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ABSTRACT

A full-reference video quality assessment (VQA) method,
called the ensemble-learning-based video quality assessment
(EVQA) index, is proposed in this work. As compared with
previous learning-based VQA methods, it has two unique
features. First, EVQA adopts a frame-based learning mech-
anism to address the limited training data problem. Second,
a dynamic image quality assessment(IQA) fusion scheme is
developed by taking three factors into account: the spatial
complexity and temporal context of a frame in a video source
and the strength of IQA indices. In the test stage, EVQA ap-
plies the derived IQA fusion rule to different frames and take
an average of the frame-based scores to generate the final
video quality score. The superior performance of the pro-
posed EVQA index is demonstrated by experimental results
conducted on both LIVE and MCL-V video databases.

1. INTRODUCTION

Video streaming services are growing rapidly nowadays, and
the cloud platform is adopted for video streaming on a mas-
sive scale. Automatic video quality assessment (VQA) plays
an important role to measure viewer’s experience in such an
application. Although the mean squared error (MSE) is com-
monly used for video quality measure, it is not well correlated
to human visual experience [1]. Thus, there has been active
research on developing better objective VQA indices to meet
this urgent need.

Generally speaking, one can categorize VQA methods
into two types: formula-based and learning-based VQA
methods. The development of formula-based VQA indices
are hindered by two major factors. First, video contents are
very diversified, and it is difficult to model them mathemati-
cally. Second, the human visual system (HVS) is too complex
to be fully understood although there are scattered results on
psychovisual theory. Due to the challenge in source (video)
and receiver (human) modeling, the performance of today’s
formula-based VQA indices is still far from perfection. The
development of learning-based VQA indices is constrained by
the limited amount of labeled data. Although there are quite
a few image quality assessment (IQA) databases available
to the public, the number of VQA databases is very limited

since it is expensive to conduct a large scale subjective test
on video.

A full-reference video quality assessment (VQA) method,
called the ensemble-learning-based video quality assessment
(EVQA) index, is proposed in this work. As compared with
previous learning-based VQA methods, it has two unique fea-
tures. First, EVQA adopts a frame-based learning mecha-
nism to address the problem of a limited amount of training
data. Second, a dynamic IQA fusion scheme is developed
by taking three factors into account: the spatial complexity
and temporal context of a frame in a video source and the
strength of IQA indices. In the test stage, EVQA applies the
derived IQA fusion rule to different frames and take an av-
erage of the frame-based scores to generate the final video
quality score. The main contribution of this work lies in an
enhanced learning procedure by partitioning frames into mul-
tiple groups based on their contents and contexts as detailed in
Section 3. The superior performance of the proposed EVQA
index is demonstrated by experimental results conducted on
both LIVE and MCL-V video databases.

The rest of this paper is organized as follows. The back-
ground of our research is reviewed in Section 2. The proposed
EVQA index is presented in Section 3. Experimental results
are shown in Section 4. Finally, concluding remarks are given
in Section 5.

2. BACKGROUND REVIEW

There are two approaches to the design of an IQA/VQA in-
dex; namely, formula-based and learning-based. They are
reviewed below. In the formula-based approach, a closed
form mathematical model is derived to predict perceptual
quality, such as frame-based structural similarity (SSIM)
[2], visual information fidelity (VIF) [3], feature similarity
(FSIM) [4], and video additive impairments and detail losses
measure (VADM) [5]. However, it is extremely difficult to
provide a good mathematical HVS model to cover a wide
range of video collections. To give an example, Li et al. [5]
used Daly’s contrast sensitivity function (CSF) [6] to improve
the performance of VQA indices. However, there are more vi-
sual properties than contrast in the HVS, including luminance
adaptation, visual saliency among others, the applicability of
which is rather limited.



In learning-based approaches, a statistical model is built
to model the relation between features of training image/video
data and their mean opinion scores (MOS). Then, it is used
to predict the quality of unseen test video. This approach
has been used by researchers to design IQA indices in recent
years. Narwaria and Lin [7] extracts the structural informa-
tion in images with the singular value decomposition and then
use the support vector regression (SVR) to map the feature to
MOS. Liu et al. [8] proposed a multi-method fusion (MMF)
IQA index, where a regression approach is used to combine
scores of multiple IQA indices. The MMF score is obtained
by a non-linear fusion of scores computed by multiple meth-
ods with suitable weights obtained by a training process. The
MMF index offers the state-of-the-art IQA results in several
popular databases, including LIVE [9] and TID2008 [10].

