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Abstract— An ensemble method for full-reference image qual-
ity assessment (IQA) based on the parallel boosting (ParaBoost)
idea is proposed in this paper. We first extract features from
existing image quality metrics and train them to form basic
image quality scorers (BIQSs). Then, we select additional features
to address specific distortion types and train them to construct
auxiliary image quality scorers (AIQSs). Both BIQSs and AIQSs
are trained on small image subsets of certain distortion types
and, as a result, they are weak performers with respect to a
wide variety of distortions. Finally, we adopt the ParaBoost
framework, which is a statistical scorer selection scheme for
support vector regression (SVR), to fuse the scores of BIQSs
and AIQSs to evaluate the images containing a wide range
of distortion types. This ParaBoost methodology can be easily
extended to images of new distortion types. Extensive experiments
are conducted to demonstrate the superior performance of the
ParaBoost method, which outperforms existing IQA methods
by a significant margin. Specifically, the Spearman rank order
correlation coefficients (SROCCs) of the ParaBoost method with
respect to the LIVE, CSIQ, TID2008, and TID2013 image quality
databases are 0.98, 0.97, 0.98, and 0.96, respectively.

Index Terms— Auxiliary image quality scorer (AIQS),
basic image quality scorer (BIQS), ensemble, parallel
boosting (ParaBoost), scorer.

I. INTRODUCTION

FOR decades, the peak signal-to-noise ratio (PSNR)
has been the most well-known method to gauge the

quality of an image or a video. Although researchers have
doubts on the credibility of PSNR (or its relative mean-
squared error (MSE)) [1], [2], it is still widely used nowadays.
The main reason is that the PSNR is easy to compute.
Wang et al. [3] proposed to use the structural similarity (SSIM)
index to measure image quality in 2004, which has attracted
a lot of attention due to its simplicity and good perfor-
mance. With increasing demand of image quality assurance
and assessment, more and more databases are made publicly
available in recent years, such as LIVE [4], TID2008 [5],
CSIQ [6], and TID2013 [7], to facilitate the development of
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image quality metrics. The SSIM and its variant IW-SSIM [8]
work well across databases. The feature similarity (FSIM)
index [9] outperforms the SSIM in several databases.

Recently, the learning-based approach emerges as a strong
competitor in the image quality assessment (IQA) field since
it is difficult to predict visual quality under various distortion
types and rich image contents using a single formula [10], [11].
Examples of learning-based IQA methods can be found
in [12]–[19], among many others. Simply speaking, they
extract features from images, and use a machine learning
approach to build a score prediction model (called a scorer),
which is used to predict the perceived quality of test images.
However, there exist many distortion types and it is difficult
to find a single prediction model to cover all of them.
Liu et al. [18] proposed a fusion approach called multi-method
fusion (MMF) that fuses the scores of a couple of IQA
methods to generate a new score using a machine learning
method. These IQA methods include PSNR, SSIM, FSIM,
and so on. They are called strong (or universal) scorers since
they are not designed for specific distortion types. Intuitively,
the fusion of stronger scorers will result in an even stronger
scorer. Thus, it is not surprising that MMF outperforms each
individual scorer in the ensemble.

In this paper, we still adopt an ensemble approach for
full-reference IQA, yet examine the fusion of scores from a
larger number of weak scorers. To derive weak scorers, we
extract features from existing image quality metrics and train
them to form basic image quality scorers (BIQSs). Next, we
select additional features, which are useful in characterizing
specific distortion types, and train them to construct auxiliary
image quality scorers (AIQSs). Since BIQSs and AIQSs are
only trained on small image subsets with certain distortion
types, they are weak scorers with respect to a wide variety
of distortions in an IQA database. Finally, we propose a
parallel boosting (ParaBoost) scheme, which is a statistical
scorer selection method for support vector regression (SVR),
to fuse BIQSs and AIQSs to form an ensemble system to cope
with a wide range of distortion types. The main advantage
of the ParaBoost method is that we can design an image
quality scorer (IQS) tailored to a specific distortion type
and add it to the ensemble system. Thus, the corresponding
IQA scoring system can be easily extended to images with
new distortion types. Extensive experiments are conducted
to demonstrate the superior performance of the ParaBoost
method. Experimental results show that it outperforms existing
IQA methods by a significant margin. Specifically, the Spear-
man rank order correlation coefficients (SROCCs) of the Para-
Boost method with respect to the LIVE, CSIQ, TID2008, and
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TID2013 image quality databases are 0.98, 0.97, 0.98,
and 0.96, respectively.

The rest of this paper is organized as follows. We give
a brief review on recent learning-based IQA methods
in Section II. Then, BIQSs and AIQSs are presented in
Section III. The ParaBoost method is described in Section IV.
The process of selecting a suitable subset of scorers is
discussed in Section V. Experimental results are reported
in Section VI, where we conduct extensive performance
comparisons with four image quality databases. Finally,
concluding remarks are given in Section VII.

II. REVIEW OF PREVIOUS WORK

The machine learning methodology has been applied to
image quality evaluation. Narwaria and Lin [15] used the
singular value decomposition (SVD) to quantify the major
structural information in images and then adopt SVR to learn
complex data patterns and map the detected features to scores
for image quality prediction. The result is better than those
obtained by formula-based methods.

Liu et al. [17], [18] proposed an MMF method for IQA.
It is motivated by the observation that no single method gives
the best performance in all situations. A regression approach
is used to combine the scores of multiple IQA methods in the
MMF. First, a large number of image samples are collected,
each of which has a score labeled by human observers and
scores associated with different IQA methods. The MMF score
is obtained by a nonlinear combination of scores computed
by multiple methods (including SSIM [3], FSIM [9], and
so on) with suitable weights obtained by a training process.
To improve the predicted scores furthermore, distorted images
are classified into five groups based on distortion types, and
regression is performed within each group, which is called the
context-dependent MMF (CD-MMF). So far, MMF offers one
of the best IQA results in several popular databases, such as
LIVE, CSIQ, and TID 2008.

