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ABSTRACT

The Netflix ingest and encoding pipeline is a cloud-based
platform that generates video encodes for the Netflix stream-
ing service. Due to the large throughput of the system, auto-
mated video quality assessment of the source videos and the
generated encodes is essential in ensuring the quality of expe-
rience of viewers. This paper discusses the motivations for in-
tegrating video quality assessment in the production pipeline,
outlines currently deployed solutions and presents the techni-
cal challenges in improving the system.
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1. INTRODUCTION
Netflix has grown significantly in global reach, subscribers
and device support over the last several years. The streaming
service launched in 2007 with a couple thousand titles and an
Internet Explorer plugin hosting Windows Media Player [1].
Fast forward to 2015 and Netflix has more than 57 million
subscribers [2] and tens of millions of active devices covering
smart TV’s, game consoles, set-top boxes, computers, tablets,
and smart phones. Netflix streaming accounts for more than
one third of peak North American download traffic [3]. In
2014 alone, Netflix increased its subscriber base by 13 mil-
lion new members, started ingesting and streaming 4K UHD
videos and was an early adopter of HEVC encoding support
in the cloud [1, 2].

With the growth of the service comes a larger influx of
titles that require processing by the system and more video
stream representations generated per title. The primary chal-
lenge is to implement an ingest and encoding pipeline that is
highly robust and scalable. The production system should be
designed such that it can easily scale and support the demands
of the business (i.e., more titles, more encodes, shorter time to
deploy), while guaranteeing a high quality of experience for
the customer.

For both ingest and encoding, automated video quality
assessment plays a vital role in ensuring the quality of the
Netflix streams. Due to the high throughput of the pipeline,
manual visual inspection of all the sources and encodes is not
inherently scalable nor economically feasible. Netflix brings

in thousands of titles from content partners each year. For
source inspection, only no-reference quality algorithms can
be applied, since the system has no knowledge of a “cor-
rect” reference. For post-encoding inspection, full-reference
or partial-reference video quality assessment can be utilized
with the video source as the reference. This paper defines the
challenges, outlines current deployed solutions and presents
open problems on quality assessment for a cloud-based ingest
and encoding pipeline.

2. SYSTEM OVERVIEW
The Netflix video encoding pipeline is a cloud-based process-
ing system that ingests high quality video sources and pro-
cesses each source into video encodes of various codec pro-
files, at multiple quality representations per profile. The en-
codes are packaged then deployed to a content delivery net-
work for streaming. During a streaming session, the client
requests its supported encode profile and adaptively switches
between quality levels based on the network conditions.

Fig. 1 depicts a high-level diagram of the ingest and en-
coding pipeline. During ingest the system inspects a video
source to 1) detect content that could lead to a bad viewing
experience and 2) generate metadata required by the encod-
ing pipeline. If the inspection deems the source unacceptable,
the system automatically informs the content vendor about is-
sues and requests a redelivery of the source.

After a source is successfully ingested, it is handed over
to the video encoding block together with the metadata gener-
ated during inspection. The video is transcoded into various
encodes of VC1, H.263, H.264/AVC, and HEVC at bitrates
ranging from to 100 kbps to 16 Mbps. Inspection algorithms
are then applied to the encode to validate the correctness and
quality of the stream.

In Fig. 1, source inspection and video encoding are de-
picted as single blocks. In practice, each of these operations
occur on multiple worker machines in the cloud and segments
of the video are processed in parallel. This decreases the end-
to-end processing delay, reduces the required local storage
and improves error robustness of the system (if a machine is
abruptly terminated, only a small portion of the work is lost).
One of the first operations performed during source ingest is
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Fig. 1. System overview of Netflix pipeline

generating an index of the source file such that each inspec-
tion and encoding worker can use the index to correctly down-
load and process any specified range of video frames. To gen-
erate the final results, an inspection aggregator is employed to
combine the data from inspection workers. Similarly, multi-
ple encode workers encode different chunks of the source. An
assembler concatenates the transcoded segments of video into
the complete video stream.

3. ASSESSMENT OF SOURCE VIDEO QUALITY
Netflix ingests source videos from content partners after a li-
censing contract is set-up. In some cases, the delivered source
video contains distortion or artifacts which would result in
bad quality video encodes – garbage in means garbage out.
These artifacts may have been introduced by multiple pro-
cessing and transcoding steps before delivery, data corruption
during transmission or storage, or human errors during con-
tent production. Instead of trying to fix the source video is-
sues after ingest (for example, apply error concealment to cor-
rupted frames or re-edit sources which contain extra content),
Netflix rejects the problematic source video and requests for
redelivery. Rejecting problematic sources ensures that:

• The best source video available is ingested into the sys-
tem. In many cases, the error mitigation techniques
only partially fix the problem.

