Congratulations to Max Chen for Passing His Defense
Congratulations to Max Chen for passing his defense today. Max’ thesis is titled “A Green Learning Approach to Deepfake Detection and Camouflage and Splicing Object Localization.” His Dissertation Committee includes Jay Kuo (Chair), Shrikanth Narayanan, and Aiichiro Nakano (Outside Member). The Committee members highly praised the quality of his work. MCL News team invited Max for a short talk on her thesis and PhD experience, and here is the summary. We thank Max for his kind sharing, and wish him all the best in the next journey.
“In the current technological era, the advancement of AI models has not only driven innovation but also heightened concerns over environmental sustainability due to increased energy and water usage. For context, the water consumption equivalent to a 500ml bottle is tied to 10 to 50 responses from a model like GPT-3, and projections suggest that by 2027, AI could be using an estimated 85 to 134 TWh per year, potentially surpassing the water withdrawal of half of the United Kingdom. In light of these challenges, there is an urgent call for AI solutions that are environmentally friendly, characterized by lower energy consumption through fewer floating-point operations (FLOPs), more compact designs, and the ability to run independently on mobile devices without depending on server-based infrastructures.
This thesis introduces a novel approach for Camouflaged Object Detection, termed “GreenCOD.” GreenCOD combines the power of Extreme Gradient Boosting (XGBoost) with deep features. Contemporary research often focuses on devising intricate DNN architectures to enhance the performance of Camouflaged Object Detection. However, these methods are typically computationally intensive and show marginal differences between models. Our GreenCOD model stands out by employing gradient boosting for detection tasks. With its efficient design, it requires fewer parameters and FLOPs [...]