A block-based MMF [19] method was also proposed
for IQA. First, an image is decomposed into small blocks.
Blocks are then classified into three types (smooth, edge,
and texture), while distortions are classified into five groups.
Finally, one proper IQA metric is selected for each block
based on the block type and the distortion group. Pooling
over all blocks leads to the final quality score of a test image.
It offers competitive performance with the MMF for the
TID2008 database.

As compared with the previous work, the ParaBoost method
proposed in this paper has several unique characteristics.

1) It fuses scores from a set of weak IQSs, where each
IQS can be designed to predict the quality of some
specific image distortion types. The proposed ParaBoost
system can perform well in situations where individual
IQS cannot perform well.

2) An IQS bank structure is adopted to optimize the overall
performance of the IQA system. The structure of the
ensemble system is modular so that we can add or
discard an IQS easily depending on the application need.

3) Each IQS is built by training images on differ-
ent distortion types to increase the diversity among

all scorers, which can help optimize the ensemble
performance.

4) No need for distortion classification stage, which can
degrade the overall performance when the classification
rate is low.

5) The statistical methods for scorer selection can help the
overall system achieve the optimal performance with the
smallest number of scorers.

III. FEATURE EXTRACTION FOR

IMAGE QUALITY SCORERS

In this paper, we use the term IQS, to denote a method
that can give a quality score to an image. Two IQS types
are examined in this section: 1) BIQSs and 2) AIQSs. BIQSs
are derived from well-known IQA metrics, while AIQSs are
designed to tailor to specific distortion types. In this section,
we focus on feature extraction for BIQSs and AIQSs.

A. Features for Basic Image Quality Scorers

We derive features for BIQSs from several well-known
image quality metrics by decomposing their contributing
factors. To be more specific, we choose three components
(i.e., luminance (L), contrast (C), and structure (S)) of
SSIM [3] as features of the first three BIQSs, respectively.
Furthermore, we extract two other components, namely,
phase congruency (PC) and gradient magnitude (GM), from
FSIM [9] and use them as features for the fourth and fifth
scorers since PC and GM have totally different characteristics
with L, C , and S. Finally, PSNR is selected as the sixth
basic scorer because of its simplicity and superior capability
in predicting quality of images with additive noise [17], [18].
These six BIQSs are detailed below.

As aforementioned, the features of the first three BIQSs are
the similarity measures of luminance (L), contrast (C), and
structure (S) between reference and distorted images, respec-
tively. Suppose x represents both image patches extracted from
the same spatial location of reference and distorted images,
and μr (x), μd(x), σ 2

r (x), σ 2
d (x), and σrd (x) are the means, the

variances, the covariance of x from the reference and distorted
images, respectively. When there are N such image patches for
the whole image I , the luminance similarity measure between
the two images is selected as the feature for BIQS #1

BIQS #1 : SL = 1

N

∑

x∈I

2μr (x)μd(x) + C1

μ2
r (x) + μ2

d(x) + C1
. (1)

The contrast similarity measure is selected as the feature for
BIQS #2

BIQS #2 : SC = 1

N

∑

x∈I

2σr (x)σd (x) + C2

σ 2
r (x) + σ 2

d (x) + C2
. (2)

The structure similarity measure is selected as the feature for
BIQS #3

BIQS #3 : SS = 1

N

∑

x∈I

σrd (x) + C3

σr (x)σd (x) + C3
. (3)
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TABLE I

IMAGE DISTORTION TYPES IN TID2008 DATABASE

Constants in (1)–(3) are C1 = (K1 D)2, C2 = (K2 D)2,
C3 = C2/2, K1 = 0.01, and K2 = 0.03, to avoid insta-
bility [3], and D is the dynamic range of pixel values
(i.e., D = 255 for the 8-bit pixel representation).

The fourth and fifth BIQSs measure the similarity of PC
and GM between the reference and the distorted images. With
the same notation above, we assume x represents both image
patches extracted from the same spatial location of reference
and distorted images, and PCr (x), PCd (x), GMr (x), and
GMd(x) are PCs and GMs of x from the reference and the
distorted images, respectively. For an image I with N image
patches, the PC similarity measure between the two images is
selected as the feature for BIQS #4

BIQS #4 : SPC = 1

N

∑

x∈I

2PCr (x)PCd(x) + T1

PC2
r (x) + PC2

d(x) + T1
(4)

and the GM similarity between two images is selected as the
feature for BIQS #5

BIQS #5 : SG M = 1

N

∑

x∈I

2GMr (x)GMd (x) + T2

GM2
r (x) + GM2

d (x) + T2
(5)

where T1 and T2 are the positive constants which are added
to avoid instability of SPC and SG M .

The sixth BIQS is based on the PSNR value, which is related
to the mean-squared error (MSE). For two images Ir and Id ,
of size X × Y , the MSE can be computed via

MSE = 1

XY

∑

x

∑

y

[Ir (x, y) − Id(x, y)]2. (6)

Then, the PSNR value in decibels is used as the feature for
BIQS #6

BIQS #6 : PSN R = 10 log
D2

MSE
(7)

where D is the maximum value that a pixel can take
(e.g., 255 for 8-bit images), as aforementioned.

B. Features of Auxiliary Image Quality Scorers

There are 17 image distortion types in the TID2008 data-
base [5], [20], which are listed in Table I for easy reference.

TABLE II

SROCC PERFORMANCE OF BIQSs VERSUS DISTORTION
TYPES IN TID2008 DATABASE

In Table II, we summarize the SROCC between objective
and subjective scores for the performance of each BIQS
with respect to all distortion types. The higher the SROCC
is, the better match between these two scores. As indicated
in Table II, each BIQS has its respective advantage in pre-
dicting image quality scores for certain distortion types. For
example, BIQS #5 can predict the image quality quite well
for distortion types 8–15 and 17, while BIQS #6 has the best
performance for distortion types 1–7 among six BIQSs.