The learning-based approaches have also been applied to
the design of VQA indices. The fusion-based VQA (FVQA)
technique was proposed in [11]. The FVQA method treats
each video clip as a single data sample. In the training stage,
it first classifies video clips based on their spatial and temporal
complexities into several groups to reduce intra-group content
diversity. Then, it learns the fusion rule of multiple VQA
indices in each group. In the testing stage, the FVQA index
first classifies a test video clip into a group and then applies
the fusion rule in that group for VQA score prediction.

Since the development of formula-based VQA indices is
hindered by video content diversity and HVS complexity, we
adopt a learning-based approach in this work. It is however
important to emphasize that the number of training images
in image quality databases [9, 10] is significantly larger than
that in video quality databases. The accuracy of a statisti-
cal VQA model can be severely affected by the small size of
the training data. This is the main issue to be addressed in
our current work. Two exemplary video quality databases are
used in our experiments. They are the LIVE database [12]
and the MCL-V database [13]. The LIVE database contains
80 video clips of resolution 768× 432 and with a duration of
10 seconds. They were coded by H.264 and MPEG-2. The
MCL-V database contains 12 source video clips of resolution
1080p and with a duration of 6 seconds. There are 96 dis-
torted video clips due to compression and scaling.

3. PROPOSED EVQA INDEX

Motivation and Overview. A video stream is composed
by image frames, where frame-to-frame variation is usually
small except for scene change. It is a commonly believed fact
that perceptual quality remains stable within a short period
of time. This property was exploited in [5, 14], where a spa-
tial (or frame-level) quality index is first computed for each
frame independently and the index scores across multiple
consecutive frames can be weighted by a temporal pooling
method. In this way, a VQA index can be constructed from
frame-level IQA indices. To tackle the problem of limited

training data, our proposed method adopts a frame-based
learning mechanism, inspired by the same principle. Each
source video clip in the MCL-V database lasts for 6 seconds
and the frame rate is 30 frames per second (fps). The total
number of frames for one sequence is 180 frames. In other
words, each training video clip can offer 180 data samples,
instead of just one. There is however a missing link in the
aforementioned strategy; namely, the frame-level MOS score
is not available during the training process. Since all video
quality databases contain short and homogeneous video clips,
it is assumed that the MOS of the whole sequence can be
used as an approximate ground truth of its frames. This
assumption will be verified in Section 4.

The EVQA method consists of three steps in the training
phase. Step 1: Feature Extraction. Several IQA methods are
applied to each individual frame and their scores are stored as
its feature vector. The raw scores of IQA indices are properly
normalized to match the MOS value. Step 2: Frame Space
Partitioning. The frame space is partitioned into several sub-
spaces to enhance the learning performance. Step 3: IQA
index Fusion. The fusion rule of combining multiple IQA in-
dices into one single IQA score for a frame is learned in each
partitioned frame subspace.

In the testing process, the EVQA method predicts the
quality index of each frame by following the above steps.
After that, all predicted frame scores are integrated to gen-
erate one MOS value for a short test video clip via temporal
pooling. Since feature extraction is straightforward, we will
elaborate on the following three topics below: frame space
partitioning, IQA index fusion and temporal pooling.

Frame Space Partitioning. The main purpose of frame
space partitioning is to allow more efficient learning rule in
a smaller subspace, where frames share properties of higher
similarity. This can be done based on spatial, temporal and
quality/distortion properties of frames. The spatial and tem-
poral complexities are related to the spatial and temporal
masking effects of HVS. For the quality/distortion property,
the predicted performance of an IQA index can be exploited.
That is, each IQA index has its own strength in assessing
some distortion types [8] and, if two frames can be well
predicted by a common set of IQA indices, they must share
certain similarity in their quality/distortion property.

Spatial and temporal complexities are computed based
on the undistorted reference frames. The spatial information
(SI) and the temporal information (TI) introduced in [15] are
two well-known parameters for video sequences. However,
they are not suitable for our purpose since we are concerned
with the properties of a single frame. Some modifications are
needed, and we call extended SI (ESI) and extended TI (ETI)
the modified metrics.

