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Abstract— We present a novel multistage learning system,
called grouping estimation fusion (GEF), for human age
estimation via facial images. The GEF consists of three stages:
1) age grouping; 2) age estimation within age groups; and
3) decision fusion for final age estimation. In the first stage,
faces are classified into different groups, where each group
has a different age range. In the second stage, three methods
are adopted to extract global features from the whole face
and local features from facial components (e.g., eyes, nose, and
mouth). Each global or local feature is individually utilized
for age estimation in each group. Thus, several decisions (i.e.,
estimation results) are derived. In the third stage, we obtain
the final estimated age by fusing the diverse decisions from
the second stage. To create diverse decisions for fusion, we
investigate multiple age grouping systems in the first stage,
where each system has a different number of groups and
different age ranges. Thus, various decisions can be made from
the second stage, and will be delivered to the third stage for
fusion. Totally, six fusion schemes (i.e., intra-system fusion, inter-
system fusion, intra-inter fusion, inter-intra fusion, maximum-
diversity fusion, and composite fusion) are developed and
compared. The performance of the GEF system is evaluated on
the Face and Gesture Recognition Research Network and the
MORPH-II databases, and it outperforms the existing state-of-
the-art age estimation methods by a significant margin. That
is, the mean absolute errors of age estimation are reduced
from 4.48 to 2.81 years on FG-NET and 3.82 to 2.97 years
on MORPH-II.

Index Terms— Age estimation, age group classification, deci-
sion fusion, feature extraction, feature selection.

I. INTRODUCTION

IN THE past few years, human facial age estimation has
drawn a lot of attention in the computer vision community

because of its important applications in age-based image
retrieval [1], internet access control, security control and
surveillance [2], [3], biometrics [2], [4], [5], human-computer
interaction (HCI) [6], [7], and electronic customer relationship
management (ECRM) [2].

Estimating human age from a facial image requires a great
amount of information from the input image. This kind of
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information is often called facial aging features. Extraction of
these features is important since the performance of an age
estimation system will heavily rely on the quality of extracted
features [2]. Lots of research on age estimation has been con-
ducted towards aging feature extraction. Examples include: the
active appearance model (AAM) [8], age manifold [9], [10],
AGing pattern Subspace (AGES) [6], [11], anthropometric
model [12], biologically inspired features (BIF) [13], and
patch-based appearance model [14], [15].

Another aspect for age estimation is to build a reliable
age prediction system (i.e., age estimator) based on extracted
features. The age estimator can use a machine learning
approach to train a model for extracted features and make
age prediction for query faces with the trained model.
Generally speaking, age estimation can be viewed as a multi-
class classification problem [1], [11], [16], [17], a regression
problem [9], [10], [13], [15], [18]–[22], or a composite of
these two [16], [23], [24]. From a different perspective, facial
aging can also be treated as an ordinal process. For instance,
the face of a 2-year-old child should be more closely related
to the face of a 3-year-old child than the face of a 15-year-old
teenager. Thus, age estimation can also be treated as a ranking
problem [25]–[27].

Although many approaches have been presented to deal with
age estimation, most of them directly estimate an age from a
very wide age range. However, it would be more meaningful to
estimate an age from a narrower age range. Some hierarchical
methods [28], [29] have shown a good performance for age
estimation. For example, estimating an age in the age range
of 15 to 20 is easier than estimating an age in the age range
of 0 to 60. The task of age grouping (or age group
classification) is to classify facial images into different age
groups. With higher accuracy in age grouping, the age esti-
mation error in each age group is expected to be lower.
Being motivated by the above observation, we present a
novel age estimation framework, called Grouping-Estimation-
Fusion (GEF) system, which consists of three main stages:
1) age grouping, 2) age estimation within age groups,
and 3) fusion of decisions.

The main contributions of this work are: 1) diverse decisions
(i.e., different age estimation results) are generated by creating
multiple age grouping systems; 2) we extensively demon-
strate that the age estimation accuracy is closely dependent
on the age grouping; 3) a systematic way of measuring
the diversity between decisions for intra-system and inter-
system is proposed; and 4) six decision fusion schemes are
presented to perform age estimation. The performance of our
proposed solution is evaluated on the FG-NET [30] and the
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MORPH-II [31] databases, and it outperforms existing
state-of-the-art age estimation methods by a significant margin.
That is, the mean absolute errors (MAEs) of age estimation
can be reduced from 4.48 to 2.81 years on FG-NET and
3.82 to 2.97 years on MORPH-II.

Fusion is a widely used technology in biometrics, and it
is the most common to fuse features from data of multi-
modalities (called the data fusion approach). It is also common
to fuse multiple decisions to get a more robust one. One
famous example is the ensemble learner [32]. We follow the
ensemble learner methodology in this work. Its main novelty
lies in the development of different age grouping schemes so
as to allow a diversified set of decisions for decision fusion.
Each grouping scheme leads to a weak learner (i.e., an age
regressor). The fusion of estimated ages from multiple age
regressors results in a more accurate result. The performance
improvement is also significant compared with other state-of-
the-art methods. The noticeable performance improvement is
attributed to ensemble learning. To the best of our knowledge,
this is the first work applying ensemble learning to the solution
of the age estimation problem. Although the high level concept
of ensemble learning is not new, we feel that the realization of
the high level concept and a clear demonstration of its superior
performance in the context of a certain real world problem are
still valuable contributions.

The rest of this paper is organized as follows. Related
previous work is briefly reviewed in Section II. An overview
of the proposed GEF age estimation scheme is presented
in Section III. The age grouping method is introduced in
Section IV. Age estimation within each age group is detailed
in Section V. Analysis of diversity, designs of fusion schemes,
and decision selection algorithms used in our fusion schemes
are discussed in Section VI. Experimental results are shown
in Section VII. Finally, concluding remarks and future work
are given in Section VIII.

II. REVIEW OF PREVIOUS WORK

In recent years, facial age grouping and facial age
estimation problems have been extensively studied. A lot
of approaches have been proposed for these two research
topics. We briefly review age grouping in Section II.A and
age estimation in Section II.B.

A. Age Grouping

Age grouping (i.e., age group classification) was first
conducted by Kwon and da Vitoria Lobo in [12]. They
categorized facial images into three age groups: babies, young
adults, and senior adults. They computed six ratios of distances
between primary components (e.g., eyes, noses, mouth, etc.)
and separated babies from the other two groups. Then, wrin-
kles on specific areas of a face were located using snakes, and
wrinkle indices were used to distinguish senior adults from
young adults and babies. There were only 47 images in the
experimental dataset, and the correct classification rate for the
baby group was below 68%.