As we can see in Table II, several distortion types
(e.g., types 14, 16, and 17) cannot be handled well even with
all six BIQSs. Hence, we need to find more features to design
new scorers to boost the performance. These scorers are called
AIQSs since they are designed to support BIQSs in addressing
specific distortion types.

The feature of the first AIQS is the zero-crossing (ZC)
rate [21], which is defined as

zh(i, j) =
{

1, ZC happens at dh(i, j)

0, otherwise
(8)

where dh(i, j) = x(i, j + 1) − x(i, j), j ∈ [1, N − 1], is
the difference signal along the horizontal line, and x(i, j),
i ∈ [1, M], j ∈ [1, N] for an image of size M × N . The
horizontal ZC rate can be written as

Zh = 1

M(N − 2)

M∑

i=1

N−2∑

j=1

zh(i, j). (9)

We can calculate the vertical component Zv in a similar
fashion. Finally, the overall ZC rate is selected as the feature
for AIQS #1 as shown

AIQS #1 : ZC = Zh + Zv

2
. (10)

From [21], we know ZC rate can be used as an index to
measure the signal activity of images. Since high-frequency
noise and JPEG2000 compression can cause the reduction of
signal activity, AIQS #1 is particularly useful in evaluating
distortion type 5 (high-frequency noise) and distortion type 11
(JPEG 2000 compression).

The feature of the second AIQS is derived from the gray-
level co-occurrence matrix (GLCM), which is also known
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Fig. 1. Spatial relationship of pixel of interest in GLCM.

as the gray-tone spatial-dependence matrix [22]. The GLCM
characterizes the texture of an image by calculating how often
a pixel with intensity (gray level) value l occurs in a specific
spatial relationship to a pixel with value m. Here, we are
interested in two spatial relationships, as shown in Fig. 1. Each
element at (l, m) in the resultant GLCM is simply the sum of
frequencies for one pixel with value l and its neighbor pixel
satisfying the desired spatial relationship with value m. Then,
the contrast difference feature of GLCM is selected as the
feature of AIQS #2 as given by

AIQS #2 :
∑

l,m

|l − m|2 p(l, m) (11)

where p(l, m) is the joint probability for the occurrence of
pixel pairs having gray level values l and m with a defined
spatial relationship (say, Fig. 1) in the image. In essence, the
second AIQS in (11) returns a measure of the intensity contrast
between a pixel and its horizontal and vertical neighbors over
the whole image. AIQS #2 is also useful for distortion type 11
(JPEG 2000 compression).

The features of the third AIQS are derived from the rotation-
invariant and uniform local binary pattern (LBP) operator [23],
which is in the form of

LBPriu2
P,R =

⎧
⎪⎨

⎪⎩

P−1∑
p=0

s(gp − gc), if U(LBPP,R) ≤ 2

P + 1, otherwise

(12)

where

U(LBPP.R) = |s(gp−1 − gc) − s(g0 − gc)|

+
P−1∑

p=1

|s(gp − gc) − s(gp−1 − gc)| (13)

and

s(gp − gc) =
{

1, if gp ≥ gc

0, otherwise
(14)

with gc corresponding to the gray value of the center pixel of
the local neighborhood and gp(p = 0, . . . , P −1) correspond-
ing to the gray values of P equally spaced pixels on a circle
of radius R(R > 0) that form a circularly symmetric neighbor
set. The superscript riu2 stands for the use of rotation-invariant
uniform patterns that have a U value of at most 2. Then, the
features of AIQS #3 can be written as

AIQS #3 : √|nhr (b) − nhd (b)| (15)

Fig. 2. Circularly symmetric neighbor set in LBP.

where b = 0, 1, . . . , P +1 represents the bin of the histogram,
and nhr and nhd denote the normalized histograms of (12)
for reference and distorted images, respectively. As shown
in Fig. 2, we choose P = 8 and R = 1 for simplicity of
the LBP operator. Therefore, we have ten (i.e., P + 2) values
to represent the scorer in (15). If a larger P value is chosen,
then the complexity of LBP operator will be higher because
the implementation needs a lookup table of 2P elements [23].
AIQS #3 is useful in evaluating distortion types 6–11.

The features of the fourth and the fifth AIQSs are used
to characterize the edge structure of an image. An image is
first divided into M non-overlapping 16 × 16 patches, and
the Sobel edge operator [24], [25] is used in each patch
to generate horizontal gradient gh and vertical gradient gv .
Then, we can obtain the edge magnitude and edge orientation
via (g2

v + g2
h)1/2 and tan−1(gv/gh), respectively. Here, we

chose the gradient orientation since it was shown to be
robust to illumination change and also successfully applied
to many areas, such as disparity estimation [26], video quality
assessment (VQA) [27], and age estimation [28] tasks.

Suppose that h1,i (b) and h2,i (b) represent the n-bin
histograms of edge magnitude from the i -th image patch
of the reference and distorted images, respectively, and we
can compute the root MSE (RMSE) between histograms
h1,i (b) and h2,i (b) by

RMSEmag,i =
√√√√ 1

n

n∑

b=1

[h1,i (b) − h2,i (b)]2, i = 1, . . . , M

(16)

where b denotes the bin of the histogram, n is the number
of bins (n = 10 in this paper for low computation), and
M represents the number of non-overlapping 16 × 16 image
patches, which also depends on the image size. Similarly,
h3,i (b) and h4,i (b) represent the histograms of edge orientation
from the i -th image patch of the reference and distorted
images, respectively, and then the RMSE between histograms
h3,i (b) and h4,i (b) can be computed in a similar way as (16)

RMSEori,i =
√√√√ 1

n

n∑

b=1

[h3,i (b) − h4,i (b)]2, i = 1, . . . , M.