For the ESI, we first obtain the edge magnitude map GM
of frame Fn using the 3×3 Sobel filter. Then, the ESI for this



frame is defined as

ESIn =
std[GM (Fn)]

mean[GM (Fn)]
. (1)

Complex scenes with a large amount of texture have a larger
ESI value. For the ETI, the basic idea is to compute the
pixel-based luminance difference of two adjacent frames. Se-
quences with large motion have large ETI values. Since the
fine structure of the frame data, such as film noise, will have
a negative impact on the accuracy of ETI, we apply the 5× 5
Gaussian filter to their pixel difference, which is equivalent
to taking the difference after we filter out each frame by the
same Gaussian filter. Then, the ETI is defined as

ETIn =
1

WH

W∑
x=1

H∑
y=1

Dn(x, y) . (2)

whereW andH are the width and the height, correspondingly
of the nth frame and

Dn(x, y) = |G ∗ (Fn(x, y)− Fn−1(x, y))| (3)

is the absolute value of the Gaussian-smoothed frame differ-
ence, and where G is the Gaussian filter.

Besides spatial and temporal complexities, it is desired to
classify image frames based on their distortion type. How-
ever, it is difficult to obtain this information directly, yet it is
possible to be obtained indirectly by analyzing its IQA scores.
This analysis is conducted with respect to frames in the train-
ing set. Suppose that there are T training frames. For a given
IQA index, we can divide all training frames into C clusters
of equal size N = T/C, based on its score distribution. We
map raw IQA scores in one cluster, denoted by x, to a nor-
malized score, Q, using a logistic function [4] as follows:

Q = β1 · (0.5−
1

1 + eβ2(x−β3)
) + β4 · x+ β5, (4)

where βi, i = 1...5, are the fitting parameters determined
by known IQA/MOS score pairs. Eq. (4) is used to con-
vert an IQA score of an arbitrary range to a suitable range
which is compatible with measured MOS values. After the
score conversion, we can compute the root-mean-squared-
error (RMSE), denoted by E, between Q and MOS in that
cluster via

E(Q,MOS) =

√√√√ 1

N

N∑
n=1

(Qn −MOSn)2, (5)

where n is a frame index, MOSn is its MOS value and Qn is
its transformed IQA index value. Furthermore, we can choose
a threshold value to determine if an IQA method performs
well in a cluster. For example, the RMSE values of 8 clusters
are shown in Fig. 1. By setting the threshold value to E = 1,

Fig. 1: The plot of the RMSE of the predicted MOS values
against the actual ones in 8 clusters for an exemplary IQA in-
dex, where a black and a gray bars indicate that its RMSE is
lower and higher than a pre-selected threshold value, respec-
tively.

we see that the IQA index performs well for frames in Cluster
Nos. 6-8 but poorly for frames in Cluster Nos. 1-5.

If an IQA index performs equally well (or poorly) for all
clusters as shown in Fig. 2 (a), it cannot be used to parti-
tion the frame space. On the other hand, if it performs well
for some clusters but poorly for other clusters as shown in
Fig. 2 (b), we can use it to partition the frame space into two
subspaces according to its preference - favored and unfavored
subspaces.

(a) Index without preference (b) Index with preference

Fig. 2: Illustration of an IQA index (a) without and (b) with
preference.

Furthermore, we can use a sequence of IQA indices with
preference to partition a frame space into multiple subspaces
as illustrated in Fig. 3, where each split is defined by one IQA
index. In this figure, the favored and unfavored subspaces
of the first IQA index is denoted by A and Ac, respectively.
Similarly, the frame space can be partitioned by another IQA
index into the favored and unfavored subspaces denoted by B
and Bc, respectively. Then, the frame space can be decom-
posed into four subspaces as shown in the third stage of Fig.
3.

The frame space partitioning process can be organized as
a binary tree as shown in Fig. 4. Each partition creates two
children, and grows the tree to the next level. The partition
should stop if the number of frames in a node is too small
since each group should have a sufficient number frames for
the learning purpose. On the other hand, for nodes that have



Fig. 3: Frame space partitioning using multiple IQA indices
with preference.

a large number of frames, after we exhaust all IQA indices,
we can use the frame′s ETI and ESI value to further partition
them. Then, we can use frame’s ETI and ESI to partition
them.

Fig. 4: Illustration of frame space partitioning using a bi-
nary tree structure, where the stop criterion is checked at each
node.