• Unnecessary complex algorithms (which could have
been avoided by better processes upstream) do not
burden the Netflix ingest pipeline.

• Content partners are motivated to triage their produc-
tion pipeline and address the root causes of the prob-
lems. This will lead to improved video source deliver-
ies in the future.

3.1. Source Video Impairments
The following are examples of impairments in the video
source. If a problematic source is ingested into the pipeline,
these artifacts would be passed on to the encodes, and poten-
tially intensified by the encoding process.

Scaling artifacts. Downsampling to a lower resolution or
upsampling to a higher resolution can lead to scaling artifacts
in the source video. The degree of impairment in the source
would depend on the scaling factors employed as well as the
level of sophistication of the scaling algorithm. Scaling arti-
facts include blurring and ringing around edges.

Compression artifacts. A source video delivered to Net-
flix may have undergone transcoding to a bitrate resulting in
compression artifacts such as blocking, ringing around edges,
contouring and loss of detail because of high quantization.
Compression artifacts are not only annoying to the viewer,
but also waste bits when the encoder tries to preserve these
artifacts during encoding.

Corrupted frames. The source video may be delivered
with corrupted frames. The data corruption could be in the
bitstream of the source video, i.e., a decoder would detect
a non-compliant bitstream. In some cases, the source video
bitstream is perfectly valid, but the pixel-domain frames ex-
hibit corruption. For example, a video file is corrupted during
transmission, the file is decoded and errors are concealed, and
the video is re-encoded into the final file delivered to Netflix.
Corrupted frames have varying levels of severity. The corrup-
tion may affect a few pixels, a single macroblock, multiple
blocks or multiple successive frames.

Non-native frame rate. The Netflix delivery specifications
require that source videos are delivered in their native frame
rate in order to preserve original artistic content and avoid
temporal conversion artifacts. One commonly observed frame
rate conversion is 3:2 pulldown. 24 frames per second (fps)
film content is converted to 29.97 fps video by duplicating
fields of the original source at a regular interval. Visually, this
leads to jerky motions in slow smooth scenes, also referred to
as telecine judder.

Insertion of extra content. Extra frames in the encoded
video, such as color bars, advertisements, slates, placards,
and commercial blacks, can negatively affect customer expe-
rience. Netflix specifies that they be removed from the source
video but human or process errors in the content production
could lead to deliveries that do not meet this requirement.

3.2. Current Inspections and Open Problems
The main goal of the source inspection stage is to detect the
video source impairments, examples of which are enumer-
ated in Section 3.1. The challenge is to tune the algorithms
to improve the detection rate while keeping false positives at
a minimum. If an inspection has a high false positive rate,
the source video rejection cannot be routed automatically to
the content partner, and manual verification is required. This
contradicts the goal of reducing human quality control in the
ingest pipeline.

Corrupted frames are detected in the ingest pipeline by
simply decoding the source video and monitoring errors com-
ing from the decoder. This is low-complexity with zero false
positive rate unless there are decoder bugs. However, this
method cannot detect pixel-domain corruption nor does it pro-
vide a good indication of the severity of the corruption.

To address pixel-domain corruption, as well as detect
unacceptable scaling or compression artifacts in the source
video, no-reference video quality metrics are under inves-
tigation [4, 5]. These techniques utilize spatio-temporal
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natural scene statistic models or knowledge of the possible
distortions in the video, or a combination of the two. In inte-
grating no-reference video quality metrics into the pipeline,
the following aspects are being considered - applicability to
a diverse set of content, complexity of implementation and
reliability in measuring severity of perceptual distortion.

To detect frame rate conversion based on frame or field
duplication, the source inspection calculates the difference of
a pixel from the co-located pixel in the previous frame and
averages the values for a given field. By analyzing the field
differences of adjacent fields, duplicated fields are detected.
If a consistent cadence (for example, one duplicated field ev-
ery five fields in the case of 3:2 pulldown) is observed for a
significant percent of the video, the video source is rejected.

Erroneously added segments of black frames, either at the
start or tail of the program, or within the program to denote
insertion of commercials, can easily be detected by inspecting
the histogram of the pixel values of a frame. In some cases,
actual content (for example, long dark scenes) can trigger a
false positive. The image data is combined with information
from the audio track to reduce false positives.