Horng et al. [33] proposed a system that classifies faces with
three steps: primary components detection, feature extraction,
and age classification. They classified 230 facial images into

four age groups: babies, young, middle-aged and senior adults.
They first used the Sobel edge operator [34] and region
labeling to locate the positions of eyes, noses, and mouths.
Then, two geometric features and three wrinkle features were
extracted. Finally, two back-propagation neural networks were
constructed for classification. The correct classification rate
was 81.58%. The facial age groups were subjectively assigned
(i.e., not actual ages) in their experiments.

Thukral et al. [35] extracted geometric features from faces
and fused the results from five classifiers: ν-SVC [36], partial
least squares (PLS) [37], Fisher linear discriminant (FLD),
Naïve Bayes, and k-nearest neighbor (KNN) [34], by adopting
the majority decision rule. The final rate was 70.04% for three
age groups (namely, 0-15, 15-30, and 30+).

Gunay and Nabiyev [38] proposed an automatic age
classification system based on local binary patterns (LBP) [39]
for face description. Faces were divided into small regions
from which the LBP histograms were extracted and concate-
nated into a feature vector. For every new face presented to
the system, spatial LBP histograms were produced and used
to classify the image into one of six age groups: 10±5, 20±5,
30±5, 40±5, 50±5, 60±5. The minimum distance, the nearest
neighbor and the k-nearest neighbor classifiers were used.
Their system gave a classification rate of 80%.

Hajizadeh and Ebrahimnezhad [40] used histograms of
oriented gradients (HOG) [41] as the facial feature. HOG
features were computed in several regions and these regional
features were concatenated to construct a feature vector for
each face. A probabilistic neural network (PNN) classifier was
used to classify facial images into one of four age groups. The
classification rate was 87.25%.

Liu et al. [42] proposed a structured fusion method for age
group classification by building a region of certainty (ROC)
to connect the uncertainty-driven shape features with selected
surface features. In the first stage, two shape features
are designed to determine the certainty of a face and
classify it. In the second stage, the gradient orientation
pyramid (GOP) [43] features are selected by a statistical
method and then combined with an SVM classifier to perform
age grouping. Their method was tested in classifying faces into
three age groups, and the classification accuracy of 95.1% was
reported.

Sai et al. [44] considered age grouping with four pre-defined
age groups. The Local Gabor Binary Pattern (LGBP) [45],
BIF and Gabor features were first extracted from face images
and, then, a machine learning method, called the Extreme
Learning Machine (ELM) [46], was adopted for age grouping.
They conducted experiments on three aging datasets (called
datasets I, II and III) to demonstrate the effectiveness and
robustness of their proposed method, where each tested
dataset contains only a fraction of the datasets. For example,
dataset III was formed by selecting 1,000 images from
MORPH-II. The reported accuracy was around 70%.

B. Age Estimation

Lanitis et al. [1] used the active appearance models (AAMs)
by combining shape and appearance facial features. Age
estimation was treated as a classification problem and solved
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by the shortest distance classifier and neural networks. They
differentiated age-specific and appearance-specific estimation
problems. Personalized age estimation was introduced to
cluster similar faces before classification.

Geng et al. [6], [11] proposed an automatic age estimation
method named AGES (AGing pattErn Subspace), which mod-
eled the long-term aging process of a person (i.e., a sequence
of a person’s face images), and estimated the person’s age
by minimizing the reconstruction error. However, the facial
features of the same person could be similar in different ages.

Guo et al. [13] extracted BIF for each face, applied the
principal component analysis (PCA) [47] for feature dimen-
sionality reduction. They used classification and regression
approaches to age estimation.

Yan et al. [15] proposed a patch-based regression method
for age estimation, where the regression error was minimized
by a three-complementary-stage procedure. First, each image
was encoded as an ensemble of orderless coordinate patches
of GMM (Gaussian Mixture Model) distribution. Then, the
patch-kernel was designed for characterizing the
Kullback-Leibler divergence between the derived models for
any two images, and its discriminating power was further
enhanced by a weak learning process, called inter-modality
similarity synchronization. Finally, kernel regression was
employed for ultimate human age estimation.

Zhang and Yeung [21] proposed a multi-task warped
Gaussian process (MTWGP) model for age estimation. Age
estimation was formulated as a multi-task regression problem
where each learning task was to estimate the age function for
each person. Besides modeling common features shared by
different tasks (persons), MTWGP also allowed task-specific
(person-specific) features to be learned automatically.

Chang et al. [25] proposed an ordinal hyperplane
ranking algorithm (OHRank) using the relative order informa-
tion among age labels in a database. Each ordinal hyperplane
separated all facial images into two groups by the relative
order, and a cost-sensitive property was used to find a better
hyperplane by minimizing the classification cost. Human age
was then inferred by aggregating a set of preferences from
multiple ordinal hyperplanes.

Guo and Mu [18] used the kernel partial least
squares (KPLS) regression for age estimation. It has three
advantages: 1) the KPLS can reduce feature dimensionality
and learn the aging function simultaneously in a single
learning framework; 2) the KPLS can find a small number of
latent variables (e.g., 20) to project thousands of features into
a low-dimensional subspace, which is attractive in real-time
applications; and 3) the KPLS has an output vector consisting
of multiple labels to solve several related problems (e.g., age
estimation, gender classification, and ethnicity estimation)
together.

Li et al. [48] considered temporally ordinal and continuous
characteristics of the aging process and proposed to learn
ordinal discriminative facial features. Their method aimed at
preserving the local manifold structure of facial images while
keeping the ordinal information among aging faces. The
two factors were formulated as a unified optimization problem,
and a solution was presented.

Several prior age estimation work exploited the idea
of “grouping followed by estimation”. For example,
Guo et al. [49] used the biologically inspired features (BIF)
with manifold learning for face representation. The gender
(female, male) and age groups (young, adult, senior) were
classified jointly to result in 6 groups (f-y, f-a, f-s, m-y,
m-a, m-s) and age estimation was conducted within each of
6 groups. Guo et al. [16] adopted a locally adjusted robust
regressor to find the range of ages and, then, used classification
to determine the age within a range. Choi et al. [29] used
fused global and local features to perform classification within
4 age groups, where each group was overlapped with its
adjacent groups, and age estimation was conducted within
each age group. Dibeklioğlu et al. [28] applied dimensionality
reduction to appearance features to get combined features, and
used them to classify faces into 7 age groups. Then, the age
was predicted in each group by trained regressors.