IQA index Fusion. In our experiment, six state-of-the-
art IQA indices [16, 2, 3, 4, 17, 18] are included in the IQA
candidate pool. For each partitioned frame subspace, we use
the sequential forward method selection (SFMS) scheme [8,
11] to select a set of IQA indices to fuse so as to optimize
an objective function such as the Pearson linear correction
coefficient (PCC) value. The SFMS scheme is a greedy search
algorithm that selects the optimal IQA index in the candidate
pool to yield a better prediction at each iteration. The iteration
will terminate if the improvement becomes negligible. The
SFMS scheme is determined by training data while the fusion
rule is also learned through SVR from training data in each
frame subspace.

Temporal Pooling. Temporal pooling is necessary to
generate the final MOS value for the entire test video based
on the predicted MOS value of each individual frame. Sev-
eral temporal pooling methods such as the mean, median,
Minkowski, percentile was studied and compared in [19, 20].
There is however no universal method that offers the best
performance for all video contents. We adopt a simple aver-
age scheme here, which is justified by experimental results in
Section 4.

4. EXPERIMENTAL RESULTS

We present experimental results in two parts in this section.
In the first part, we study the relationship between the frame-
level and the sequence-level quality indices to justify two
items: 1) the assumption that the sequence-level MOS can be
used to approximate the frame-level MOS, and 2) the adop-
tion of simple averaging as the temporal pooling method in
EVQA.

Relationship between Frame-Level and Sequence-
Level MOS Values. The frame-to-frame quality level is
assumed to be stable for a short period if no scene change
occurs. To verify this assumption, we plot the predicted
frame-level MOS as a function of the frame index for the BC
(Birds in Cage) sequence coded under ”good” quality in the
MCL-V quality database in Fig. 5. We see that the predicted
frame-level MOS is nearly constant.

Fig. 5: The predicted frame-level MOS value is plotted as a
function of the frame index for the BC sequence coded under
”good” quality, where predicted sequence-level MOS is 6.81
by simple averaging while the true MOS value is 7.06.

The MCL-V video quality database consists of 12 se-
quences with five quality levels caused by different coding
bitrates. We show the mean (µ) and the standard deviation
(σ) of the predictive frame-level MOS values for all of them,
in four quality levels (good, fair, poor and bad) in Table
1. The first column is the acronym for the title of each se-
quence. When the standard deviation value is low, it means
that the frame-level MOS is nearly a constant. There are
several sequences with larger standard deviation values such
as DK (Dance Kiss), EA (El Fuente A), EB (El Fuente B),
FB (Fox Bird) and TN (Tennis). These sequences were shot
with more complex camera-object relative motion; thus they
deviate slightly from the homogeneous frame-level MOS
assumption.

To examine such a deviation in detail, we plot the pre-
dicted frame-level MOS as a function of the frame index for
the DK sequence coded under ”good” quality in the MCL-V
quality database in Fig. 6. We do observe the fluctuation of
the predicted frame-level MOS values between frames 45-90
caused by camera-object relative motion. However, the pre-
dicted sequence-level MOS (6.48) is still close to its ground



Table 1: Mean and standard deviation of frame scores with
compression distortion in MCL-V

Qual. Level Good Fair Poor Bad
Seq. Title µ σ µ σ µ σ µ σ

BB 6.17 0.43 4.92 0.58 2.97 0.67 1.82 1.53
BC 6.81 0.09 5.79 0.59 2.69 0.59 0.71 0.26
BQ 6.88 0.19 6.42 0.52 3.58 0.55 1.80 0.64
CR 6.76 0.50 4.50 0.41 3.22 0.42 1.29 0.64
DK 6.48 1.05 5.42 1.88 2.74 1.65 0.42 1.72
EA 6.64 0.82 4.37 0.92 1.72 0.70 0.29 0.06
EB 4.92 0.92 3.48 1.18 1.52 0.68 1.76 0.79
KM 6.24 0.50 5.00 0.90 2.81 0.71 1.05 0.52
FB 6.00 0.72 3.57 1.08 1.37 0.89 1.43 1.26
OT 6.55 0.24 6.34 0.19 2.80 0.49 0.73 0.28
SK 6.75 0.08 5.34 0.52 3.35 0.42 0.75 0.36
TN 6.32 0.47 4.82 0.58 4.12 0.69 1.29 0.84

truth (6.63).