(17)

Finally, the features of the fourth and fifth AIQSs are given by

AIQS #4 : [RMSEmag,1, . . . , RMSEmag,M ]T (18)
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Fig. 3. Extracting features of the fourth and fifth AIQSs.

and

AIQS #5 : [RMSEori,1, . . . , RMSEori,M ]T. (19)

We show the procedure of extracting features for the fourth
and the fifth AIQSs in Fig. 3. These two AIQSs are useful
in evaluating distortion type 14 since the non-eccentricity
pattern noise can be easily spotted on the edge map, where
the features can be captured by the AIQSs #4 and #5.

Features of other AIQSs are also derived from a local
region. We divide an image into N non-overlapping blocks of
size 8 × 8 and compute three quantities, known as the MSE,
the mean difference ratio (MDR), and the contrast difference
ratio (CDR), respectively, for each block

MSE j = 1

64

8∑

x=1

8∑

y=1

[IBr (x, y) − IBd(x, y)]2

j = 1, . . . , N (20)

MDR j = μd − μr

μr
, j = 1, . . . , N (21)

CDR j = cd − cr

cr
, j = 1, . . . , N (22)

where μd = (1/64)
∑8

x=1
∑8

y=1[IBd (x, y)], μr = (1/64)∑8
x=1

∑8
y=1[IBr (x, y)], cd = max{IBd (x, y)} −

min{IBd (x, y)}, cr = max{IBr (x, y)} − min{IBr (x, y)},
and where IBd and IBr represent the 8 × 8 image blocks of
the distorted and the reference images, respectively. Then,
the features of the sixth to the eighth AIQSs are the 10-bin
histograms of (20)–(22)

AIQS #6 : h10−bin(MSE j | j = 1, . . . , N) (23)

AIQS #7 : h10−bin(MDR j | j = 1, . . . , N) (24)

AIQS #8 : h10−bin(CDR j | j = 1, . . . , N). (25)

AIQS #6 and #8 are designed to address distortion
types 15 and 17, respectively, because the local MSE can
capture the blockwise distortions, and local contrast difference
can test if there is a contrast change; while AIQS #7 can
be used to boost the performance with respect to distortion
type 16 since the local mean difference can be used to detect
the shift in mean.

In above, AIQSs #1 and #2 extract global features, but
AIQSs #3–8 belong to local feature extractors. Thus, more
AIQSs need to be designed to evaluate global distortions.
In addition, images with distortion types 14 and 16 are the
most difficult ones to be assessed well. Therefore, using only
AIQSs #1–8 are still not good enough to deal with all types of
distortions and three more AIQSs (i.e., AIQSs #9–11), which
are designed to target at distortion types 14 and 16, become
necessary for this purpose.

For the ninth AIQS, we consider the mean absolute differ-
ence (mAD) between reference (Ir ) and distorted (Id ) images.
For reference and distorted images of size M × N , we use
three components of the YIQ color space simultaneously to
account for differences in different color dimensions [24], [25].
The mAD in Y , I , and Q components can be described

mADi = 1

M N

M∑

m=1

N∑

n=1

|Ir,i (m, n)− Id,i(m, n)|, i = Y, I, Q.

(26)

Then, the feature vector of the ninth AIQS is formed by
concatenating the three components of mAD in (26)

AIQS #9 : [mADY , mADI , mADQ]T . (27)

AIQS #9 is a good scorer for distortion types 1–13. Besides, it
can be used to boost the performance with respect to distortion
type 14.

The mean shift distortion (i.e., distortion type 16 in
TID2008) for color images is one of the most challenging
distortion types for BIQSs, as shown in Table II. We design
two more AIQSs (i.e., AIQS #10 and AIQS #11) to boost the
overall performance. The tenth AIQS measures the histogram
range (or the dynamic range (DR)) of distorted images in
three components of YIQ, respectively. We use the 256-bin
histograms for Y , I , and Q components of distorted image
Id , respectively, as shown in Fig. 4. The DR of Y , I , and Q
components can be written as

DRi (Id ) = b1,i − b0,i , i = Y, I, Q (28)

where b0,i and b1,i are, respectively, the first and the last
bins in the histogram with values significantly larger than zero
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Fig. 4. Extracting features of the tenth AIQS.

(i.e., the value should be at least greater than 1 to reflect the
existence of that pixel value). Then, the feature vector of the
tenth AIQS is

AIQS #10 : [DRY (Id ), DRI (Id ), DRQ(Id )]T. (29)

Finally, the feature vector of AIQS #11 is a 15-element vector
consisting of the global mean shift and the DR in YIQ, YCbCr,
and RGB color spaces. It is in a form of

AIQS #11 :
[

�μY

μY (Ir )
,

�μI

μI (Ir )
,

�μQ

μQ(Ir )
,

�μR

μR(Ir )
,

�μG

μG(Ir )
,

�μB

μB(Ir )
, DRY (Ir ), DRI (Ir ), DRQ(Ir ),

DRR(Ir ), DRG(Ir ), DRB(Ir ),
�μY

DRY (Ir )
,

�μCb

DRCb(Ir )
,

�μCr

DRCr (Ir )

]T

(30)

where �μi = μi (Id ) − μi (Ir ), i = Y, I, Q, R, G, B, Cb, Cr ,
and μi (Id ) and μi (Ir ) denote the global mean of distorted
and reference images, respectively, on color component i , and
DRi (Ir ) has the same definition as that in (28) except that it
is applied to reference image Ir instead of distorted image Id .

The 11 AIQSs as described in this section are designed
to complement BIQSs to account for some distortion types
that are difficult to be assessed. We will elaborate this point
in Section IV. Moreover, AIQS #1, 2, and 10 only need to
extract features for distorted images. Thus, the complexity of
these three AIQSs is lower. In addition, another advantage is
that they can be used to develop no-reference (blind) IQA
methods.

IV. IQS EVALUATION, TRAINING, AND PARABOOST

A. Contribution Evaluation of IQSs

We list the individual performance of all BIQSs and AIQSs
for the TID2008 database in Table III. Most BIQSs (except
for BIQS #1, this is understandable since it is just a similarity
measures of luminance) have better performance than the
AIQSs. AIQSs are not suitable to work alone because of their
poor performance (with SROCC < 0.5). However, they can
be used together with BIQSs to boost the overall performance
of the entire IQA system.