Panis et al. [50] presented a survey on facial aging research
in the past decade. It discussed the main methodologies,
a list of benchmark results and future research trends and
requirements. Chang and Chen [51] proposed a cost-sensitive
ordinal hyperplanes ranking algorithm for age estimation.
They adopted the scattering transform to extract facial features,
obtained the age rank by aggregating a series of binary
classification results, and conducted an analysis on the cost
of each individual binary classifier. Dibeklioglu et al. [52]
proposed to combine facial dynamics and appearance for age
estimation. The dynamic features were derived from facial
expressions and fused with the appearance features to train the
Support Vector Machine (SVM) classifiers/regressors. They
analyzed the discrimination power of smile dynamics for age
estimation and showed that smile dynamics can improve the
estimation accuracy.

The aforementioned results are categorized in Table I. The
difference between these methods and ours is explained below.
We first establish multiple age grouping systems (not just one
system), where the number of age groups and age ranges can
vary. For each grouped system, a trained classifier is used to
predict age groups and a regressor is trained to estimate age
within each group. This strategy overcomes errors introduced
in group’s boundary regions and offers the diversity gain.
The estimated ages for a face from different systems are
fused to get a final decision to exploit this diversity gain.
Consequently, our framework is a three-level hierarchical age
estimation system, which includes grouping, estimation and
fusion. These three levels are cascaded into one full GEF
system. In contrast, all other age estimation systems are either
one-level (estimation only) or two-level (grouping followed by
estimation).

III. OVERVIEW OF PROPOSED GEF SYSTEM

The proposed GEF age estimation scheme consists of three
stages. In the first stage, we adopt the age grouping method
in [42] to classify face images into different age groups. The
entire age range is divided into several non-overlapping ranges
and each age group has a different range. Then, the gradient
orientation pyramid (GOP) [43] is adopted to represent overall
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TABLE I

CATEGORIZATION OF SOME AGE GROUPING AND AGE ESTIMATION METHODS, *HYBRID=SHAPE+SURFACE,

**HIERARCHICAL=GROUPING+ESTIMATION

facial features. To further increase the discriminating ability of
the feature space, the analysis of variance (ANOVA) [53] is
employed to select the more discriminative features from the
GOP feature vector, which significantly reduces the dimen-
sionality of the GOP feature vector. Then, the linear support
vector machine (SVM) [54] is adopted to learn a model and
classify faces into age groups.

In the second stage, an exact age for each face is estimated
within its group range. Here, both local and global features
are used. Local features are obtained by extracting features
from local facial areas. A cascaded object detector using
the Viola-Jones [55] algorithm is adopted to detect three
facial components (eyes, nose and mouth). To compare with
other benchmarking methods fairly, we adopt three features
commonly used by others for age estimation. They are bio-
logically inspired features (BIF) [13], histograms of oriented
gradients (HOG) [41] and local binary pattern (LBP) [39].
The global features are obtained by extracting BIF, HOG,
and LBP from the whole face. Every global or local feature
(e.g., BIF_eyes or LBP_mouth) is used by the support vector
regression (SVR) [54] to predict ages for faces in each group.
At the end of this stage, decisions (i.e., estimation results)
from the system outputs are produced and they are used as
the input features to the third stage.

In the third stage, we fuse decisions obtained from the
2nd stage. To obtain a powerful fusion scheme, it is desired
to have rich diversity among decisions. To achieve this goal,
multiple age grouping systems are constructed, where each
system has a different number of age groups and different age
ranges. For example, if the entire age range is from 0 to 70,
one system could have 3 age groups: 0-10, 11-30, 31-70 while
another may have 5 groups: 0-10, 11-20, 21-30, 31-50, 51-70.
With the analysis of diversity in decisions, six efficient fusion
schemes are proposed and compared to yield the final age
estimation result.

IV. AGE GROUPING

The objective of age grouping (i.e., age group classification)
is to classify face images into different groups based on

their ages. The entire age range is divided into several
non-overlapping ranges, and each range constitutes an age
group. As discussed in [42], when the number of groups
is small (e.g., 2 or 3), both shape (geometric) and surface
(texture) features can be utilized for age grouping. However,
when the number of groups is larger (e.g., 4 or above), the
shape features do not help much in enhancing classification
accuracy. Higher accuracy in age grouping contributes to age
estimation in the 2nd stage. However, since existing features
such as BIF, HOG, and LBP, do not perform well for age
grouping in our experiments as shown in Sec. VII, we follow
a recently developed method [42] for age grouping, which is
detailed below.

A. Feature Extraction

The gradient orientation (GO) was shown to be robust
to illumination change and successfully applied to many
areas, such as disparity estimation [56], visual quality assess-
ment [57] and face recognition tasks. The facial aging features
were computed based on the gradient orientation
pyramid (GOP), which can provide the image gradient
information as well as the pyramid information. For a given
image, we first build a pyramid of this image and, then,
compute the gradients in each layer of the pyramid. Finally,
these gradients are combined together as a GOP feature
vector.

B. Feature Selection

It is desired to select features with higher discrimination
and discard features with lower discrimination. Here, we use
a statistics-based method to achieve this goal. Specifically, the
analysis of variance (ANOVA) method is used to measure
which feature has a higher discriminating power among age
groups. The detailed procedure is given in [42]. Simply
speaking, we first find the F value for each feature in the
GOP feature vector. Next, we find an Fcrit for each age
grouping system becuase Fcrit depends on the number of
groups. Finally, a feature is selected if its F is larger than Fcrit .
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Fig. 1. The age grouping system.

Fig. 2. An example of facial components detection.

In our experiments, only 10% to 20% of features are selected
from a GOP feature vector. Thus, feature dimensionality is
significantly reduced by the ANOVA method.

C. Age Classification

The support vector machine (SVM) is a widely used
machine learning tool for classification, regression, and other
learning tasks. In the age grouping stage, we use the multi-
class SVM with a linear kernel to train a model and classify
faces into different age groups. The entire age grouping
algorithm, including feature extraction, feature selection, and
age classification, is summarized in Figure 1.

V. AGE ESTIMATION WITHIN AGE GROUPS

After the age grouping process, each face is classified into
an age group, which has a defined range. The exact age
for each classified face is estimated within the defined age
range. It includes three steps: (i) facial components detection,
(ii) feature extraction from facial components, and (iii) age
estimator learning.

