, sensitivities, and specificities were observed
in the classification of the lens, pupil block, and plateau iris
mechanisms, with the unsupervised L-score feature selection
algorithm showing improved results over the supervised-
MRMR feature selection algorithm due to its redundant
features. However, specificities were observed to be poor for
the iris roll mechanism and samples with no mechanism type.
This was attributed to a low sample count for both classes, and
in the case of the iris roll class, a probable combination with
other mechanisms may affect the classification.

A cross comparison between the top 40 features of the un-
supervised L-score algorithm and the top 10 features of the
supervised-MRMR algorithm was performed. Two features
were common to both these feature sets, and nine other fea-
tures in the L-score feature set were observed to be similar or
correlated with three features in the MRMR feature set. It was
also observed that the unsupervised L-score feature set con-
tained features that were similar to each other, while there was
no similar redundancy in the supervised-MRMR feature set.
This conforms to the theories behind the unsupervised L-score
and supervised-MRMR algorithms. An experiment performed
on the unsupervised L-score feature set, which involved progres-
sively removing similar features from the feature set, showed
that the accuracies dipped from the peak accuracy upon removal
of the similar features. This suggests that the similar features
which are redundant actually contributed to the peak accuracy,
and could have contained significant differences in influencing
the accuracy, despite being correlated with each other.

V. CONCLUSION

It is resulted that inclusion of redundant features by the L-
score method provides better performance in ACG detection
than less-redundant features selected by MRMR method for
glaucoma detection. From this study, it is explored that the unsu-
pervised L-score feature selection algorithm has the capability to
provide improved accuracy and F-measure with a larger feature
set which consists of redundant features. On the other hand, the
supervised-MRMR feature selection algorithm can be useful in
conjunction with the AdaBoost machine learning classifier in
the detection of ACG mechanisms if a small feature set is desir-
able while producing a reasonable accuracy. Employing redun-
dant information can provide more substantive support for the
complex medical diagnostic conditions, toward improved detec-
tion and classification of ACG mechanism. Hence, the selected
40 features with redundancy by unsupervised L-score method
are more significant and reliable for ACG detection than the
ten less-redundant features selected by the supervised MRMR
method. Practically the unsupervised feature selection will be
more beneficial in medical diagnosis, since the manual label-
ing of the huge number of samples is a more tedious task for
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clinicians. Future study could involve a larger sample size for
training, particularly for the iris roll mechanism and samples
with no mechanism. It could also focus on the correlation be-
tween the mechanism of angle closure identified using feature
selection, and response to treatment which targets each specific
mechanism.
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