TABLE III

PERFORMANCE OF EACH IQS IN TID2008 DATABASE

To demonstrate this point, we show the SROCC
performance of 11 AIQSs for 17 distortion types in the
TID2008 database [5] in Table IV. We are particularly
interested in the use of AIQSs to boost the overall system
performance in evaluating images with distortion types 14
(i.e., non-eccentricity pattern noise), 16 (mean shift), and
17 (contrast change) with BIQSs in a parallel configuration.

Apparently, AIQS #4 has superior performance against
distortion type 14. In addition, as compared with Table II,
AIQS #8 and AIQS #11 can significantly improve the correla-
tion performance for distortion types 17 and 16, respectively.
We will give a brief discussion on why these AIQSs work well
on these special distortion types below.

The non-eccentricity pattern noise can be differentiated
more easily when an image is transformed into its edge map,
as shown in Fig. 5, where the non-eccentricity pattern noise
occurs in the logo region of the hats and significant differences
can be observed by comparing Fig. 5(c) and (d). As a result,
the difference between the distorted and the reference images
can be captured by comparing the histogram difference of their
GMs as done in the feature extraction of AIQS #4. The mean
shift difference in images can be quantified via features of
AIQS #11, which considers the global mean shift and the
DR of histograms in several color spaces. The contrast change
can be described by computing the contrast difference between
the distorted and reference images as done in deriving the
features of AIQS #8.

We show the use of AIQSs to boost the overall performance
for distortion types 14, 16, and 17 in Table V. We see that the
inclusion of AIQS #8 can boost the SROCC performance by
over 0.05 on distortion type 17. Furthermore, by including
three more AIQSs (#4, 6, 9) and four more AIQSs (#3, 7,
10, 11), we are able to boost the performance for distortion
types 14 and 16, respectively.

Generally speaking, we can classify IQSs into two
categories based on their feature types as given in Table VI,
i.e., global features that grasp viewers’ quality impression of
the whole image and local features that capture fine details in
local regions. A good IQA system should contain both of them.
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TABLE IV

SROCC PERFORMANCE OF AIQSs VERSUS DISTORTION TYPES IN TID2008 DATABASE

Fig. 5. Original and distorted Hat images and their corresponding Sobel edge maps. (a) Image (reference). (b) Image (non-eccentricity pattern noise).
(c) Sobel edge map of (a). (d) Sobel edge map of (b).

B. Training of BIQS and AIQS Models
We train a model for each BIQS with proper image subsets,

as shown in Table VII. The training image subset is chosen
according to the following criterion. If the BIQS works well
for some specific distortion types, then the images associ-
ated with those distortion types will be chosen to train the
respective BIQS. For instance, in Table II, BIQS #2 has better
SROCC performance with respect to distortion types 8–11 than
the others. Therefore, we choose the image subset belonging
to distortion types 8–11 to train the model of BIQS #2.

The detailed procedure is described as follows. First, the
images are divided into 5 folds and the 5-fold cross-validation
is applied. The training is only conducted on four of the 5 folds
each time, with the images having distortion types specified
in Table VII. The images with the same corresponding distor-
tion types in the 5-th fold are used for testing. For example,
the model of BIQS #6 is trained on the images with distortion
types 1–7. We can obtain a PSNR value for each trained image.
Then, each PSNR value can be treated as a feature to train
and build the model of BIQS #6. This strategy is necessary
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Fig. 6. The ParaBoost IQA system.

TABLE V

SROCC PERFORMANCE BOOSTING BY CONSIDERING BOTH

BIQS AND AIQS IN TID2008 DATABASE

TABLE VI

IQS CATEGORIZATION

TABLE VII

TRAINING IMAGE SETS (DISTORTION TYPES) FOR BIQSs

because it offers some advantages, including: 1) the saving
of training time since training is only conducted on several
distortion types instead of all distortion types; 2) increased
diversity among BIQSs because they are trained on different
image subsets [29]; and 3) the enhanced performance for a
small number of distortion types since each BIQS is trained
for the distortion types where it is supposed to perform well.

Similarly, we train a model for each AIQS with only one
distortion type, as shown in Table VIII since each AIQS is
designed to target at one difficult distortion type only. For
example, we have low SROCC performance for distortion
types 14 and 16, as shown in Table II. To boost the perfor-
mance, we add three AIQSs (#4, 6, 9) for distortion type 14
and four AIQSs (#3, 7, 10, 11) for distortion type 16. Thus,
the training time can be saved and each AIQS can target at
one distortion type, becoming an expert for one specific type
of image distortion. Moreover, several scorers can cooperate
and conquer the extremely difficult ones.

TABLE VIII

TRAINING IMAGE SETS (DISTORTION TYPES) FOR AIQSs

C. ParaBoost

The final IQA system, including both BIQS and AIQS, is
shown in Fig. 6. We call it a ParaBoost system, since AIQSs
are used to boost the overall system performance along with
BIQSs in a parallel configuration.

In general, we consider a ParaBoost system consisting of
n BIQSs and r AIQSs. Given m training images, we can obtain
the quality score of the i -th training image for each individual
IQS, which is denoted by si, j , where i = 1, 2, . . . , m, and
j = 1, 2, . . . , n + r . Then, the quality score of the ParaBoost
system can be modeled as

ParaBoost(si ) = wT ϕ(si ) + b (31)

where si = (si,1, . . . , si,n+r )
T is the quality score vector for

the i -th image, w = (w1, . . . , wn+r )
T is the weighting vector,

ϕ(·) denotes a fixed feature-space transformation, and b is the
bias.