A. Facial Components Detection

In addition to the global facial information, we explore the
local facial information by detecting facial components and
extracting several features from the detected facial compo-
nents. In image processing, the Viola-Jones [55] algorithm is
one of the most efficient and widely used algorithms in object
detection, and it demonstrates exceptional competence in face
detection. Since the eyes, nose, and mouth are important parts
of a face, we intend to extract local aging features from
them. In this step, a cascaded object detector using the
Viola-Jones [55] algorithm is adopted to detect these three
important facial components. To increase detection accuracy,
we crop one full face image into its upper half, middle half,
and lower half regions for eyes, nose, and mouth detection,
respectively. Figure 2 gives an example of detected facial
components. The accuracy of the component detectors is given
in Table II. One advantage of using these detected facial

TABLE II

ACCURACY OF FACIAL COMPONENTS DETECTION

TABLE III

THE 12 FEATURES USED IN THE 2ND STAGE

components is the lower feature dimensionality, since the
image sizes of detected facial components are much smaller
than that of a whole face. Another advantage is richer diversity
due to more features are extracted from multiple representative
areas.

B. Global and Local Feature Extraction

Recently, the biologically inspired features (BIF) [13],
histograms of oriented gradients (HOG) [41], and local binary
pattern (LBP) [39] methods are widely used to extract facial
aging information. To compare with other benchmarking meth-
ods fairly, we adopt those features commonly used by other
methods in age estimation. That is, we extract both global and
local BIF, HOG, and LBP features. For LBP, we use a modified
one, called uniform LBP and denoted by LBPu, which has a
much lower dimension than LBP.

To obtain global features, we extract BIF, HOG, and
LBPu features from the whole face and denote them with
f1, f2 and f3, respectively. Furthermore, we extract BIF, HOG,
and LBPu features from 3 facial components to get 9 local
features and denote them with f4- f12. The 12 features are
listed in Table III. The same block size (i.e., 32×32 pixels)
is used to extract these 12 features, and the window sizes for
BIF, HOG, and LBP features are 8×8, 8×8, and 3×3 pixels,
respectively.

C. Age Estimator Learning

Each of the 12 features is used to obtain an age estima-
tor (AE). Being similar to the first stage, the SVM method
is adopted to train all age estimators (AEs) in the second
stage. After the age grouping step, each age group has its
own model trained by the SVR with a linear kernel for age
prediction. We tried a nonlinear kernel known as the radial
basis function (RBF), which is often chosen when the feature
dimension is low [58], [59], in the experiment, yet obtained
almost the same performance. Thus, the linear kernel is chosen
in this stage for its lower complexity. When an input face is
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Fig. 3. Age estimation within age groups.

classified into an age group with age interval [a, b], where
a < b, the SVR of this group will be used to predict its age
under the interval constraint. That is, the predicted age will be
lower bounded by a and upper bounded by b if the prediction
goes outside of the interval. The procedure for using SVR to
implement an age estimator is described as follows.

1) Classified Results: For an age grouping system with
m groups, each face is classified to a group with label
i , i ∈ {1, 2, . . . , m}.

2) Feature Representation: The feature vector of each face
consists of three parameters: group i , classified group ic,
and age a.

3) Scaling: Every feature in a feature vector is linearly
scaled to range [0, 1] among all faces. This is con-
ducted to avoid the dominance of attributes with a
large dynamic range over those with a smaller dynamic
range. The linear scaling operation is performed for both
training and testing data via

x = r − min(R)

max(R) − min(R)
, (1)

where x is the scaled feature, r is the raw feature,
and max(R) and min(R) specify the maximum and
minimum values of the feature range R, respectively.

4) Cross Validation: The leave-one-person-out (LOPO)
cross validation technique is used on the FG-NET data-
base. For the MORPH-II database, the same setting as
that in [18] and [60] is adopted.

5) Training: The training feature vectors are divided into
m groups based on their first label i (e.g., a feature vector
is in group i if it has a label i ). The feature vectors of
each group are used to train a model (i.e., age estimator).
Totally m age estimators AEi (i = 1, . . . , m) will be
trained.

6) Testing: A testing feature vector is first assigned
to an age estimator based on its second label ic

(ic = 1, . . . , m). If ic = 1, then the age of the
testing feature vector will be predicted by the age
estimator AE1, and the predicted age will be confined
to the age range of group 1.

7) The SVR with a linear kernel is used in training and
testing.

The procedure of age estimation within an age group is
illustrated in Figure 3.

Fig. 4. The m-group age estimation system.

VI. FUSION OF DECISIONS

To further improve the performance, we investigate
several fusion schemes based on the decisions (i.e., estimation
results from the second stage) in the third stage. Six
fusion schemes are compared: intrA-system Fusion (AF),
intEr-system Fusion (EF), intrA-intEr Fusion (AEF),
intEr-intrA Fusion (EAF), Maximum-Diversity Fusion (MDF),
and Composite Fusion (CF). Here, we call the m-group age
estimation system simply a system, which is a combination
of the first and the second stages as shown in Figure 4.

In FG-NET, we investigate m = 3, 4, 5, 6, 7, 8, 9, 10-group
age estimation systems, and each system has 12 decisions
(i.e., 12 estimation results from 12 AEs). Totally, 96 decisions
can be used for fusion. In MORPH-II, due to lack of age
0 to 15, only m = 2, 3, 4, 5, 6, 7-group systems are
investigated. Each system has 12 decisions, and 72 decisions
can be used for fusion. In this section, we will use FG-NET
as an example to explain the proposed fusion schemes.

In the fusion stage, prediction results obtained from the
second stage are treated as input features and used to train
another SVR function. Age estimation is realized through a
similar procedure in the second stage (Steps 2-7 in an age
estimator training). In this stage, we propose two decision
selection algorithms for six fusion schemes to find a deci-
sion subset, which will demonstrate a competitive result as
compared with the optimal subset obtained by the exhaustive
search.

A. Diversity Analysis

The goal of analyzing the diversity between different
decisions is to find out how to fuse them in a more effi-
cient way for performance improvement. Since each estimator
would make different errors on different faces, fusion of
these estimators can reduce the total estimation error. For this
reason, it is desired to fuse a set of estimators whose decisions
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TABLE IV

CORRELATION ( p) BETWEEN ANY TWO DECISIONS d1 − d12 IN THE 3-GROUP SYSTEM (s3), MEAN CORR = 0.9333, ON FG-NET

TABLE V

CORRELATION ( p) BETWEEN ANY TWO m-GROUP SYSTEMS (s3 − s10) FOR DECISION d1 , MEAN CORR = 0.7777, ON FG-NET

are different from those of others. Some quantitative metric is
needed to measure the diversity between pair-wise decisions
of estimators. Here, we propose to use Pearson’s linear
correlation coefficient p to measure the diversity between pair-
wise decisions (d1, . . . , d12), where 0 ≤ p ≤ 1. The maximum
diversity is observed when p = 0, indicating the two decisions
are uncorrelated.