Fig. 6: The predicted frame-level MOS value is plotted as a
function of the frame index for the DK sequence coded under
”good” quality, where predicted sequence-level MOS is 6.48
by simple averaging while the true MOS value is 6.63.

Performance Comparison of VQA Indices. The per-
formance of the proposed EVQA method is evaluated on the
MCL-V database [13] and the coding distortion of the LIVE
video database [12]. We follow the validation process pro-
posed by VQEG in [21]. First, IQA index scores [16, 2, 3, 4,
22, 17, 23, 18] are mapped by the logistic function given in
Eq. 4. Then, we consider three commonly used performance
measures: 1) the Pearson correlation coefficient (PCC), 2) the
Spearman rank-order correlation coefficient (SROCC), and 3)
the root mean squared error (RMSE). PCC computes the cor-
relation between the true and predicted MOS values. SROCC
measures prediction monotonicity. RMSE calculates the error
between the true and predicted MOS values.

We adopt the 10-fold cross-validation strategy to select
training and testing sets in the experiments. The performance
of EVQA is compared with several benchmarking IQA and
VQA indices. If an IQA index is used, its simple averag-
ing is adopted to yield the final sequence-level MOS value.
PCC, SROCC and RMSE results against the LIVE and the
MCL-V databases are shown in Tables 2 and 3, respectively.
Clearly, EVQA outperforms all other indices in every perfor-
mance measure in both databases.

Table 2: Performance comparison of video quality indices for
video clips in the LIVE video quality database with compres-
sion distortion (H.264 and MPEG-2).

PCC SROCC RMSE
PSNR 0.478 0.449 9.034
VIF [3] 0.600 0.607 8.236
MSSIM [17] 0.591 0.692 8.294
FSIM [4] 0.634 0.698 7.955
GSM [18] 0.614 0.658 8.117
ST-MAD [14] 0.838 0.825 5.607
VADM [5] 0.847 0.850 5.469
EVQA 0.934 0.926 3.664

Table 3: Performance comparison of video quality indices for
video clips in the MCL-V video quality database.

PCC SROCC RMSE
PSNR 0.476 0.426 1.984
VIF [3] 0.660 0.655 1.666
MSSIM [17] 0.621 0.623 1.740
FSIM [4] 0.755 0.747 1.455
GSM [18] 0.709 0.711 1.565
ST-MAD [14] 0.634 0.623 1.714
VADM [5] 0.742 0.752 1.489
FVQA [11] 0.945 0.932 0.727
EVQA 0.956 0.947 0.652

Fig. 7 shows the scatter plots of four leading methods in
Table 3, where each dot gives the predicted MOS value and
the actual MOS value in its x-coordinate and y-coordinate,
respectively, for each test sequence in the MCL-V database.
The red dash line indicates the optimal regression curve for
these points. The ideal case is a straight line starting from
zero along either the positive or the negative 45-degree di-
rection with little deviation. The ST-MAD [14] regression
curve is not straight while its data points are too spread out.
The VADM [5] has a more straight regression line, yet its
data points are still quite spread out. In contrast, data points
in FVQA [11] and EVQA are much closer to their regres-
sion lines. Furthermore, the regression line of EVQA is more
straight than that of FVQA.

5. CONCLUSION AND FUTURE WORK

A new VQA index called EVQA was proposed to assess
the quality of streaming video. Under the quasi-stationary
assumption, the MOS value of a short video clip can be
approximated by the running average of the corresponding
MOS of each frame in that clip. In this way, we convert
the sequence-level VQA problem to the frame-level IQA
problem. The frame-level IQA problem fits the learning
framework better due to the existence of a larger amount of
training samples. The frame space partitioning and IQA index
fusion techniques were adopted to enhance the performance
of frame-level quality prediction.

The length of a streaming video program can be quite



(a) STMAD [14] (b) VADM [5] (c) FVQA [11] (d) EVQA

Fig. 7: Scatter plots and their regression curves for all sequences in the MCL-V database using (a) ST-MAD, (b) VADM, (c)
FVQA and (d) EVQA indices.

long, and it will contain various scenes with scene changes
in between. In practice, we have to divide one long video
sequence into homogeneous segments and perform VQA on
each segment. Thus, the final VQA index should be a func-
tion of time. The segmentation of a long video program into
proper units that have a constant VQA value is under our cur-
rent investigation.
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