In the training stage, we determine weight vector w and
bias b from the training data that minimize the difference
between ParaBoost(si ) and the (differential) mean opinion
score ((D)MOSi ) obtained by human observers, namely

min
w,b

‖ParaBoost(si ) − (D)MOSi‖1, i = 1, . . . , m (32)

where ‖ · ‖1 denotes the l1 norm.
To solve this problem, we demand that the maximum

absolute difference in (32) is bounded by a certain level ε,
and adopt the SVR [30] for its solution. We choose the radial
basis function (RBF) as the kernel function in SVR. A linear
kernel is also tested, yet its performance is not as good.
One explanation is that quality score vector si and MOSi

(or DMOSi ) are not linearly correlated. For this reason, we
only show results with the nonlinear RBF kernel for the rest
of this paper.
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In the test stage, we define the quality score vector sk of
the k-th test image, where k = 1, 2, . . . , l and where l denotes
the number of test images, and (31) is used to determine the
quality score of the ParaBoost method, ParaBoost(sk). In all
experiments, we divide all the images into two sets (training
and testing sets) and use the n-fold (n = 5) cross-validation,
which is a widely used strategy in machine learning [31], [32],
to select our training and testing sets. First, we equally divide
all distorted images into five non-overlapping sets. One set
is used for testing while the remaining four sets are used for
training. For instance, in TID2008, there are 1700 distorted
images totally. The size of training set is 1360 images, and the
size of testing set is 340 images. We rotate this assignment
five times so that each set is only used as the testing set
once. Using this configuration, we can obtain the predicted
objective quality scores for all the images in one of the five
folds whenever we do the rotation once. The score results
from the 5 folds are then combined to compute the overall
correlation coefficients and the RMSE. This procedure can
test if overfitting occurs.

In addition, note that the reference images in the training
and testing sets are non-overlapping. For example, in TID2008,
there are 25 reference images. The training set only comes
from the distorted images associated with 20 of 25 reference
images, and the testing set is selected from the ones belonging
to the remaining five reference images. To be more specific,
for training the model of AIQS #5, we choose the images
belonging to both the first 20 reference images and also
distortion type 12. Hence, 80 images are selected to train the
model of AIQS #5.

Before applying the SVR [33] algorithm, we linearly scale
the scores obtained from each IQS to the same range [0, 1]
for normalization. The linear scaling process is conducted on
both training and test data [34] via

y = x − min(X)

max(X) − min(X)
(33)

where y is the scaled score, x is the raw score, and max(X),
and min(X) specify the maximum and minimum values of the
score X , respectively.

V. SCORER SELECTION IN

PARABOOST IQA SYSTEM

To reach a balance between accurate quality evaluation
and low computational complexity of the ParaBoost IQA
system, it is desirable to develop a process that can add
IQSs gradually and systematically. In this section, we propose
two scorer selection methods using statistical testing [35] that
can select one IQS at a time and add it to the ParaBoost
system. Among these statistical testing methods, F-score (i.e.,
analysis of variance (ANOVA)) and Kruskal–Wallis (K–W)
test have been used for feature selection [36]–[38]. Here,
we use them in Method 1 and Method 2, respectively, to
select IQSs.

The first method is based on the one-way ANOVA (1-way
ANOVA), which is a parametric test method. The procedure
is described below.

Method 1:
1-Way ANOVA
1) Divide the N scores obtained by each IQS into

m groups, where each score group has ni (i = 1, . . . , m)
corresponding images and N = ∑m

i=1 ni .
2) Compute the F values for each IQS through the

following.
a) Compute the mean of each group s̄1, s̄2, . . . , s̄m

s̄i = 1

ni

ni∑

j=1

si j , i = 1, . . . , m

where si j represents the score of the j -th image of
the i -th group.

b) Compute the sum of squared deviations for each
group SS1, SS2, . . . , SSm

SSi =
ni∑

j=1

(si j − s̄i )
2, i = 1, . . . , m.

c) Compute the within group sum of squares

SSwithin =
m∑

i=1

SSi .

d) Compute the within group variance

σ 2
within = SSwithin

DFwithin
= M Swithin

where DFwithin = N − m.
e) Compute the between group sum of squares

SSbetween =
m∑

i=1

ni s̄
2
i − 1

N

(
m∑

i=1

ni s̄i

)2

.

f) Compute the between group variance

σ 2
between = SSbetween

DFbetween
= M Sbetween

where DFbetween = m − 1.
g) Then, the F statistic value is

F = σ 2
between

σ 2
within

. (34)

3) Rank IQSs in the descending order of their F statistic
values, and the ParaBoost system can select them one by
one according to this order to achieve the best tradeoff
between performance and complexity.

The second selection method is to use the K–W statistic,
which is a nonparametric statistical test method and can be
applied when the score data are not normally distributed.
It is described below.

Method 2:
K–W Statistic
1) Divide the N scores obtained by each IQS into

m groups and each score group has ni (i = 1, . . . , m)
corresponding images, where N = ∑m

i=1 ni .
2) Rank all scores in the ascending order regardless of their

group.
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3) Compute the K–W statistic value H for each IQS using
the following.

a) Compute the average rank for score group i via

R̄i = 1

ni

ni∑

j=1

Rij , i = 1, . . . , m

where Rij represents the rank of the j -th image of
the i -th group.

b) Compute the average rank for all images via

R̄ = 1 + 2 + · · · + N

N
= N + 1

2
.

c) Then, the K–W statistic value can be determined
via

H = 12

N(N + 1)

m∑

i=1

ni (R̄i − R̄)2. (35)

4) Rank IQSs in the descending order by H values and then
select them one by one for inclusion in the ParaBoost
IQA system according to this order.

In the above two methods, N scores are divided into
m groups, where the scores placed in the same group have
similar corresponding MOSs. In general, the value of m is
between 10 and 20 to make sure there are enough groups to
run the statistical test. In addition, ni is obtained after m is
decided. The m groups can have different number of images
(scores). That means all n′

i s (i = 1, . . . , m) can be different
as long as the summation of n′

i s equals N . Also, if F > Fcrit
(or H > Hcrit), we reject the null hypothesis

H0 : {No significant difference on the IQS among score groups}
with probability P < α, where α is the significance level.
Typically, α is set to 0.05 or 0.01. From the statistics point of
view, the F (or H ) value is a ratio of the variability between
groups compared with the variability within the groups. If this
ratio is large, then there is a higher probability to reject the
null hypothesis, which also means that there is a significant
difference among score groups. As a result, the IQS with a
larger F (or H ) value has a higher discriminating power and
should be chosen first.