Table IV shows the intra correlation pintra between any two
decisions (s3_di , s3_d j ) for 3-group system s3. Table V shows
the inter correlation pinter between any two systems’ decisions
(sm_d1, sn_d1) for decision d1. It is clear that the intra-system
correlation pintra is higher than the inter-system correlation
pinter , which means intra-system diversity Divintra is lower
than inter-system diversity Divinter . Thus, it is expected that
inter-system fusion will offer greater performance gain than
intra-system fusion. It is verified by experimental results that
the performance of inter-system fusion (indicated by the MAE
in Table XV) is truly better than that of intra-system fusion
(indicated by the MAE in Table XII).

B. Intra-System Fusion (AF)

For each m-group age estimation system, the 12 AEs
will deliver 12 different decisions d1, . . . , d12, and there
are 212 possible ways of selection for fusion. A systematic
algorithm is needed to find a proper subset from 12 decisions
d1, . . . , d12. We propose to use the sequential forward selec-
tion (SFS) algorithm to achieve this goal. The intra-system
fusion scheme is illustrated in Figure 5.

First, given a decision set D = {d j | j = 1, . . . , 12}, we want
to find a subset DN = {di1, di2, . . . , di N }, where N ≤ 12, to
optimize the following objective function

J (DN ) = M AE( f (DN ), AGT ), (2)

Fig. 5. The intra-system fusion (AF) scheme.

where M AE , which is defined in (3) in Sec. VII-D, is the mean
absolute error between the estimated age, f (DN ), and the
ground truth age, AGT . The objective function evaluates fea-
ture subsets by their estimation accuracy with cross validation
to avoid overfitting. The Sequential Forward Selection (SFS)
is one of the simplest greedy search algorithms to achieve the
above goal. Starting from a decision set Dk (being empty at
the start), we sequentially add one decision d∗ that results in
the lowest objective function J (Dk + d∗) between the ground
truth age and the estimated age, f (Dk + d∗), to the set when
being combined with the decision set, Dk , that have been
selected. Algorithm 1 is given in the next page for clarity.

An example of intra-system fusion is given below. Consider
the 3-group age estimation system and we attempt to find a
subset from 12 decisions (s3_d j , j = 1, . . . , 12) using the SFS
algorithm to obtain the best performance (with the smallest
MAE). First, each decision {d j } for j = 1, . . . , 12 is selected
for MAE performance evaluation. If d7 provides the smallest
MAE (denoted as M AE1), then the decision subset, DS3, is
updated to {d7}. Next, every decision set (d7, d j ) for j �= 7 is
selected for MAE performance evaluation. If (d7, d3) provides
the smallest MAE (denoted as M AE2), which is also smaller
than M AE1, then the decision subset is updated to
DS3 = {d7, d3}. After that, every decision set (d7, d3, d j ) for
j �= 3, 7, is selected for performance evaluation. If (d7, d3, d8)
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Algorithm 1 Sequential Forward Selection (SFS)
Input: a decision set D = {d j | j = 1, . . . , 12}.
1) Start with the empty decision set D0 = {�}.
2) Select the next best decision.

d∗ = arg min
d∈D−Dk

J (Dk + d)

3) Update

Dk+1 = Dk + d∗;
k = k + 1.

4) Go to 2).
Output: a subset DN = {di1, di2, . . . , di N }.

Fig. 6. The inter-system fusion (EF) scheme.

provides the smallest MAE (denoted as M AE3), which is
not smaller than M AE2, then the decision subset will not be
updated and the final decision subset is DS3 = {d7, d3}.

C. Inter-System Fusion (EF)

To investigate the effectiveness of the inter-system fusion,
we focus on one specific decision (e.g., d1) from 12 decisions
and select it from 8 systems (s3, s4, . . . , s10) in FG-NET
(or 6 systems in MORPH-II) for fusion, where sm represents
the m-group age estimation system. To select good candidates,
we could adopt the SFS algorithm to find a good subset
from 8 systems sm (m = 3, 4, . . . , 10). However, different
systems have different age ranges for their age groups, and
we expect that the same decisions from different systems
(e.g., sm_d1 for m = 3, 4, . . . , 10) would exhibit higher
diversity than different decisions from the same system (e.g.,
s3_d j for j = 1, 2, . . . , 12). Thus, we propose to use the
Sequential Backward Selection (SBS) algorithm to find a
subset from 8 systems sm (m = 3, 4, . . . , 10) to achieve the
minimum MAE. The inter-system fusion scheme is illustrated
in Figure 6.

SBS works in the opposite direction of SFS. First, SBS
starts with a full system set S = {s3, s4, s5, s6, s7, s8, s9, s10},
and it sequentially removes a system s∗ that least reduces the
value of the objective function J (Sk − s∗). It stops until a
subset SN = {si1, si2, . . . , si N }, where N ≤ 8, optimizes the
objective function. The SBS algorithm (Algorithm 2) is shown
at the top of this page.

For given decision d1, SBS first evaluates the MAE of the
fusion of the full system set S = {s3, s4, s5, s6, s7, s8, s9, s10},
which is denoted by M AE0. Then, it removes one system
and evaluates MAE for the fusion of 7 systems, where the
fusion of 7 systems (with s10 removed) leads to the smallest
MAE as denoted by M AE1. Then, the system subset is
updated to SS1 = {s3, s4, s5, s6, s7, s8, s9} if M AE1 is smaller

Algorithm 2 Sequential Backward Selection (SBS)
Input: a system set S = {s j | j = 3, . . . , 10}.
1) Start with the full system set S0 = {�}.
2) Remove the worst system.

s∗ = arg min
s∈Sk

J (Sk − s)

3) Update

Sk+1 = Sk − s∗;
k = k + 1.

4) Go to 2).
Output: a subset SN = {si1, si2, . . . , si N }.

Fig. 7. The intra-inter fusion (AEF) scheme.

than M AE0. The update stops if M AEi+1 is equal or greater
than M AEi .

D. Intra-Inter Fusion (AEF)

Through the intra-system fusion, each system sm has its
best decision subset DSm selected, where m = 3, . . . , 10.
In addition to the intra-system information, we would like to
add the inter-system information. The basic idea of intra-inter
fusion is described below.