4. ASSESSMENT OF ENCODING QUALITY
While source inspection at the ingest aims to reject bad video
sources, encoding quality assessment aims to predict the per-
ceptual quality of video representations generated by the en-
coding pipeline. This section discusses the requirements on
ideal assessment algorithms that can be deployed in Netflix’s
production system, and their potential use cases.

4.1. Encoding Impairments
As Netflix video streams are delivered over the top of Trans-
port Control Protocol (TCP), Internet packet losses are
shielded from causing impairments in the video decoded
on subscriber devices. The main source of quality impair-
ments thus comes from video encoding, whose main goal is
to reduce the video data size. In video encoding, there are
mainly two types of artifacts that causes quality degradation:

Scaling artifacts. Similar to the scaling artifacts presented
in the source video, but only that they are now generated by
Netflix’s native encoding pipeline.

Compression artifacts. Similar to the compression arti-
facts in the source video, but may be much more prominent
because the encoded videos to be passed to the streaming
pipeline have much lower bitrates.

Typically, the encoding pipeline combines both scaling
and lossy compression to reduce the video data size. For a
target bitrate, tweaking the parameters of both operations can
yield perceptual quality optimization.

System bugs. Besides the two types of artifacts above,
quality degradation in the decoded video could also be the
result of bugs in the encoding pipeline. These cases must
be detected before the defective videos leak to the streaming
pipeline, and the bugs must be corrected.

Type JND PSNR (dB)
TV Drama 0 43.26
Action Movie 0.2 41.91
Animation 1 0 46.86
Animation 2 0 37.55

Table 1. Encode vs. source video

Type Bitrates (Kbps) JND ∆PSNR (dB)
Animation 5800 vs. 2350 0.1 13.25
TV Drama 5800 vs. 2350 1.2 0.21

Table 2. Comparison of encode pairs

4.2. Implementation Considerations
Video source characteristics. Netflix carries a large diverse
collection of movie and TV show titles. An ideal quality as-
sessment algorithm must predict the perceptual quality for a
wide variety of source characteristics. To illustrate the chal-
lenge, Table 1 and Table 2 show examples where a traditional
quality metric, peak signal-to-noise ratio (PSNR), yields poor
prediction of the perceptual quality. For several titles PSNR
scores are compared with just noticeable difference (JND)
scores measured through subjective tests. Both tables show
that PSNR correlates badly with the subjective JND scores.

Availability of reference video. While full-reference qual-
ity assessment is more reliable, partial-reference assessment
can sometimes be used to simplify the system design.

Computational complexity. Owing to its design for scala-
bility, Netflix’s encoding pipeline is capable of accommodat-
ing quite substantial computations performed on each of the
video chunks. Thus, while ideally an encoding quality assess-
ment algorithm should have as low complexity as possible, an
algorithm with moderate complexity is also acceptable.

4.3. Use Cases
The following highlights several use cases for an encoding
quality assessment algorithm in the Netflix media pipeline.

Quality assurance. Similar to source inspection, quality
assurance aims to reject bad encodes caused by bugs or bad
parameter choice. For each new encode, two types of tests are
performed to detect quality drop: 1) regression test, which
compares the new encode with a previous encode; 2) post-
encode test, which compares the new encode with the origi-
nal source. If it is detected that the quality drop is beyond a
threshold, the new encode must be rejected. In the past, this
helped us identify bugs in our production platform.

Quality monitoring. For a Netflix title, each of its many
encoded video representations can be associated with scores
generated by the quality assessment algorithm. When a Net-
flix subscriber streams a title, the bitrate selection and the as-
sociated quality scores are automatically recorded over time.
The average score can be used to gauge the general satisfac-
tion of subscribers.

Optimizing encoding parameters. For a target bitrate,
there are typically several encoding parameters, if tweaked,
can yield optimized perceptual quality. Compression quan-
tization parameter (QP) and downsampling resolution are
example parameters that can be refined. The challenge is to
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accurately model the perceptual quality as a function of these
parameters, before numerical optimization can be applied.
Besides, other encoding choices such as the number of rep-
resentations and their bitrate spacing, can also be determined
based on the model.

Optimizing streaming bitrate selection. Netflix’s stream-
ing algorithms match the streaming bitrate to a viewer’s net-
work speed. But streaming bitrate may not always correlate
with perceptual quality. By examining quality scores within
a future horizon and re-allocating bits among the video seg-
ments, it is possible to improve the video quality perceived by
viewers. For example, a static scene may not need as many
bits as the subscriber’s network speed could supply. This sur-
plus could instead be used in a dynamic scene a minute away
from the static scene to yield improved viewing experience.

