MCL Research on Point Cloud Registration
Point cloud registration refers to the process of aligning two point clouds. The two point clouds to be aligned are commonly called source and target. The goal is to find a spatial transformation (3D rotation and translation) that needs to be applied to the source to optimally align it with the target. Registration has become popular with the proliferation of 3D scanning devices like LiDAR and their applications in autonomous driving, robotics, graphics, mapping, etc.
Point clouds need to be registered in order to merge data from different sensors to obtain a globally consistent view, mapping a new observation to known data, etc. Registration is challenging due to several reasons. The source and the target point clouds may have different sampling densities and different number of points. Point clouds may contain outliers and/or be corrupted by noise. Sometimes, only partial views are available.
The problem of registration (or alignment) has been studied for a long while. Prior to point cloud processing, the focus has been on aligning lines, parametric curves and surfaces. The classical Iterative Closest Point (ICP) algorithm alternates between finding corresponding points and estimating the optimal rotation and translation. ICP just uses the spatial coordinates of points to establish point correspondences. More recently there has been a trend to use deep learning, feature based methods for registration. Two such popular methods include PointNetLK and Deep Closest Point (DCP). PointNetLK and DCP treat registration as a supervised learning problem and train end-to-end networks using deep learning. The supervision is in terms of class labels and ground truth rotation matrix and translation vector. We propose a method called ‘Salient Points Analysis (SPA)’ [1] for registration. In contrast with the recent deep learning methods, our SPA method [...]