Given decision subsets {DSm , m = 3, . . . , 10} obtained
from intra-system fusion, we perform the fusion on decision
subsets from all systems using the SBS algorithm. First, the
full set {DS3, . . . , DS10} is evaluated with M AE0. Then, it
removes one DSm and evaluates M AE1 for fusion of the
remaining 7 DSn(n �= m). If M AE1 is smaller than M AE0,
the DS subset is updated. If M AE1 is not smaller than M AE0,
the DS subset is not updated. The same procedure continues
until M AEi+1 is equal or greater than M AEi . The intra-inter
fusion scheme is illustrated in Figure 7.

E. Inter-Intra Fusion (EAF)

After the inter-system fusion, each decision d j has its
best system subset SSj selected, where j = 1, . . . , 12.
Besides the inter-system information, we would like to add the
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Fig. 8. The inter-intra fusion (EAF) scheme.

intra-system information. The procedure of the inter-intra
fusion is described below.

Given system subsets {SSj , j = 1, . . . , 12} obtained from
the inter-system fusion, the SFS algorithm is used for selecting
SSj to cover the intra-system information. First, each SSj is
selected for M AE1 evaluation. The SS subset is updated to
{SSa} if SSa has the minimum M AE1. Then, each {SSa, SSj }
(for j = 1, . . . , 12 & j �= a) is evaluated for M AE2.
If {SSa, SSb} has the minimum M AE2 and M AE2 is smaller
than M AE1, the SS subset is updated to {SSa, SSb}.
Otherwise, the SS subset is not updated. The same procedure
continues until M AEi+1 is equal or greater than M AEi . The
inter-intra fusion scheme is illustrated in Figure 8.

F. Maximum-Diversity Fusion (MDF)

Four fusion schemes mentioned in Secs. VI.B-E are
mainly structured in one direction and/or the other direction.
Besides, we explore two more fusion schemes that consider
two directions at the same time. The first two-directional
fusion scheme, called the maximum diversity fusion (MDF),
is described below.

Given a full set M = {sn_di |n = 3, . . . , 10,
i = 1, . . . , 12} = {m j | j = 1, . . . , 96}, where m j represents
sn_di , we find a subset MN = {mi1, mi2, . . . , mi N } with
N ≤ 96 that optimizes the performance based on the diversity.
Initially, a decision with the minimum MAE is selected as the
first decision set M1. Among the remaining decisions that are
not yet selected, a decision m will be selected and added to
the previous updated decision set Mk , if it offers the maximum
diversity (i.e., minimum correlation) with the previous decision
set, Mk . We use DI V (Mk , m) to denote the diversity between
the decision set, Mk , and decision m. The MDF algorithm
(Algorithm 3) is shown at the top of this page.

G. Composite Fusion (CF)

The second two-directional fusion scheme is called the
composite fusion (CF). To carry out the decision selection
in CF, we consider all of 96 decisions together and use
the SFS or the SBS algorithm to find the best subset of

Algorithm 3 Maximum-Diversity Fusion (MDF)
Input: a full decision set M = {m j | j = 1, . . . , 96}.
1) Start with the best decision set M1 = {m1}.
2) Find the decision having the maximum diversity with Mk .

m∗ = arg max
m∈M−Mk

DI V (Mk , m)

3) Update

Mk+1 = Mk + m∗;
k = k + 1.

4) If J (Mk+1) ≤ J (Mk), then go to 2).
5) If J (Mk+1) > J (Mk), then stop.
Output: a subset MN = {mi1, mi2, . . . , mi N }.

Algorithm 4 Composite Fusion (CF)
Input: a full decision set C = {c j | j = 1, . . . , 96}.
1) Start with the empty decision set C0 = {�}.
2) Find the next best decision.

c∗ = arg min
c∈C−Ck

J (Ck + c)

3) Update

Ck+1 = Ck + C∗;
k = k + 1.

4) If J (Ck+1) ≤ J (Ck), then go to 2).
5) If J (Ck+1) > J (Ck), then stop.
Output: a subset CN = {ci1, ci2, . . . , ci N }.

96 decisions. Since most of decisions have low diversity
with others, it is less efficient to do selection using the SBS
algorithm since its begins with the full set. For this reason,
we adopt the SFS algorithm for decision selection in CF. For
a given full set C = {sn_di |n = 3, . . . , 10, i = 1, . . . , 12}
= {c j | j = 1, . . . , 96}, where c j represents sn_di , we find a
subset CN = {ci1, ci2, . . . , ci N } with N ≤ 96 that optimizes
the objective function J (Ck) given in (2). The CF algorithm
(Algorithm 4) is shown at the top of this page.

The conceptual diagram of six fusion schemes is shown
in Figure 9, where AF, EF, MDF, and CF are 1-level fusion
schemes while AEF and EAF are 2-level fusion schemes.
The main differences among AF, EF, AEF, and EAF are
summarized below. The intra-fusion is to fuse decisions for a
given age group with different features for final prediction. The
inter-fusion is to fuse decisions from different age grouping
systems with the same feature for final prediction. The intra-
inter fusion is to determine a decision subset for each grouping
system (i.e., each system has its needed features) and, then,
select some of the decision subsets. The inter-intra fusion is
to find a system subset for each feature and, then, select some
of the system subsets. The terms, intra and inter, are used to
make a distinction among the proposed fusion methods. For
instance, inter-intra means that the inter-group fusion is con-
ducted first and the intra-group fusion next. They simply refer
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Fig. 9. The conceptual diagram of six fusion schemes.

Fig. 10. Some facial images from the FG-NET (top) and MORPH-II (bottom) databases.

to the fusion order, i.e., which fusion scheme is performed first.
We will show the performance of these six fusion schemes
in Section VII.E.

VII. EXPERIMENTAL RESULTS

A. Database

Two databases used to evaluate the performance of the
proposed framework are the FG-NET aging database [30] and
MORPH database [31] (MORPH-II is used in our study). The
FG-NET database is the most frequently used database for
age estimation research since it is publicly available and free.
The FG-NET has 1,002 color or gray facial images composed
of 82 Europeans with a wide age range from 0 to 69 years
old. Each individual has 6-18 images labeled with the ground
truth ages. The MORPH-II database contains 55,134 images
from 13,618 individuals with ages ranging from 16 to 77.
The MORPH-II is a multi-racial database, including African,
European, Asian, Hispanic and others. Each individual has
about 4 images labeled with the ground truth ages. Some
sample images from both databases are shown in Figure 10.
The age range distribution of face images is listed in Table VI.
The face image is first rotated until the line between two eyes
is parallel to the horizontal direction. Then, the facial region
is cropped and resized to 180×150 pixels before the age

TABLE VI

AGE RANGE DISTRIBUTION IN THE FG-NET

AND MORPH-II DATABASES

estimation procedure. Only gray level images are used to
extract the BIF, HOG and LBPu global and local features.