Codec and processing technology evaluation. An encod-
ing quality assessment algorithm can evaluate current and
new codecs and processing technologies, thus help decide if
to incorporate these technologies into the production pipeline.
It can also drive decisions for future codec design.

5. VMAF
This section describes a newly developed video quality as-
sessment algorithm, motivated by the needs of the Netflix
media pipeline, and discusses initial results. Video Multi-
method Assessment Fusion (VMAF) is a full-reference per-
ceptual video quality metric that aims to approximate human
perception of video quality. This metric is intended to be use-
ful as an absolute score across all types of content, and fo-
cused on quality degradation due to rescaling and compres-
sion.

VMAF estimates the best perceived quality score by com-
puting scores from multiple quality assessment algorithms,
and fusing them using a support vector machine (SVM) [6, 7].
Currently, three image fidelity metrics and one temporal sig-
nal have been chosen as features to the SVM.

Anti-noise SNR (ANSNR). ANSNR mitigates some draw-
backs of simple SNR for film-grained content. A weak low-
pass filter is applied to the source and a stronger low-pass
filter is applied to the encode before the SNR calculation. It is
good for detecting compression and strong scaling artifacts,
but is not sensitive to quality changes for high quality videos.

Detail loss measure (DLM) [8]. DLM estimates the blurri-
ness component in the distortion signal using wavelet decom-
position. It uses contrast sensitivity function (CSF) to model
the human visual system (HVS), and the wavelet coefficients
are weighted based on CSF thresholds. It can detect blurriness
in mid quality ranges well, but not that well for discriminating
higher quality ranges.

Visual information fidelity (VIF) [9]. VIF quantifies the
Shannon information shared between the source and the dis-
tortion relative to the information contained in the source it-
self. A gaussian scale mixture in the wavelet domain is used
to model the source, and signal gain and additive noise in

Metric Pearson Spearman
VMAF 0.926 0.927
PSNR 0.623 0.710

Table 3. Performance of VMAF and PSNR in Pearson and
Spearman correlation

wavelet domain is used to model the distortion. HVS is mod-
eled as a dual to the source, along with additive white gaus-
sian noise to model internal neural noise. VIF is good for
detecting blurring artifacts, but is insensitive to blocking.

Motion information. Motion in videos is chosen as the
temporal signal, since the HVS is less sensitive to quality
degradation in high motion frames. The global motion value
of a frame is the mean co-located pixel difference of a frame
with respect to the previous frame. Since noise in the video
can be misinterpreted as motion, a low-pass filter is applied
before the difference calculation. It is used in the SVM map-
ping as well as for adjustments after the mapping if the motion
value exceeds a threshold.

Currently, the SVM model is trained using NFLX-V train-
ing set with 18 1920x1080 source clips of 6 second length.
The training set was chosen to cover a wide range of high
level features (animation, sports, indoor, camera motion, face
close-up, people, water, obvious salience, object number) and
low level characteristics (film grain noise, brightness, con-
trast, texture, motion, color variance, color richness, sharp-
ness). From the 18 source clips, 152 encodes were gener-
ated using the x264 encoder. The lowest quality clips were
encoded at 384x288, 150 kbps and the highest quality clips
were encoded at the original resolution with bit rate 2 - 20
Mbps depending on the source clip. Each encode was played
side-by-side with the source clip and scored from 0 to 100
(with 100 being of the highest quality) by 4 video experts.

As a simple validation test for the VMAF metric, the qual-
ity scores of 25% of the NFLX-V Training Set were predicted
by training the SVM using the remaining 75%. Table 3 lists
the Pearson and Spearman correlation of the VMAF scores
with respect to the human scores and compares the results
with the correlation values for PSNR.

6. CONCLUSION

This paper presented an overview of the Netflix cloud-based
video ingest and encoding pipeline, defined the challenges
and outlined current deployed solutions for incorporating au-
tomated video quality assessment into the production system.
Initial results for the VMAF full-reference quality metric
were discussed but more comprehensive testing of the al-
gorithm is underway. Other promising no-reference and
full-reference quality assessment schemes are under evalua-
tion. Given the diversity of the Netflix content, this system is
a rich and challenging platform for validating and improving
state-of-the-art video quality assessment algorithms, with the
ultimate goal of ensuring the best of quality of experience for
subscribers.
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