The F and H values and the corresponding rank of each
scorer are listed in Table IX. From Tables IX and X, we see
that there are some differences for the order of the selected
IQSs between these two methods. For example, the seventh
selected IQS is AIQS #4 by using Method 1, but BIQS #1 by
using Method 2. This is the point when the performance of the
ParaBoost system decided by Method 1 is always better than
that decided by Method 2 under the same number of IQSs, as
shown in Table X.

In addition, the scorer selection algorithms treat both AIQS
and BIQS in the same way. In other words, we start the IQS
selection from the empty set in order to achieve the best
performance with minimal number of scorers. Performing in
this way can make sure that the minimal number of IQSs is
used (i.e., there may be no need to use all BIQSs if possible).
And the results in Table XIII show that all BIQSs are still
selected as the final IQSs, except BIQS #1 in some cases.

TABLE IX

1-WAY ANOVA AND K–W STATISTIC FOR EACH IQS
IN TID2008 DATABASE

Therefore, even if we do not impose any assumption for using
BIQSs as the basis, the final selected IQSs still include all
BIQSs for most of the cases.

Also, as shown in Table X, we only need 16 IQSs to achieve
the best performance using Method 1. However, 17 IQSs are
needed to achieve the same performance if we adopt Method
2. Thus, Method 1 is a better choice, which is probably due
to the fact that most of the scorer outputs follow the normal
distribution.

To verify this conjecture, we calculate the kurtosis of the
score distribution for each IQS, and summarize their values
in Table XI. Based on [39], the scores of each IQS are
considered to be normally distributed if the kurtosis value
is between 2 and 4. Although BIQS #1, AIQS #8, and
AIQS #11 have kurtosis values slightly greater than 4, they
are still close to the normal distribution. From Table XI, we
see that 13 out of 17 IQSs are normally distributed, which
explains why Method 1 works better for TID2008 database.
Similarly, Method 2 is a better choice when most of the IQSs
are not normally distributed.

VI. EXPERIMENTAL RESULTS

A. Image Quality Databases

We evaluate the performance of the proposed ParaBoost
method with three commonly used image quality databases
(namely, TID2008, LIVE, and CSIQ) as well as a new database
known as TID2013. They are briefly described below.

The Tampere Image Database (TID2008) [5], [20] includes
25 reference images, 17 distortion types for each reference
image, and four levels for each distortion type. The database
contains 1700 distortion images, and the MOS provided in this
database ranges from 0 to 9.

The LIVE Image Quality Database [4] has 29 reference
images and 779 test images, consisting of five distortion
types (JPEG2000, JPEG, white noise in the RGB components,
Gaussian blur, and transmission errors in the JPEG2000 bit
stream using a fast-fading Rayleigh channel model).
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TABLE X

PERFORMANCE OF SELECTED IQSs BY METHODS 1 AND 2 IN TID2008 DATABASE

TABLE XI

NORMAL DISTRIBUTION TEST FOR EACH IQS IN TID2008 DATABASE

The subjective quality scores provided in this database are
DMOS, ranging from 0 to 100.

The Categorical Image Quality (CSIQ) Database [6]
contains 30 reference images, and each image contains
six distortion types (JPEG compression, JPEG2000
compression, global contrast decrements, additive Gaussian
white noise, additive Gaussian pink noise, and Gaussian
blurring) at 4 to 5 different levels, resulting in 866 distorted
images. The score ratings (from 0 to 1) are reported in DMOS.

Besides the 17 distortion types in TID2008, the Tampere
Image Database 2013 (TID2013) [7], [40] introduces

seven new distortion types. They are: 1) change of color satu-
ration (#18); 2) multiplicative Gaussian noise (#19); 3) comfort
noise (#20); 4) lossy compression of noisy images (#21);
5) image color quantization with dither (#22); 6) chromatic
aberrations (#23); and 7) sparse sampling and reconstruc-
tion (#24). Consequently, TID2013 has the richest diversity,
consisting of 25 reference images, 24 distortion types for each
reference, and five levels for each distortion type. The database
contains 3000 distorted images with their subjective scores
evaluated in MOS ranging from 0 to 9.

B. Performance Measures for IQA Methods

We use three indices to measure the performance of IQA
methods [41], [42]. The first one is the Pearson correlation
coefficient (PCC) between the objective and the subjective
scores. It is used to evaluate prediction accuracy. The second
one is the SROCC between the objective and the subjective
scores. It is used to evaluate the prediction monotonicity. The
third one is the RMSE between the objective and the subjective
scores.

In order to compute PCC and SROCC, we use the following
monotonic logistic function [41] and the procedure described
in [41] to fit the objective scores to the subjective quality
scores (MOS or DMOS):

f (x) = β1 − β2

1 + exp−
(

x−β3
|β4|

) + β2 (36)

where x is the predicted objective score, f (x) is the fitted
objective score, and parameters β j , j = 1, 2, 3, 4, are chosen
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TABLE XII

PERFORMANCE OF EACH IQS IN THE OTHER THREE DATABASES

TABLE XIII

PERFORMANCE COMPARISONS FOR DIFFERENT COMBINATIONS OF IQSs

to minimize the least-squares error between the subjective
score and the fitted objective score. Initial estimates of the
parameters are chosen based on the recommendation in [41].

C. Performance Comparison

To evaluate the performance of each individual IQS,
we show three performance indices for both BIQSs and
AIQSs against three databases (LIVE, CSIQ, and TID2013)
in Table XII. Similar to what was shown in Table III,
most BIQSs (except BIQS #1) have better correlation per-
formance with MOS (DMOS) and AIQSs do not perform
well when working alone. The only exceptions are AIQS #3
and AIQS #9. The former has excellent performance for
the LIVE database, while the latter performs well for both
LIVE and CSIQ.