B. Experimental Setup

To ensure the test data of one stage is not included in
the training data of another stage, the same cross valida-
tion is carried out at all stages. To compare with other
methods, we follow the same experimental settings as others
for both databases. The leave-one-person-out (LOPO) cross
validation is used on the FG-NET database. The experimental
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TABLE VII

AGE RANGES IN THE m-GROUP AGE SYSTEMS FOR THE FG-NET DATABASE AND THE AGE GROUPING RESULTS (m = NO. OF GROUPS)

TABLE VIII

AGE RANGES IN THE m-GROUP AGE SYSTEMS FOR THE MORPH-II DATABASE AND THE AGE GROUPING RESULTS (m = NO. OF GROUPS)

TABLE IX

AGE ESTIMATION RESULTS (IN TERMS OF MAE) OF THE m-GROUP AGE SYSTEMS FOR THE FG-NET DATABASE

setting [18], [60] for the MORPH-II database is: the whole
MORPH-II database, W, is divided into 3 subsets S1,
S2 and S3. The S1 (or S2) is used for training and the
remaining W\S1 (or W\S2) is used for testing. The two testing
results are then averaged. Since the same cross validation is
used throughout all stages, we use the same training data to
build a model and the remaining data as the outer example
which are to be predicted by the trained model at each
stage. Also, we will try to make the source code of our
implementations available at [61].

C. Results of Age Grouping

In the age grouping stage, the classification accuracy is
used to evaluate our algorithm on FG-NET and MORPH-II
databases. To increase diversity between decisions for the
fusion stage, multiple age grouping systems are investigated.
The age range of each age grouping system is initially
defined based on the appearance of the faces. Considering
human face has a more visible change during early stage
(before 20 years old), we divide the age range in this

period into smaller intervals. Since there is no significant
change for human face appearances after they become adults
(≥20 years old), we choose a larger interval for this age range.
However, we need different age grouping systems to increase
the diversity. Thus, we have 8 and 6 age grouping systems for
FG-NET and MORPH-II, respectively. In addition, we avoid
dividing the whole dataset into more than 10 groups since the
number of training samples in each group becomes too small,
which does affect classification accuracy. The final age range
for both databases is determined through repeated experiments.
Tables VII and VIII list the age groups for each system in
the FG-NET and MORPH-II, respectively. Note that the age
ranges for 2-, 3-, . . . , 7-group systems in MORPH-II are the
same as the age ranges for 5-, 6-, . . . , 10-group systems in
FG-NET, respectively. The number of groups in MORPH-II is
less than that in FG-NET because MORPH-II does not have
faces with ages from 0 to 15 year old.

Tables VII and VIII also show the classification accuracy
for the proposed age grouping systems. We observe that the
overall classification accuracy decreases as the number of
groups increases. We created different age grouping systems
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TABLE X

AGE ESTIMATION RESULTS (IN TERMS OF MAE) OF m-GROUP AGE

SYSTEMS FOR THE MORPH-II DATABASE

TABLE XI

INTRA-FUSION: FINDING DECISION SUBSET BY SFS FOR THE 3-GROUP

SYSTEM AGAINST FG-NET

TABLE XII

AGE ESTIMATION RESULTS BY INTRA-FUSION AGAINST FG-NET

TABLE XIII

AGE ESTIMATION RESULTS BY INTRA-FUSION AGAINST MORPH-II

TABLE XIV

INTER-FUSION: FINDING SYSTEM SUBSET FOR d1 BY

SBS AGAINST FG-NET

for the following two reasons: (1) to demonstrate that age
estimation accuracy is dependent on the accuracy of age
grouping classifiers; and (2) to generate various age estimation
results for each test face to result in higher diversity for fusion.
The diversity gain is rarely exploited in the context of age
estimation. We will demonstrate its effectiveness in the fusion
stage, which is the main technical contribution of this work.

TABLE XV

AGE ESTIMATION RESULTS BY INTER-FUSION AGAINST FG-NET

TABLE XVI

AGE ESTIMATION RESULTS BY INTER-FUSION AGAINST MORPH-II

TABLE XVII

AGE ESTIMATION RESULTS BY INTRA-INTER-FUSION (AEF)

AGAINST FG-NET AND MORPH-II

TABLE XVIII

AGE ESTIMATION RESULTS BY INTER-INTRA-FUSION (EAF)

AGAINST FG-NET AND MORPH-II

D. Results of Age Estimation Within Age Groups

For age estimation, the performance is measured by
the mean absolute error (MAE) and the cumulative
score (CS) [6], [9]. The MAE is defined as the average of
absolute errors between the estimated ages and the ground
truth ages as

M AE =
N∑

i=1

∣∣∣a
′
i − ai

∣∣∣ /N, (3)

where ai is the ground truth age for test image i , a
′
i is its

estimated age, and N is the total number of test images. The
cumulative score (CS) is defined as

C S(L) = (ne≤L/N) × 100%, (4)

where ne≤L denotes the number of test images whose
age estimation makes an absolute error e not larger than
L years.
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TABLE XIX

AGE ESTIMATION RESULTS BY THE COMPOSITE FUSION (CF) AGAINST FG-NET AND MORPH-II

Each feature listed in Table III is used to test our two-stage
m-group age estimation system in Figure 4. The MAE results
on FG-NET and MORPH-II are shown in Tables IX and X,
respectively. Since age estimation should be easier under a
narrower age range, we expect lower MAEs for systems with
more groups. On the other hand, the classification accuracy
decreases when the number of groups increases at the first
stage. Thus, there is a trade-off between age grouping accuracy
and the number of age groups. For example, 3-group system
(the highest age grouping accuracy, see Table VII) and
10-group system (the largest number of groups) do not have
the lowest MAEs for FG-NET. Instead, the 7-group system
has the lowest MAEs.

One reason of small MAEs is attributed to age grouping.
To demonstrate this point, we use one column (m = 1 which
means no age grouping) in Table IX to list the MAE results
without age grouping. We see that MAEs with age grouping
are smaller than those without age grouping.

E. Results of Fusion of Decisions

Intra Fusion (AF): We show the MAE results of using
the SFS algorithm to determine a decision subset in the
3-group system for FG-NET. In Table XI, the SFS algo-
rithm keeps updating the subset until the MAE starts to
increase. After four times of updates, the fusion subset is
finalized to be {d4, d1, d2, d8} and it achieves the lowest MAE.
Tables XII and XIII show the decision subsets and MAE
results for each system against FG-NET and MORPH-II,
respectively. Most systems only need to fuse a few decisions
to achieve the best performance.

