Automatic   synthesis   of   visually   pleasant   texture   that resembles  exemplary  texture  finds  applications  in  computer  graphics.  Texture  synthesis  has  been  studied  for several  decades  since  it  is  also  of  theoretical  interest  in texture analysis and modeling. Texture can be synthesized pixel-by-pixel or patch-by-patch based on an exemplary  pattern.  For  the  pixel-based  synthesis,  a  pixel conditioned on its squared neighbor was synthesized using the  conditional  probability  and  estimated  by  a  statistical method. Generally,  patch-based  texture  synthesis yields  higher  quality  than  pixel-based  texture  synthesis. Yet, searching the whole image for patch-based synthesis is  extremely  slow.  To  speed  up  the  process,  small patches of the exemplary texture can be stitched together to  form  a  larger  region. Although  these  methods can produce texture of higher quality, the diversity of produced textures is limited. Besides texture synthesis in the spatial domain, texture images from the spatial domain can be transformed to the spectral domain with certain filters (or kernels), thus exploiting the statistical correlation of filter responses for texture synthesis. Commonly used kernels include the Gabor filters and the steerable pyramid filter banks.

We  have  witnessed  amazing  quality  improvement  of synthesized  texture  over  the  last  five  to  six  years  due to  the  resurgence  of  neural  networks.  Texture  synthesis based on deep learning (DL), such as Convolutional Neural Networks  (CNNs)  and  Generative  Adversarial  Networks(GANs), yield visually pleasing results. DL-based methods learn transform kernels from numerous training data through end-to-end optimization. However, these methods have two main shortcomings: 1) a lack of mathematical  transparency  and  2)  a  higher  training  and  inference complexity. To address these drawbacks, we investigate a non-parametric and interpretable texture synthesis method, called NITES [1].

NITES  consists  of  three  steps.  First,  it  analyzes  the exemplary texture to obtain its joint spatial-spectral representations. Second, the probabilistic distributions of training  samples  in  the  joint  spatial-spectral  spaces  are  characterized.  Finally,  new  texture  images  are  generated  by mimicking probabilities of source texture images. In particular,  we  adopt  a  data-driven  transform,  known  as  the channel-wise (c/w) Saab transform, which provides a powerful representation in the joint spatial-spectral space. The  c/w  Saab  transform  is  derived  from  the  successive subspace  learning  (SSL)  theory.  Extensive  experimental  results  were  conducted to demonstrate the power of the proposed NITES method. It can generate  visually pleasant texture images effectively, including some unseen patterns.

 

Reference:

[1] Lei, Xuejing, Ganning Zhao, and C-C. Jay Kuo. “NITES: A Non-Parametric Interpretable Texture Synthesis Method.” 2020 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC). IEEE, 2020.