With the two selection methods described in Section
V, we show the smallest set of IQSs that achieves the
best performance in Table XIII. As indicated in the table,
the numbers of IQSs needed for the ParaBoost system in
TID2008 and TID2013 are 16 and 17, and these two databases
have over 17 and 24 distortion types, respectively. Due to
the large variety of distortion types, they cannot be easily
and correctly evaluated by using a small number of scorers.
On the other hand, we can provide good quality assessment for
LIVE and CSIQ with fewer IQSs (9 and 13, respectively) since
there are only 5–6 distortion types in these two databases.

The ParaBoost performance of the selected IQSs is listed in
Table XIII, which includes several benchmarking cases with
a different combination of BIQSs or AIQSs. We observe that
the fusion of all IQSs does not offer the best performance
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TABLE XIV

PERFORMANCE COMPARISON AMONG 13 IQA MODELS IN FOUR DATABASES

while the complexity is the highest. Thus, it is essential to
have a scorer selection mechanism. For example, we only
need nine IQSs to give the highest PCC and SROCC for
the LIVE database. By comparing Tables III, XII, and XIII,
we see that the SROCC gains of the ParaBoost IQA system
over the single best-performing IQS with respect to LIVE,
CSIQ, TID2008, and TID2013 are 0.03, 0.05, 0.14, and 0.20,
respectively. The rich diversity of the IQSs, the special training
strategy, the ParaBoost structure, and the IQS selection scheme
all contribute to the excellent performance of the proposed
ParaBoost IQA system. The performance gain is larger if the
distortion types in a given database are more diversified.

In Table XIV, we compare the performance of the proposed
ParaBoost method with several state-of-the-art image
quality metrics, such as VSNR [43], VIF [44], SSIM [3],
MS-SSIM [45], IW-SSIM [8], FSIM [9], MAD [46],
CF-MMF, and CD-MMF [17], [18]. The configuration
of ParaBoost used for obtaining results in Table XIV
is listed in Table XIII, including selected IQSs, and the
total number of IQSs used. The top three IQA models
are highlighted in bold. As shown in Table XIV, the
two ParaBoost IQA methods rank the first and second in
TID2008, LIVE, and TID2013. For CSIQ, they still rank
the second and third. Furthermore, the proposed ParaBoost
method has an impressive performance on both TID2008
and TID2013. For instance, in TID 2013, the SROCC gains
are around 0.11 and 0.04 over the existing best formula-
based approach (i.e., FSIMc) and learning-based method
(i.e., CD-MMF), respectively.

Furthermore, to test the generality of the proposed
ParaBoost method, we train the system based on one database
and test it on the other three databases. The experiment results
are shown in Table XV. In Table XV, the configurations (the
number of used IQSs) of ParaBoost for all test databases
are the same as the corresponding trained model (database).
For instance, if the model is trained on TID2008, then the
configurations (the number of used IQSs) of ParaBoost for
all test databases (LIVE, CSIQ, and TID2013) are exactly
the same as the one we used to train the model on TID2008.
As shown in Table XV, the SROCC values are over 0.91
for most cases except when the system is trained on LIVE
and tested on TID2013. This exception can be explained by

TABLE XV

CROSS-DATABASE SROCC PERFORMANCE OF ParaBoost SYSTEM

TABLE XVI

COMPUTATION TIME REQUIRED FOR AN SD IMAGE (SIZE 720 × 480)
AMONG 13 IQA MODELS

the fact that there are 24 distortion types in TID2013, which
cannot be completely covered by a training process performed
on smaller distortion type sets (i.e., five image distortion
types in LIVE database). We would like to point out that
the SROCC values of the resulting ParaBoost IQA system
is still greater than 0.91 for 11 out of the 12 cross-database
evaluation cases. This shows the robustness of the proposed
ParaBoost IQA methodology.

D. Computational Complexity

The computational complexity of 13 IQA models is com-
pared in Table XVI. The measurement is in terms of the com-
putation time required to evaluate a standard-definition (SD)
image of size 720 × 480 by using a computer with Intel core
i7 processor at 1.73 GHz. For our proposed IQA model (Para-
Boost), it would take 5–6 seconds to complete the quality
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evaluation of an SD image. However, it would only take
0.05–1.5 seconds to finish the evaluation for the other formula-
based models, except MAD. MAD needs about 55 seconds to
complete the evaluation. Furthermore, compared with another
learning-based model (MMF), our model (ParaBoost) has a
large advantage on time saving (around 90%). This is because
most of the IQSs in the proposed ParaBoost model utilize one
simple feature instead of one complicated method. Although
it is still more time-consuming to estimate the image quality
than most of the formula-based IQA models, the quality
prediction performance of ParaBoost is much better than the
others. This paper concentrates on the proof of concept, and
how to optimize the proposed method will be our next step.

VII. CONCLUSION AND FUTURE WORK

A new ParaBoost IQA method has been proposed in
this paper, which fuses resulting scores from multiple
BIQS and AIQS. The design, training, and evaluation of each
individual IQS were discussed. The ParaBoost architecture
was carefully examined. Two statistical test-based methods
were developed to select an optimal combination of IQSs
to achieve the best performance with the minimum num-
ber of scorers. Instead of conventional weighting or voting
schemes, a nonlinear SVR score fuser was adopted to combine
the outputs from all selected IQSs. The experiments were
conducted with respect to four well-known public databases
(totally 6345 images). It was shown by experimental results
that the proposed ParaBoost IQA method outperforms the
existing state-of-the-art IQA models (including both formula-
based and learning-based methods) with clear explanation for
its success.

The extension of the ParaBoost approach to the problem of
VQA is under our current investigation. One main challenge
along this direction is the lack of large VQA databases.
Furthermore, the design of powerful individual video quality
scorers (VQSs) is still an open issue.
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