Inter Fusion (EF): We show the MAE results of using
the SBS algorithm to find the system subset for decision d1.
As shown in Table XIV, the SBS algorithm finds the
system subset after one update and achieves the lowest MAE.
Tables XV and XVI show the system subset and MAE
results for each decision against FG-NET and MORPH-II,
respectively. Most decisions only need about 2 updates
to find the optimal system subset for the best results.
It means that SBS can find the desired system subset faster
than SFS.

Intra-Inter Fusion (AEF): We apply the SBS algorithm
to find the DS subset, where each system has its specific
decision subset (as shown in Tables XII and XIII). The
fusion of the DS subset and the MAE result are shown
in Table XVII.

Inter-Intra Fusion (EAF): We use the SFS algorithm to find
the SS subset, where each decision has its specific system
subset (as shown in Tables XV and XVI). The fusion of the
SS subset and the MAE result are shown in Table XVIII.

Maximum-Diversity Fusion (MDF): The numbers of the
needed decisions are 22 and 23 to achieve the best MAE
performance by applying MDF to all decisions for final

TABLE XX

MAE COMPARISON OF THE PROPOSED FUSION METHODS AGAINST

SEVERAL BENCHMARKING FUSION METHODS

age estimation. The minimum MAEs are 2.98 and 3.26 years
on FG-NET and MORPH-II, respectively.

Composite Fusion (CF): The experimental results of CF
against FG-NET and MORPH-II are shown in Table XIX.
We list the final decision subset and its corresponding MAE.
The numbers of final selected decisions are 11 and 9, and the
minimum MAEs are 2.75 and 2.91 years for FG-NET and
MORPH-II, respectively. These are the lowest MAEs among
six fusion schemes. For example, only 11 out of 96 decisions
are selected to achieve the best results for FG-NET. This
means that the remaining 85 decisions are not used because
decisions from the same grouping system have low diversity
and only about 2 decisions are needed from each grouping
system.

Comparison With Other Fusion Methods: Some classical
fusion methods, such as majority voting, equal weighting,
and best-worst weighted vote [62], are tested using all deci-
sions, i.e., 96 and 72 decisions for FG-NET and MORPH-II,
respectively. To compare our fusion methods with others fairly,
we consider intra-inter fusion, inter-intra fusion, MDF, and CF.
The MAEs of our fusion methods and other classical fusion
methods are listed in Table XX. It is clear that the pro-
posed fusion schemes are better than other benchmarking
methods.

F. Complexity Comparison

Although the composite fusion gives the best performance,
discussion on other five fusion methods is meaningful due to
the tradeoff between the computational complexity and the age
estimation performance. If the complexity is a main concern,
we may select the inter fusion over the composite fusion since
the former has lower complexity where their performance
difference in MAE is small, which is about 0.13 years and
0.25 years for FG-NET and MORPH-II, respectively. By cal-
culating the total number of arithmetic operations required
by the MAE computation and the MAE value sorting in the
ascending order, we get the complexities of all fusion schemes
and their corresponding exhaustive search. They are listed
in Tables XXI, XXII and XXIII.

Fusion of all decisions in a straightforward manner still
has high complexity. For example, one needs to fuse all
96 decisions for FG-NET. However, our fusion schemes
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TABLE XXI

THE NUMBER OF REQUIRED ARITHMETIC OPERATIONS FOR

SELECTING N FROM 12 DECISIONS FOR INTRA AND

INTER-INTRA FUSIONS

TABLE XXII

THE NUMBER OF REQUIRED ARITHMETIC OPERATIONS FOR

SELECTING N FROM 8 DECISIONS FOR INTER AND

INTRA-INTER FUSIONS

TABLE XXIII

THE NUMBER OF REQUIRED ARITHMETIC OPERATIONS FOR

SELECTING N FROM 96 DECISIONS FOR MAXIMUM-DIVERSITY

AND COMPOSITE FUSIONS

TABLE XXIV

MAEs OF DIFFERENT AGE ESTIMATION ALGORITHMS

FOR THE FG-NET DATABASE

exploit two facts for complexity reduction: diversity of
decisions and effective selection algorithms (say, for-
ward/backward selection). The use of the exhaustive search
in finding the optimal decision subset is costly while the
performance gain is not significant. For example, the optimal
system subset obtained by exhaustive search for FG-NET turns
to be the same as that obtained by inter-fusion denoted by
SS1 as shown in Table XV. The optimal subset is selected in

TABLE XXV

MAEs OF DIFFERENT AGE ESTIMATION ALGORITHMS

FOR THE MORPH-II DATABASE

Fig. 11. Cumulative score (CS) curves of error levels from 0 to 10 years of
different age estimation algorithms for the FG-NET database.

Fig. 12. Cumulative score (CS) curves of error levels from 0 to 10 years of
different age estimation algorithms for the MORPH-II database.

the sense of minimizing MAE for the training dataset. The
subset obtained by our proposed forward/backward selection
strikes a better balance between the computational cost and the
MAE cost as compared with that obtained by the exhaustive
search.
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G. Performance Comparison

The robustness and effectiveness of the proposed GEF meth-
ods are studied in terms of MAEs and cumulative scores (CS)
below. First, we list the MAEs of several age estimation
methods in Tables XXIV and XXV and the cumulative scores
in Figures 11 and 12 for FG-NET and MORPH-II, respec-
tively. It is apparent that the GEF methods outperform other
state-of-the-art methods by a significant margin. The best
MAEs of the GEF methods are 2.81 and 2.97 years for
FG-NET and MORPH-II, respectively.

VIII. CONCLUSION AND FUTURE WORK

In this paper, a multistage learning framework called GEF
was proposed for age estimation. We present six differ-
ent fusion schemes to improve the performance. Extensive
experiments conducted on two frequently used databases,
FG-NET and MORPH-II, demonstrated the effectiveness of
the proposed GEF framework. It is possible to improve the
performance of the GEF methods by considering the following
extensions: 1) to increase the diversity among decisions by
including other features or age grouping systems; 2) to explore
other decision selection algorithms; and 3) to conduct a
theoretical analysis on the diversity gain. It is also worthwhile
to verify the robustness of the GEF framework across multiple
aging face databases. Moreover, age estimation to variation of
facial pose, such as turned or tilted faces, appears to be another
interesting problem that can be investigated in our future work.
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